On the means of sequences ¹ Ioan Ţincu

Abstract

In this paper we investigate the invariancy of a class of real sequences with respect to the transformation $A: a \to A(a)$.

2000 Mathematics Subject Classification: 40G05

1

We consider the set of real sequences K, the set K_m of all sequences which are convex of order $m \ (m \in \mathbb{N})$ and the operator $\Delta^r : K \to \mathbb{R}, r \in \mathbb{R}$, defined by

(1)
$$\Delta^r a_n = (-1)^{[r]} \sum_{k=0}^{\infty} \frac{(-r)_k}{k!} a_{n+k},$$

with the convention $\Delta^0 a_n = a_n$ for every $n \in \mathbb{N}$, where:

$$(x)_l = x(x+1)...(x+l-1), l \in \mathbb{N}, (x)_0 = 1$$

[r]-represent integer part of the real number r.

Definition 1.1. We say that a real sequence $(a_n)_{n=1}^{\infty}$ is of M_r class if and only if

(2) $\Delta^r a_n \ge 0 \text{ for every } n \in \mathbb{N} \text{ (see [5])}.$

¹Received 20 July, 2006

Accepted for publication (in revised form) 17 August, 2006

If
$$r \in \mathbb{N}$$
 then $M_r = K_r \left(\Delta^r a_n = \sum_{k=0}^r (-1)^{r-k} {r \choose k} a_{n+k} \right)$

Property. For real numbers r, r_1, r_2 we have:

i) $\Delta^{r+1}a_n = \Delta^r a_{n+1} - \Delta^r a_n$, for every $n \in \mathbb{N}$ ii) $\Delta^{r_1+r_2}a_n = \Delta^{r_1}(\Delta^{r_2}a_n) = \Delta^{r_2}(\Delta^{r_1}a_n)$ (see[5]) Let $A(a) = (A_n(a))_{n=1}^{\infty}$, be the sequence of the means, that is $A_n(a) = \frac{1}{n+1} \sum_{k=0}^n a_k, \ n = 0, 1, 2, ...$

If S denotes a certain class of real sequences, then a_n interesting problem is to investigate if this class is invariant with respect to the transformation $A : a \to A(a)$; in other words if $A(S) \subseteq S$. For instance, it is wellknown that $A(S_0) \subseteq S_0$, S_0 being the class of all real sequences which are convergent.

In [1]-[4] it is shown that from the *n*-th order convexity of $a = (a_n)$ follows the convexity, of the same order, of the sequence $A(a) = (A_n(a))$, i.e. $A(K_m) \subseteq K_m$.

We shall find a representation of $\Delta^r A_n(a)$ as a positive linear combinations of $\Delta^r a_0, \Delta^r a_1, ..., \Delta^r a_n$.

Theorem 1.1. For $r \ge 0$ and n = 0, 1, 2, ... the equality

(3)
$$\Delta^r A_n(a) = \sum_{k=0}^n c_k(n,r), \Delta^r a_k \text{ with}$$

(4)
$$c_k(n,r) = \begin{cases} \frac{n!}{(r+1)_{n+1}}, & k = 0\\ \frac{n!}{(r+2)_n} \cdot \frac{(r+2)_{k-1}}{k!}, & k = 1, 2, \dots n \end{cases}$$

is verified.

Proof. For k = 0, 1, 2, ... we have:

$$a_{k} = (k+1)A_{k}(a) - kA_{k-1}(a)$$

$$\Delta^{r}a_{k} = (-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} a_{k+i} =$$

$$= (-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} \left[(k+i+1)A_{k+i}(a) - (k+i)A_{k+i-1}(a) \right] =$$

$$= (-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} (k+i+1)A_{k+1}(a) - \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} (k+1)A_{k+1-1}(a) \right] =$$

$$= (-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r)_i}{i!} (k+i+1) A_{k+i}(a) - \sum_{i=0}^{\infty} \frac{(-r)_{i+1}}{(i+1)!} (k+i+1) A_{k+i}(a) - kA_{k-1}(a) \right] = \\ = (-1)^{[r]} \left\{ \sum_{i=0}^{\infty} (k+i+1) A_{k+1}(a) \left[\frac{(-r)_i}{i!} - \frac{(-r)_{i+1}}{(i+1)!} \right] - kA_{k-1}(a) \right\} = \\ = (-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r)_i}{i!} (k+i+1) A_{k+i}(a) \frac{1+r}{i+1} - kA_{k-1}(a) \right] = \\ = (-1)^{[r]} \left[(1+r) \sum_{i=0}^{\infty} \frac{(-r)_i}{i!} A_{k+1}(a) + k \sum_{i=0}^{\infty} \frac{(-r)_i}{i!} \cdot \frac{1+r}{i+1} A_{k+i}(a) - kA_{k-1}(a) \right] = \\ = (1+r) \Delta^r A_k(a) - k(-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r-1)_{i+1}}{(i+1)!} A_{k+i}(a) - A_{k-1}(a) \right] = \\ = (1+r) \Delta^r A_k(a) - k(-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r-1)_i}{i!} A_{k+i-1}(a) - A_{k-1}(a) \right] = \\ = (1+r) \Delta^r A_k(a) - k(-1)^{[r]} \left[\sum_{i=0}^{\infty} \frac{(-r-1)_i}{i!} A_{k+i-1}(a) - A_{k-1}(a) \right] = \\ = (1+r) \Delta^r A_k(a) - k(-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r-1)_i}{i!} A_{k+i-1}(a) - A_{k-1}(a) = \\ = (1+r) \Delta^r A_k(a) - k(-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r-1)_i}{i!} A_{k-1+i} = \\ = (1+r) \Delta^r A_k(a) + k \Delta^{r+1} A_{k-1}(a).$$

From property ii), $\Delta^{r+1}A_{k-1}(a) = \Delta^r A_k(a) - \Delta^r A_{k-1}(a)$. We obtain

(5)
$$\Delta^r a_k = (1+r+k)\Delta^r A_k(a) - k\Delta^r A_{k-1}(a),$$

(6)
$$\frac{(r+2)_{k-1}}{k!}\Delta^r a_k = \frac{(r+2)_k}{k!}\Delta^r A_k(a) - \frac{(r+2)_{k-1}}{(k-1)!}\Delta^r A_{k-1}(a).$$

By summing these equalities we obtain

$$\sum_{k=1}^{n} \frac{(r+2)_{k-1}}{k!} \Delta^{r} a_{k} = \frac{(r+2)_{n}}{n!} \Delta^{r} A_{n}(a) - \Delta^{r} A_{0}(a).$$

In virtue of (5), for k = 0, $\Delta^r A_0(a) = \frac{1}{r+1} \Delta^r a_0$.

We obtain

$$\Delta^r A_n(a) = \frac{1}{r+1} \cdot \frac{n!}{(r+2)_n} \Delta^r a_0 + \frac{n!}{(r+2)_n} \sum_{k=1}^n \frac{(r+2)_{k-1}}{k!} \Delta^r a_k,$$
$$\Delta^r A_n(a) = \frac{n!}{(r+1)_{n+1}} \Delta^r a_0 + \frac{n!}{(r+2)_n} \sum_{k=1}^n \frac{(r+2)_{k-1}}{k!} \Delta^r a_k.$$

Theorem 1.2. Let $a = (a_n), A(a) = (A(a_n))$; then: i) $A_n(M_r) \subseteq M_r$

ii) if there exists $C \in R$, such that

$$|\Delta^r(a_n)| < C, \ n = 0, 1, 2, \dots$$

then for n = 1, 2, ...

$$|\Delta^r A_n(a)| < \frac{C}{r+1}$$

Proof. The assertions i), ii) are consequences of the equalities (3) and (4).

References

- I. B. Lacković, S. K. Simić, On weighted arithmetic means which are invariant with respect to k-th order convexity, Univ. Beograd Publ. Electrotehn. Fak. Ser. Mat. Fiz. No. 461 - No. 497 (1974), 159-166.
- [2] A. Lupaş, On convexity preserving matrix transformations, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634 - No. 677 (1979), 189-191
- [3] A. Lupaş, On the means of convex sequences, Gazeta Matematică, Seria (A), Anul IV, Nr. 1-2 (1983), 90-93.
- [4] N. Ozeki, On the convex sequences (IV), J. College Arts Sci. Chibo Univ. B 4 (1971), 1-4.
- [5] I. Ţincu, Linear transformations and summability methods of real sequences, Ph. D. Thesis, Cluj-Napoca 2005.

"Lucian Blaga" University of Sibiu Department of Mathematics Str. Dr. I. Raţiu, no. 5–7 550012 Sibiu - Romania E-mail address: *tincu_ioan@yahoo.com*