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Abstract

In the present paper, by making use of the Beta function, we
introduce a subclass A% (p, A, B,«) of functions with negative and
missing coefficients which are analytic and p-valent in the unit disc
U={z:]z|< 1} We give basic properties for functions belong-
ing to the class A% (p, A, B,a) and obtain numerous sharp results
in terms of the Beta function including coefficient estimate, distor-
tion theorems, closure theorems, integral operators and linear com-
binations of several functions belonging to A% (p, A, B,«) . We also
obtain radii of close-to-convexity, starlikeness and convexity for func-
tions belonging to A¥ (p, A, B,«) . Furthermore, convolution prop-
erties of several functions belonging to the class A% (p, A, B,«) are
studied here. Various distortion inequalities for fractional calculus of

functions in the A* (p, A, B, «) are also given.
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1 Introduction

Let A, (p > 2) denote the class of functions of the form
(1.1) f(z) =2 + Z 2"

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A func-
tion f(z) belonging to the class A, is said to be in the class A%(p, 4, B, a)

Re{w}>g

plz p
for - 1< B<A<1,-1<B<0, 0<a<pandall zeU.

In the other words, f(z) € A%(p, A, B,a) if and only if there exists a

if and only if

function w(z) satisfying w(0) = 0 and |w(z)| < 1 for z € U such that
(p—1) 1+ A
(1.2) M:(l_%)ﬂ+%
plz p) 1+ Bw(z) p
The condition (1.2) is equivalent to

f(p*U(Z) B

P
(1.3) > | <L el
[pB + (A~ B)(p — a)] — pB~—*

plz

Let Ay denote the subclass of A, consisting of functions analytic and

p-valent which can be expressed in the form

(1) F) = =3y
n=k
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where a,n, >0, k> 2.
Let us define

Aip, A, B,a) = Aj(p, A, B,a) N A,

M.K. Aouf and H.E.Darwish [3], S.M.Sarangi and V.J.Patil [4] have
studied certain classes of p-valent functions with negative and missing coef-
ficients. M.K. Aouf and H.E.Darwish [2], S.L.Shukla and Dastrath [5]have
studied certain classes of analytic functions with negative coefficients. Also
the class A, is studied by M.Nunokawa [1]. In this paper, while we were ob-
taining coefficient estimates, distortion theorem, covering theorem, integral
operators, convolution properties and radii of close-to-convexity, starlike-
ness and convexity for functions belonging to A*(p, A, B, «) , we used the
beta function. Further it is shown that this class is closed under “arith-
metic mean and “convex linear combinations. Also distortion theorems for

fractional calculus are shown.

2 Coefficient Estimates

Theorem 1 Let the function f(z) defined by (1.4). Then f(z) € A%*(p, A, B, a)
if and only if

Ry 1-BY 1)31@% e < (A= B)p— o)

n=~k

where B denotes the beta function. The result is sharp.

Proof : Assume that the inequality (2.1) holds true and let |z| = 1.
Then we obtain
fo ()

—pl—|pB+(A—=B)(p—a)—pBl—
p‘ ‘p + ( J(p—a)—p pE

f(pfl)(z)

plz
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(o] 1 .
:|_;(n+1)B(p,n+1)ap+nz a
= 1

_ _ _ B n
(A=B)p—a)+ ;(n+1)B(p,n+1)ap+nz
= 1

<(1-B pin —(A—B)(p—a) ; B<O0

<0

by hypothesis. Hence, by the maximum modulus theorem, we have f(z) €
A*(p, A, B,«) . To prove the converse, assume that
(p—1)
S — () _ D

pB+(A-B)(p—a) - pBL

plz

S A L
n=k (nFDB(pn+D) Wtn

i <1
(A=B)(p— )+ BY 00, rippmin Wn?"

Since Re(z) < |z| for all z, we have

e’} 1 n
(2.2) Re 2nmh GEBGD) 74 <1.
(A= B)(p — a) + B2, ormomsn) W "

(2)

. (p=1) . .
Choose values of z on the real axis so that % is real. Upon clearing

the denominator in (2.2) and letting z — 1~ through real values, we obtain

(2.3) (1-B) 3

1
(7’L + 1)B(p,n + 1)a’P+TZ < (A - B)(p - Ct)

which obviously is required assertion (2.1).

Finally, sharpness follows if we take

(A= B)(p—a)(n+1)B(p,n +1)
(1-B)

P (n >k k> 2).

(24) f(z)=2"—
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Corollary 1 Let the function f(z) defined by (1.4). If f(2) € A%(p, A, B, «),
then

(A=B)(p—a)(n+1)B(p,n+1)
(2'5) Ap+n < (1 — B)

The equality in (2.5) is attained for the function f(z) given by (2.4).

3 Distortion Properties

Theorem 2 If the function f(z) defined by (1.4) in the A*(p, A, B, «) then

for |z] =7 <1

(A=B)(p—a)(k+1)B(p,k+1)

"o (1— B) < f(2)] < Pt
(A= B)(p—a)(k+1)B(p,k+1) .,
(3.1) + -F) .
and
p'r’pﬂ _ (A — B)(p zlazkél; + 1)B(p7 k) ,r,erkfl < ‘f’(2)| < prpfl_i_
(3.2) LA=B)(p—a)k(k+ 1B(p. k) 41

(1-B)
All the inequalities are sharp.

Proof : Let f(z) = 2P =Y ", a,4,2°™". From Theorem 1, we have

oo

1
<
(k+1)B(p, k+1) Za”*” =

n=~k

(1-B)
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63 <0-B)Y oy < A- B0

n=~k

which immediately yields for n > k

> (A=B)(p—a)(k+1)B(p, k+1)
(3'4) ;apﬂz S (1 _ B)
and
> A—B)(p—a)k(k+ 1)B(p, k
(3.5) ;(pm)aw <UD q ) ]g)+ Bl k)

Consequently, for |z| =7 < 1, we obtain

o [e's)
FEN 1P+ 3 sl PP <17 7Sy < 0

n=~k n=k
+(A —B)p—a)(k+1)B(p.k+1) 0,
(1-B)
and . o
PN 12 = S Japeallal ™ > 07 — 1253 g > 1
n=k n=k
_A-Bp-a)(k+ DBRE+T) .,
(1-B)

which prove that the assertion (3.1) of Theorem 2.

Furthermore, for |z| = r < 1 and (3.5), we have

] < plelP ™+ 0+ m)lapall2P 7 < Pt PN N nYagn
n=k n=k
< pT‘p_l + (A - B)(p - Oz)k’(k’ + 1)B(pa k) rp+k_1

(1-DB)
and

[e.o]

P& = plalP™ =)+ n)lapenl 277 > pr? T =P (p 4 n)ay,

n=~k n=~k
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(A= B)p — )bl + DBG.K) oy s
(1-B)
which prove that the assertion (3.2) of Theorem 2.
The bounds in (3.1) and (3.2) are attained for the function f(z) given

by

> pri~t —

_» A=Bp -+ )BEA+Y
(3.6) f(z)=2P — =) z Pz = Fr.

Letting » — 1 in the left hand side of (3.1), we have the following:
Corollary 2 If f(z) € AX(p, A, B, «), then the disc |z| < 1 is mapped

by f(z) onto a domain that contains the disc

(1—B)—(k+1)B(p,k+1)(A—B)(p— )
(1-B)

jw] <

The result is sharp with the extremal function f(z) being given by (3.6).
Putting @ = 0 in Theorem 2 and Corollary 2, we get
Corollary 3 If the function f(z) defined by (1.4) in the A%(p, A, B,0)
then for |z| =r
(A—B)p(k+1)B(p,k+1)
(1-B)

(A= B)p(k+1)B(p,k+1) .,
(1-B) '

rP —

< f(2)] <P

and
(A — B)pk(k +1)B(p, k)
(1-B)
n (A — B)pk(k + 1)B(p, k)Terk_l‘
(1-B)
The result is sharp with the extremal function

(A= B)p(k+1)B(p,k+1) .,
(1-B) :

- L) <

B7)  flz)=2"-

12 = Fr.
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Corollary 4 If f(z) € AZ(p, A, B, a), then the disc |z| < 1 is mapped
by f(z) onto a domain that contains the disc

(1-B)—pk+1)B(p,k+1)(A— B)
(1-DB)

jw] <

The result is sharp with the extremal function f(z) being given by (3.7).

4 Radii Of Close-To-Convexity, Starlikeness

And Convexity

Theorem 3 : Let the function f(z) defined by (1.4) in the class A%(p, A, B, «).
Then f(z) is p-valent close-to-convex of order 6 (0 <6 < p) in |z] < Ry,

where

(41)  Ri=inf { {(A o S)(_ni)l)B(p,n +1) (fo);i)l ;}

Theorem 4 : Let the function f(z) defined by (1.4) in the class A%(p, A, B, «).
Then f(z) is p-valent starlike of order § (0 < J < p) in |z| < Ry, where

(4.2) R, =inf { LA_ B)(p—fazl)(:zi)DB(p,m 1) (pi;g)r}'

Theorem 5 : Let the function f(z) defined by (1.4) in the class A%(p, A, B, «).

Then f(z) is p-valent convex function of order 6 (0 < d < p) in |z| < Rs,
where

(4.3)

I —L (o= )}
w22 | [(A=B)(p—a)(n+1)B(p,n+1) \(p+n)(p+n—20)
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The results in Theorem 3,4,5 are sharp with the extremal function f(z)
given by (2.4). Furthermore, taking 6 = 0 in Theorem 3,4,5, we obtain

radius of close-to-convexity , starlikeness and convexity, respectively.

5 Integral Operators

Theorem 6 Let ¢ be a real number such that ¢ > —p. If f(z) €
A*(p, A, B, «), then the function F'(z) defined by

(5.1) F(z) = &2 /0 £ F (1) dt

ZC
also belongs to A%(p, A, B, ).
Proof : Let f(z) = 2 — > 2 a,1,2""™. Then from representation of

F(2), it follows that F'(z) = 2P—> >, by, 2Pt where by, = (HZM) Apin-

Therefore using Theorem 1 for the coefficients of F'(z) we have

[e.9]

bpin =
:k (n+1)B p,n—|—1) rr

n

oo

1 c+p
_B)z_;(n—i—l)B(p,n—l—l) <c+p—|—n) apn < (A= B)(p—a)

n=

: c+ * *
since ;-2 < 1 and f(z) € A{(p, A, B, ) . Hence F'(z) € A(p, A, B, ).

Theorem 7 Let ¢ be a real number such that ¢ > —p . If F(z) €
A*(p, A, B, «), then the function f(z) defined by (5.1) is p-valent in |z| < R*,

} |

where

(5.2)

" 2222{(cj;fn) &A—B)@—&@TDB@,%U (Pi")]

The result is sharp.

3=
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Proof : Let F(z) =2/ — > > a4, 2P It follows from (5.1)

o= e = -3 (ﬂ)

c+pdz ~ c+p

p‘<p

for |z] < R* where R* is defined by (5.2). Now

e
SZ p+n aern‘Z’ :
n=k +p
Thus %—p’<pif
- c+tp+n n
(5.3 St (I I <
n=k +p

But Theorem 1 confirms that

(1-B)
Zp[AB a)(n + >B<p7n+1>]“p+”§p'

Hence (5.3) will be satisfied if

c+p+n n (1-B)
(“”)( c+p )“”*“'Z' SpLA_B)@_Q)(H1)B(p,n+1>}

3=

2l = {(cj;in) (A- B)(p—ixl)(:llj-)l)B(Pan+ D (pin)}

Therefore f(z) is p-valent in |z| < R* .
Sharpness follows if we take

- <c+p+n> (A= B)(p—a)(n+1)B(p,n+ 1)z”+”.

f(z) == c+p (1-DB)
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6 Closure Properties

In this section we show that the class AX(p, A, B, «) is closed under “arith-
metic mean and “convex linear combinations.

Theorem 8 Let f;(z) =2 =Y 07 apin ;22T j=1,2,...and h(z) =
2P =3 by 2T, where b,y = Z] L Aj@prng, Ay > 0and 3077 A =1

If f;(z) € AX(p, A, B, ) for each j = 1,2, ..., then h(z) € A*(p, A, B, ) .
Proof : If f;(z) € A*(p, A, B, «), then we have from Theorem 1 that

Upin; <(A—B)p—a) j=1,2, ..
:k (n+1)B p,n+1) g

n

Therefore
[e.o] 1 B
“— (n+1)B(p,n+ )p+"
=(1-B n, <(A-B)(p—a).
=203 |y (2 s )| < (4= 20—

Hence, by Theorem 1, h(z) € AX(p, A, B, «).

Theorem 9 The class A%(p, A, B, ) is closed under convex linear com-

binations.

Proof: Let f(z) = 2P—> ", apinzPt" and g(z) = 2P =" bypn 2Pt
(k> p, apin > 0, byn, > 0), be any two functions of the class A%(p, A, B, a).
For A (0 < X < 1), it is sufficient to show that h(z) = (1 — ) f(2)+Ag(2),2 €
U is also a function of A%(p, A, B, ). Now,

2)=2" = [(1=A) tpsn + Abprn] 277"

Applying Theorem 1 to f,g € A%(p, A, B, «), we have

[e.o]

1
— (n+1)B(p,n+1)

(1-B)

n

[(1—=X) Aptn + )‘bp-i-n] =
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o)

fry Qa n—|—
— (n+1)B p,n—irl) il

- 1
AM1—-B bpin <
A Z (m+ DB+ 1) 7 =

n=k

<A -=MNA=B)p-a)+AA=B)(p-a)=(A-B)p-a)

Then h(z) € A%(p, A, B, a).

Theorem 10 Let f,(z) = 2P and fp1n(2) = z”—(A_B)(p_‘z‘l)(_"g)l)B(p’nH)zp+”
(n>k,k>2). Then f(z) € A%(p, A, B, «) if and only if it can be expressed
in the form

F(2) = Afpl2) + Z Mfpin(2), z€U
where A, >0 and A, =1—">7, \,.

Proof : Let us assume that

f(z) = Nofolz +ZA Foin(2)

p (A-B)p—a)n+1)Bp.n+1) ..,
1—2)\z+z>\{ -5 z }

S At UBEn kD),

— (1-B)
Then from Theorem 1 we have
By 1 (A=B)(p—a)n+ DB{p.n+1)
B(p,n+1) (1-B)

n=~k

= (A ZSAB —a).

Hence f(z) € AX(p, A, B, a).
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Conversely, let f(z) € AX(p, A, B, ). It follows from Corollary 1 that

w < (A—B)(p—a)(n+1)B(p,n+1)
= (1 - B)

Setting

(1- B
(A—B)(p—a)(n+ DBp,n+1) "™
and A, =1—3"" \,, we have

A, = n=kk+tl,. .. k>2

[o.¢]
_ P _ ptn
n
f(z) == Zazﬂ- z
n==k

= - > (A-B)(p- 1)B 1
:zp_Z)\nzp+Z)\nzp_Z,\n( )(p (041)(—71;) JBp.n+1)
n=~k n=~k n=~k

o0

L IR B e

(1-B)

n=k =k

= Apfp(2) + Z Anfpin(2)-
n=k

This completes the proof of Theorem 10.

7 Convolution Properties

Theorem 11 If f1(2) = 2P =Y "°, apin2? ™ and fo(z) = 2P >,
are in the class A%(p, A, B,a) then (fi * fo)(2) = 22 — > 07, @pinbpin2?™™
is in the class A*(p, A, B, 1), where
3(A—B)(p—a)’B(p,3)

(1-B) '
The result is best possible for fi(z) and fy(z) given by

, 3A=B)p—a)’B{3) , .
fi(z) = 2" — 1B 2 j=1,2.

bp+nzp+n

Y=p-—
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Proof : In order to prove our theorem, we have to find the largest ¢ =

¥(p, A, B, ) such that

[e.e]

(1-B) )
— (A=B)(p—¢)(n+1)B(p,n+1) p+n

bp+n <1

for fi(z) and f3(z) in the class A*(p, A, B, «). Since fi(z) and fa(z) are in
(

the class A*(p, A, B, a), in view of Theorem 1,

- (1-B) <1
a n =
2 (A= B)(p—a)n+ DBp.n+1) "
and
= (1-DB)
byrn < 1.
2 (A= B)(p—a)(n+1)B(p,n+1) """ =
Therefore, by the Cauchy-Schwarz inequality, we obtain
= (1-B)

7.1 nbpin <1
D B T e A
Thus it is sufficient to show that

(1-B)
(A=B)(p—v)(n+ DB(p.n+ 1) """
(1-DB)
< nb n
S A-B)p—a)n+ DBp.at 1)V
or
——— P~
ap+nbp+n S »—a .
Note that

(A—B)(p—a)(n+1)B(p,n+1)
V Gpnbpin < (1-B) :

Hence, we need only to prove that

(A=B)p—a)(n+1)Blp,n+1) _p
(1-B) T p—

(7.2)
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or, equivalently, that

(A—B)(p—a)*(n+1)B(p,n+ 1)‘

Y<p- - D)

Defining the function Z(n) by

(A—B)(p—a)*(n+1)B(p,n+1)
(1-DB) ’

(73) =(n) = p -
we see that Z(n) is an increasing function of n. Therefore, letting n = 2 in
(7.3), we obtain

3(A—B)(p—a)’B(p,3)
(1-B)

Y <Z=(2)=p-

which completes the assertion of theorem.

8 Definitions And Applications Of The Frac-

tional Calculus

In this section, we shall prove several distortion theorems in terms of the
beta function for functions to general class A%(p, A, B,«). Each of these
theorems would involve certain operators of fractional calculus we find it to
be convenient to recall here the following definition which were used recently
by Owa [6] (and more recently, by Owa & Srivastava [7], and Srivastava &

Owa [8], ; see also Srivastava et all. [9] )

Definition 1 The fractional integral of order X is defined, for a function

f(z), by

(8.1) Df(z) = F(lA) /0 - f(g))udg (A > 0)
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where f(z) is an analytic function in a simply connected region of the z
-plane containing the origin, and the multiplicity of (2 — ¢()*~! is removed

by requiring log(z — ¢) to be real when z — ( > 0.
Definition 2 The fractional derivative of order A is defined, for a

function f(z), by

(8.2) D) f(2) = ﬁd% /0 %dg 0<A<1)

where f(z) is constrained, and the multiplicity of (z — ()~ is removed, as

in Definition 1.

Definition 3 Under the hypotheses of Definition 2, the fractional
derivative of order (n + \) is defined by

(83 DI () = 4D (2)

where 0 < A < 1 and n € Ny = NU {0}.

From Definition 2, we have

(8.4) Dif(z) = f(2)

which, in view of Definition 3 yields,

d?’b
(85) DIOf(s) = L DUI() = [(2)
Thus, it follows from (8.4) and (8.5) that

lim DI*f(2) = f(2)

A—0

and

lim DI f(2) = f(2).

A—0



On a Subclass of p-valent Functions whose coefficients... 67

Theorem 12 Let the function f(z) defined by (1.4) be in the class
A*(p, A, B,«). Then for z € U and X\ > 0,

_ F(p+1) DA
|D f(2)] = TO+pt1) |2

.%fjA—Bm%wmk+UB@+A+menk+nVﬁ}
B(p+1,k)(1 — B)
and
A r 1 p+
D240 < e
‘%A}A—BM%ka+DB@+A+L@MQk+DVﬁ}
B(p+1,k)(1 — B) ‘

The result is sharp.

Proof : Let

Fp+1+X)

T D)=

F(z)=

o0

B(p+A+1,n)
— p_E ’ ptn
‘ B(p+1,n) 7

n=~k
o

= 2P — Z¢(n)ap+nzp+”
n=~k

where
B(p+A+1,n)

Bpiin (M2

¥(n) =

Since
(p+ A+ 1,k)

B(p+1,k)

0 < n) < (k) = 2

we have, with the help of (3.4).

[F(2)] = |2 — (k) |27 apyn >
n=~k
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- B(p+1,k)(1 — B)
and .
[F(2)] < |21+ d(k) |27 Y apyn <
n==k
<o+ Blp+A+1,k)(A—B)(p—a)(k+1)B(p,k+1) |Z|p+k

B(p+1,k)(1 - B)
which prove the inequalities of Theorem 12. Further equalities are attained

for the function

o A-Blp-a)k+)Bpk+1)
(8.6) f(z)=2P — 1-B) z

Theorem 13 Let the function f(z) defined by (1.4) be in the class
Af(p, A, B,a). Then for 0 < A < 1,

|D)Mf(2)] > % 2P
' {1 (A=B)(p— a)k(k+1)B(p— A+ 1,k)B(p,1) |z|k}
(1-B)
and
D2 f(2)| < % H=y
(A= B)(p—a)k(k+1)B(p — A+ 1,k)B(p,1) , &
.{1+ 5 |Z|},

The result is sharp for the function f(z) given by (8.6).
The proof of Theorem 13 is obtained by using the same technique as
in the proof of Theorem 12. Setting A = 0 in Theorem 13, we obtain the

following Corollary:
Corollary 8 If f(z) € AX(p, A, B, @), then
A-B)p—a)k(k+1)B(p+ 1,k

(1-B)p
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and

()] < |z|p{1+ (A—B)(p—a)k(k+1)B(p+ 1,k) |z|k}

(1-B)p

for k> 2, p € N and for all z € U.
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