Some preserving properties of a integral operator

Ana-Maria Acu and Eugen Constantinescu

Abstract

In this paper we will give some preserving properties of some subclasses of functions with negative coefficients by using a integral operator.

2000 Mathematical Subject Classification: 30C45

Key words and phrases: Function with negative coefficients, integral operator,

Sălăgean operator

1 Introduction and Preliminaries

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U, $A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}, \ \mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}.$ We denote with T the subset of the functions $f \in S$, which have the form

(1)
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, \ j \ge 2, \ z \in U$$

and with $T^* = T \bigcap S^*$, $T^*(\alpha) = T \bigcap S^*(\alpha)$, $T^c = T \bigcap S^c$ and $T^c(\alpha) = T \bigcap S^c(\alpha)$, where $0 \le \alpha < 1$.

Theorem 1. [6] For a function f having the form (1) the following assertions are equivalents:

$$(i)\sum_{j=2}^{\infty} ja_j \le 1$$

(ii) $f \in T$
(iii) $f \in T^*$.

Regarding the classes $T^*(\alpha)$ and $T^c(\alpha)$ with $0 \le \alpha < 1$, we recall here the following result:

Theorem 2. [6] A function f having the form (1) is in the class $T^*(\alpha)$ if and only if:

(2)
$$\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \le 1,$$

and is in the class $T^{c}(\alpha)$ if and only if:

(3)
$$\sum_{j=2}^{\infty} \frac{j(j-\alpha)}{1-\alpha} a_j \le 1.$$

Definition 1. [2] Let $S^*(\alpha, \beta)$ denote the class of functions having the form (1) which are starlike and satisfy

(4)
$$\left|\frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + (1 - 2\alpha)}\right| < \beta$$

for $0 \le \alpha < 1$ and $0 < \beta \le 1$. And let $C^*(\alpha, \beta)$ denote the class of functions such that zf'(z) is in the class $S^*(\alpha, \beta)$.

Theorem 3. [2] A function f having the form (1) is in the class $S^*(\alpha, \beta)$ if and only if:

(5)
$$\sum_{j=2}^{\infty} \left\{ (j-1) + \beta(j+1-2\alpha) \right\} a_j \le 2\beta(1-\alpha) \,,$$

and is in the class $C^*(\alpha, \beta)$ if and only if:

(6)
$$\sum_{j=2}^{\infty} j \left\{ (j-1) + \beta (j+1-2\alpha) \right\} a_j \le 2\beta (1-\alpha) \, .$$

Let D^n be the Sălăgean differential operator (see [3]) defined as:

$$D^n: A \to A$$
, $n \in \mathbb{N}$ and $D^0 f(z) = f(z)$
 $D^1 f(z) = Df(z) = zf'(z)$, $D^n f(z) = D(D^{n-1}f(z)).$

In [5] the author define the class $T_n(\alpha, \beta)$, from which by choosing different values for the parameters we obtain variously subclasses of analytic functions with negative coefficients (for example $T_n(\alpha, 1) = T_n(\alpha)$ which is the class of *n*-starlike of order α functions with negative coefficients and $T_0(\alpha, \beta) = S^*(\alpha, \beta)$ is the class defined by (4)).

Definition 2. [5] Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$ and $n \in \mathbb{N}$. We define the class $S_n(\alpha, \beta)$ of the n-starlike of order α and type β through

$$S_n(\alpha,\beta) = \{ f \in A ; |J(f,n,\alpha;z)| < \beta \}$$

186

Some preserving properties of a integral operator

where $J(f, n, \alpha; z) = \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^n f(z)}, z \in U$. Consequently $T_n(\alpha, \beta) = S_n(\alpha, \beta) \bigcap T$.

Theorem 4. [5] Let f be a function having the form (1). Then $f \in T_n(\alpha, \beta)$ if and only if

(7)
$$\sum_{j=2}^{\infty} j^n \left[j - 1 + \beta (j+1-2\alpha) \right] a_j \le 2\beta (1-\alpha) \,.$$

2 Main results

In [1] the authors consider the integral operator $I_{c+\delta} : A \to A, 0 < u \leq 1$, $1 \leq \delta < \infty, 0 < c < \infty$, defined by

(8)
$$f(z) = I_{c+\delta}(F(z)) = (c+\delta) \int_{0}^{1} u^{c+\delta-2} F(uz) du$$

Remark 1. For $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$, from (8) we obtain

$$f(z) = z + \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_j z^j.$$

Also, we notice that $0 < \frac{c+\delta}{c+j+\delta-1} < 1$, where $0 < c < \infty$, $j \ge 2$, $1 \le \delta < \infty$.

Remark 2. It is easy to prove that for $F(z) \in T$ and $f(z) = I_{c+\delta}(F(z))$, we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (8). **Theorem 5.** Let F(z) be in the class $T^*(\alpha)$, $\alpha \in [0,1)$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0, j \ge 2$. Then $f(z) = I_{c+\delta}(F(z)) \in T^*(\alpha)$, where $I_{c+\delta}$ is the integral operator defined by (8).

Proof. From Remark 2 we obtain
$$f(z) = I_{c+\delta}(F(z)) \in T$$
.
We have $\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} a_j \leq 1$ and $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where $b_j = \frac{c+\delta}{c+j+\delta-1} a_j$.
By using the fact that $0 < \frac{c+\delta}{c+j+\delta-1} < 1$, where $0 < c < \infty$, $j \geq 2$,
 $1 \leq \delta < \infty$, we obtain $\frac{j-\alpha}{1-\alpha} b_j < \frac{j-\alpha}{1-\alpha} a_j$ and thus $\sum_{j=2}^{\infty} \frac{j-\alpha}{1-\alpha} b_j \leq 1$. This
mean (see Theorem 2) that $f(z) = I_{c+\delta}(F(z)) \in T^*(\alpha)$.

Similarly (by using Theorems 2, 3 and 4) we obtain:

Theorem 6. Let F(z) be in the class $T^{c}(\alpha)$, $\alpha \in [0, 1)$, $F(z) = z - \sum_{j=2}^{\infty} a_{j} z^{j}$, $a_{j} \geq 0, j \geq 2$. Then $f(z) = I_{c+\delta}(F(z)) \in T^{c}(\alpha)$, where $I_{c+\delta}$ is the integral operator defined by (8).

Theorem 7. Let F(z) be in the class $C^*(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = I_{c+\delta}(F(z)) \in C^*(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (8).

Theorem 8. Let F(z) be in the class $T_n(\alpha, \beta)$, $\alpha \in [0, 1)$, $\beta \in (0, 1]$, $n \in \mathbb{N}$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$. Then $f(z) = I_{c+\delta}(F(z)) \in T_n(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (8).

Remark 3. By choosing $\beta = 1$, respectively n = 0, in the above theorem, we obtain the similarly result for the classes $T_n(\alpha)$ and $S^*(\alpha, \beta)$.

References

- M. Acu and all, On some starlike functions with negative coefficients, (to appear).
- [2] V.P. Gupta, P.K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14(1976), 409-416.
- [3] G.S. Sălăgean, Geometria planului complex, Ed. Promedia Plus, Cluj-Napoca, 1997.
- [4] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis.
 Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
- [5] G.S. Sălăgean, Analytic functions with negative coefficients, Mathematica, 36(59), 2(1994), 219-224.
- [6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Department of Mathematics Faculty of Science University "Lucian Blaga" of Sibiu Str. I. Ratiu, no. 5-7, 550012 - Sibiu, Romania Email addresses: acuana77@yahoo.com , egnconst68@yahoo.com