On the means of sequences ${ }^{1}$ Ioan Ţincu

Abstract

In this paper we investigate the invariancy of a class of real sequences with respect to the transformation $A: a \rightarrow A(a)$.

2000 Mathematics Subject Classification: 40G05

1

We consider the set of real sequences K, the set K_{m} of all sequences which are convex of order $m(m \in \mathbb{N})$ and the operator $\Delta^{r}: K \rightarrow \mathbb{R}, r \in \mathbb{R}$, defined by

$$
\begin{equation*}
\Delta^{r} a_{n}=(-1)^{[r]} \sum_{k=0}^{\infty} \frac{(-r)_{k}}{k!} a_{n+k} \tag{1}
\end{equation*}
$$

with the convention $\Delta^{0} a_{n}=a_{n}$ for every $n \in \mathbb{N}$, where:

$$
(x)_{l}=x(x+1) \ldots(x+l-1), l \in \mathbb{N},(x)_{0}=1
$$

$[r]$-represent integer part of the real number r.

Definition 1.1. We say that a real sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is of M_{r} class if and only if

$$
\begin{equation*}
\Delta^{r} a_{n} \geq 0 \text { for every } n \in \mathbb{N}(\text { see [5]). } \tag{2}
\end{equation*}
$$

[^0]If $r \in \mathbb{N}$ then $M_{r}=K_{r}\left(\Delta^{r} a_{n}=\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} a_{n+k}\right)$
Property. For real numbers r, r_{1}, r_{2} we have:
i) $\Delta^{r+1} a_{n}=\Delta^{r} a_{n+1}-\Delta^{r} a_{n}$, for every $n \in \mathbb{N}$
ii) $\Delta^{r_{1}+r_{2}} a_{n}=\Delta^{r_{1}}\left(\Delta^{r_{2}} a_{n}\right)=\Delta^{r_{2}}\left(\Delta^{r_{1}} a_{n}\right)($ see[5])

Let $A(a)=\left(A_{n}(a)\right)_{n=1}^{\infty}$, be the sequence of the means, that is $A_{n}(a)=\frac{1}{n+1} \sum_{k=0}^{n} a_{k}, n=0,1,2, \ldots$

If S denotes a certain class of real sequences, then a_{n} interesting problem is to investigate if this class is invariant with respect to the transformation $A: a \rightarrow A(a)$; in other words if $A(S) \subseteq S$. For instance, it is wellknown that $A\left(S_{0}\right) \subseteq S_{0}, S_{0}$ being the class of all real sequences which are convergent.

In [1]-[4] it is shown that from the n-th order convexity of $a=\left(a_{n}\right)$ follows the convexity, of the same order, of the sequence $A(a)=\left(A_{n}(a)\right)$, i.e. $A\left(K_{m}\right) \subseteq K_{m}$.

We shall find a representation of $\Delta^{r} A_{n}(a)$ as a positive linear combinations of $\Delta^{r} a_{0}, \Delta^{r} a_{1}, \ldots, \Delta^{r} a_{n}$.

Theorem 1.1. For $r \geq 0$ and $n=0,1,2, \ldots$ the equality

$$
\begin{gather*}
\Delta^{r} A_{n}(a)=\sum_{k=0}^{n} c_{k}(n, r), \Delta^{r} a_{k} \text { with } \tag{3}\\
c_{k}(n, r)= \begin{cases}\frac{n!}{(r+1)_{n+1}}, & k=0 \\
\frac{n!}{(r+2)_{n}} \cdot \frac{(r+2)_{k-1}}{k!}, & k=1,2, \ldots n .\end{cases}
\end{gather*}
$$

is verified.
Proof. For $k=0,1,2, \ldots$ we have:

$$
\begin{gathered}
a_{k}=(k+1) A_{k}(a)-k A_{k-1}(a) \\
\Delta^{r} a_{k}=(-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} a_{k+i}= \\
=(-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!}\left[(k+i+1) A_{k+i}(a)-(k+i) A_{k+i-1}(a)\right]= \\
=(-1)^{[r]}\left[\sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!}(k+i+1) A_{k+1}(a)-\sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!}(k+1) A_{k+1-1}(a)\right]=
\end{gathered}
$$

$$
\begin{gathered}
=(-1)^{[r]}\left[\sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!}(k+i+1) A_{k+i}(a)-\right. \\
\left.-\sum_{i=0}^{\infty} \frac{(-r)_{i+1}}{(i+1)!}(k+i+1) A_{k+i}(a)-k A_{k-1}(a)\right]= \\
=(-1)^{[r]}\left\{\sum_{i=0}^{\infty}(k+i+1) A_{k+1}(a)\left[\frac{(-r)_{i}}{i!}-\frac{(-r)_{i+1}}{(i+1)!}\right]-k A_{k-1}(a)\right\}= \\
=(-1)^{[r]}\left[\sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!}(k+i+1) A_{k+i}(a) \frac{1+r}{i+1}-k A_{k-1}(a)\right]= \\
=(-1)^{[r]}\left[(1+r) \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} A_{k+1}(a)+k \sum_{i=0}^{\infty} \frac{(-r)_{i}}{i!} \cdot \frac{1+r}{i+1} A_{k+i}(a)-k A_{k-1}(a)\right]= \\
=(1+r) \Delta^{r} A_{k}(a)-k(-1)^{[r]}\left[\sum_{i=0}^{\infty} \frac{(-r-1)_{i+1}}{(i+1)!} A_{k+i}(a)-A_{k-1}(a)\right]= \\
=(1+r) \Delta^{r} A_{k}(a)-k(-1)^{[r]}\left[\sum_{i=0}^{\infty} \frac{(-r-1)_{i}}{i!} A_{k+i-1}(a)-A_{k-1}(a)\right]= \\
=(1+r) \Delta^{r} A_{k}(a)-k(-1)^{[r]} \sum_{i=0}^{\infty} \frac{(-r-1)_{i}}{i!} A_{k-1+i}= \\
\quad=(1+r) \Delta^{r} A_{k}(a)+k \Delta^{r+1} A_{k-1}(a) .
\end{gathered}
$$

From property ii), $\Delta^{r+1} A_{k-1}(a)=\Delta^{r} A_{k}(a)-\Delta^{r} A_{k-1}(a)$.
We obtain

$$
\begin{gather*}
\Delta^{r} a_{k}=(1+r+k) \Delta^{r} A_{k}(a)-k \Delta^{r} A_{k-1}(a) \tag{5}\\
\frac{(r+2)_{k-1}}{k!} \Delta^{r} a_{k}=\frac{(r+2)_{k}}{k!} \Delta^{r} A_{k}(a)-\frac{(r+2)_{k-1}}{(k-1)!} \Delta^{r} A_{k-1}(a) \tag{6}
\end{gather*}
$$

By summing these equalities we obtain

$$
\sum_{k=1}^{n} \frac{(r+2)_{k-1}}{k!} \Delta^{r} a_{k}=\frac{(r+2)_{n}}{n!} \Delta^{r} A_{n}(a)-\Delta^{r} A_{0}(a)
$$

In virtue of (5), for $k=0, \Delta^{r} A_{0}(a)=\frac{1}{r+1} \Delta^{r} a_{0}$.

We obtain

$$
\begin{gathered}
\Delta^{r} A_{n}(a)=\frac{1}{r+1} \cdot \frac{n!}{(r+2)_{n}} \Delta^{r} a_{0}+\frac{n!}{(r+2)_{n}} \sum_{k=1}^{n} \frac{(r+2)_{k-1}}{k!} \Delta^{r} a_{k} \\
\Delta^{r} A_{n}(a)=\frac{n!}{(r+1)_{n+1}} \Delta^{r} a_{0}+\frac{n!}{(r+2)_{n}} \sum_{k=1}^{n} \frac{(r+2)_{k-1}}{k!} \Delta^{r} a_{k}
\end{gathered}
$$

Theorem 1.2. Let $a=\left(a_{n}\right), A(a)=\left(A\left(a_{n}\right)\right)$; then:
i) $A_{n}\left(M_{r}\right) \subseteq M_{r}$
ii) if there exists $C \in R$, such that

$$
\left|\Delta^{r}\left(a_{n}\right)\right|<C, n=0,1,2, \ldots
$$

then for $n=1,2, \ldots$

$$
\left|\Delta^{r} A_{n}(a)\right|<\frac{C}{r+1}
$$

Proof. The assertions i), ii) are consequences of the equalities (3) and (4).

References

[1] I. B. Lacković, S. K. Simić, On weighted arithmetic means which are invariant with respect to k-th order convexity, Univ. Beograd Publ. Electrotehn. Fak. Ser. Mat. Fiz. No. 461 - No. 497 (1974), 159-166.
[2] A. Lupaş, On convexity preserving matrix transformations, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634 - No. 677 (1979), 189-191
[3] A. Lupaş, On the means of convex sequences, Gazeta Matematică, Seria (A), Anul IV, Nr. 1-2 (1983), 90-93.
[4] N. Ozeki, On the convex sequences (IV), J. College Arts Sci. Chibo Univ. B 4 (1971), 1-4.
[5] I. Tincu, Linear transformations and summability methods of real sequences, Ph. D. Thesis, Cluj-Napoca 2005.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7
550012 Sibiu - Romania
E-mail address: tincu_ioan@yahoo.com

[^0]: ${ }^{1}$ Received 20 July, 2006
 Accepted for publication (in revised form) 17 August, 2006

