On Salagean-type harmonic multivalent functions

Bilal Şeker and Sevtap Sümer Eker

Abstract

We define and investigate a new class of Salagean-type harmonic multivalent functions. we obtain coefficient inequalities, extreme points and distortion bounds for the functions in our classes.

2000 Mathematical Subject Classification: 30C45, 30C50, 31A05.

Keywords : Harmonic Univalent Functions, Salagean Derivative.

1 Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply complex domain \mathcal{D} is said to be harmonic in \mathcal{D} if both u and v are real harmonic in \mathcal{D}. In any simply connected domain we can write $f=h+\bar{g}$, where h and g are analytic in \mathcal{D}. A necessary and sufficient condition for f to be
locally univalent and sense preserving in \mathcal{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|, z \in \mathcal{D}$. See also Clunie and Sheil-Small [1].

Denote by H the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the unit disc $\mathbb{U}=\{z:|z|<1\}$ so that $f=h+\bar{g}$ is normalized by $f(0)=h(0)=f_{z}(0)-1=0$

Recently, Ahuja and Jahangiri [9] defined the class $H_{p}(n)(p, n \in \mathbb{N}=$ $\{1,2, .\}$.$) consisting of all \mathrm{p}$-valent harmonic functions $f=h+\bar{g}$ that are sense preserving in \mathbb{U} and h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g(z)=\sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}, \quad\left|b_{p}\right|<1 . \tag{1}
\end{equation*}
$$

The differential operator D^{m} was introduced by Salagean [5]. For $f=h+\bar{g}$ given by (1), Jahangiri et al. [4] defined the modified Salagean operator of f as

$$
\begin{equation*}
D^{m} f(z)=D^{m} h(z)+(-1)^{m} \overline{D^{m} g(z)} ; \quad p>m \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
D^{m} h(z)=z^{p}+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{m} a_{k+p-1} z^{k+p-1} \\
D^{m} g(z)=\sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{m} b_{k+p-1} z^{k+p-1} .
\end{gathered}
$$

For $0 \leq \alpha<1, m \in \mathbb{N}, n \in \mathbb{N}_{0}, m>n$ and $z \in \mathbb{U}$, let $H_{p}(m, n, \alpha)$ denote the family of harmonic functions f of the form (1) such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{m} f(z)}{D^{n} f(z)}\right\}>\alpha \tag{3}
\end{equation*}
$$

where D^{m} is defined by (2). Let we denote the subclass $\overline{H_{p}}(m, n, \alpha)$ consist of harmonic functions $f_{m}=h+\overline{g_{m}}$ in $\overline{H_{p}}(m, n, \alpha)$ so that h and g_{m} are of
the form
(4) $h(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g_{m}(z)=(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}$ where $a_{k+p-1}, b_{k+p-1} \geq 0,\left|b_{p}\right|<1$.

The families $H_{p}(m, n, \alpha)$ and $\overline{H_{p}}(m, n, \alpha)$ include a variety of well-known classes of harmonic functions as well as many new ones. For example $\overline{H_{1}}(1,0, \alpha) \equiv H S(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are starlike of order α in $\mathbb{U}, \overline{H_{1}}(2,1, \alpha) \equiv H K(\alpha)$ is the class of sense-preserving, harmonic univalent functions f which are convex of order α in \mathbb{U} and $\overline{H_{1}}(n+1, n, \alpha) \equiv \bar{H}(n, \alpha)$ is the class of Salagean-type harmonic univalent functions.

For the harmonic functions f of the form (1) with $b_{1}=0$, Avcı and Zlotkiewicz [2] showed that if $\sum_{k=2}^{\infty} k\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1$ then $f \in H S(0)$ and if $\sum_{k=2}^{\infty} k^{2}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1$ then $f \in H K(0)$. Silverman [6] proved that the above two coefficient conditions are also necessary if $f=h+\bar{g}$ has negative coefficients. Later, Silverman and Silvia [7] improved the results of [2] and [6] to the case b_{1} not necessarily zero.

For the harmonic functions f of the form (4) with $m=1$, Jahangiri [3] showed that $f \in H S(\alpha)$ if and only if

$$
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty}(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

and $f \in \overline{H_{1}}(2,1, \alpha)$ if and only if

$$
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty} k(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

In this paper, the coefficient conditions for the classes $H S(\alpha)$ and $H K(\alpha)$ are extended to the class $H_{p}(m, n, \alpha)$,of the forms (3) above. Furthermore, we determine extreme points and distortion theorem for the functions in $\overline{H_{p}}(m, n, \alpha)$.

2 Main Results

In our first theorem, we introduce a sufficient coefficient bound for harmonic functions in $H_{p}(m, n, \alpha)$.

Theorem 1. Let $f=h+\bar{g}$ be given by (1). Furthermore, let

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\Psi(m, n, p, \alpha)\left|a_{k+p-1}\right|+\Theta(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\} \leq 2 \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\Psi(m, n, p, \alpha)=\frac{\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}}{1-\alpha} \\
\Theta(m, n, p, \alpha)=\frac{\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{n}}{1-\alpha}
\end{gathered}
$$

$a_{p}=1, \alpha(0 \leq \alpha<1), m \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $m>n$. Then f is sensepreserving in \mathbb{U} and $f \in H_{p}(m, n, \alpha)$.

Proof. According to (2) and (3) we only need to show that

$$
\operatorname{Re}\left(\frac{D^{m} f(z)-\alpha D^{n} f(z)}{D^{n} f(z)}\right) \geq 0
$$

The case $r=0$ is obvious. For $0 \leq r<1$, it follows that

$$
\operatorname{Re}\left(\frac{D^{m} f(z)-\alpha D^{n} f(z)}{D^{n} f(z)}\right)=
$$

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z^{p}(1-\alpha)+\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} z^{k+p-1}}{z^{p}+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right. \\
& \left.+\frac{(-1)^{m} \sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{n}\right] \bar{b}_{k+p-1} \bar{z}^{k+p-1}}{z^{p}+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k+p-1}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right\} \\
& =\operatorname{Re}\left\{\frac{(1-\alpha)+\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} z^{k-1}}{1+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k-1}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right. \\
& \left.+\frac{(-1)^{m} \sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{m}\right] \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}{1+\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k-1}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right\} \\
& =\operatorname{Re}\left[\frac{(1-\alpha)+A(z)}{1+B(z)}\right] \\
& \\
& \text { For } z=r e^{i \theta} \text { we have } \\
& \quad A\left(r e^{i \theta}\right)=\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} r^{k-1} e^{(k-1) \theta i} \\
& +(-1)^{m} \sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{n}\right] \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i} \\
& \\
& \quad B\left(r e^{i \theta}\right)=\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} r^{k-1} e^{(k-1) \theta i} \\
& \quad+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}
\end{aligned}
$$

Setting

$$
\frac{(1-\alpha)+A(z)}{1+B(z)}=(1-\alpha) \frac{1+w(z)}{1-w(z)}
$$

the proof will be complete if we can show that $|w(z)| \leq r<1$. This is the case since, by the condition (5), we can write

$$
|w(z)|=\left|\frac{A(z)-(1-\alpha) B(z)}{A(z)+(1-\alpha) B(z)+2(1-\alpha)}\right|
$$

$$
\begin{aligned}
& =\left\lvert\, \frac{\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} r^{k-1} e^{(k-1) \theta i}}{2(1-\alpha)+\sum_{k=2}^{\infty} C(m, n, p, \alpha) a_{k+p-1} r^{k-} e^{(k-1) \theta i}+(-1)^{m} \sum_{k=1}^{\infty} D(m, n, p, \alpha) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}}\right. \\
& \left.+\frac{(-1)^{m} \sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n}\left(\frac{k+p-1}{p}\right)^{n}\right] \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}}{2(1-\alpha)+\sum_{k=2}^{\infty} C(m, n, p, \alpha) a_{k+p-1} r^{k-1} e^{(k-1) \theta i}+(-1)^{m} \sum_{k=1}^{\infty} D(m, n, p, \alpha) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}} \right\rvert\,
\end{aligned}
$$

where

$$
C(m, n, p, \alpha)=\left(\frac{k+p-1}{p}\right)^{m}+(1-2 \alpha)\left(\frac{k+p-1}{p}\right)^{n}
$$

and

$$
\begin{aligned}
& D(m, n, p, \alpha)=\left(\frac{k+p-1}{p}\right)^{m}+(-1)^{m-n}(1-2 \alpha)\left(\frac{k+p-1}{p}\right)^{n} \\
& \leq \frac{\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\left(\frac{k+p 1}{p}\right)^{n}\right]\left|a_{k+p-1}\right| r^{k-1}}{2(1-\alpha)-\sum_{k=2}^{\infty} C(m, n, p, \alpha)\left|a_{k+p-1}\right| r^{k-1}-\sum_{k=1}^{\infty} D(m, n, p, \alpha)\left|b_{k+p-1}\right| r^{k-1}} \\
&+\frac{\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n}\left(\frac{k+p-1}{p}\right)^{n}\right]\left|b_{k+p-1}\right| r^{k-1}}{2(1-\alpha)-\sum_{k=2}^{\infty} C(m, n, p, \alpha)\left|a_{k+p-1}\right| r^{k-1}-\sum_{k=1}^{\infty} D(m, n, p, \alpha)\left|b_{k+p-1}\right| r^{k-1}} \\
&= \frac{\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\left(\frac{k+p-1}{p}\right)^{n}\right]\left|a_{k+p-1}\right| r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(m, n, p, \alpha)\left|a_{k+p-1}\right|+D(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\} r^{k-1}} \\
&+ \frac{\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n}\left(\frac{k+p-1}{p}\right)^{n}\right]\left|b_{k+p-1}\right| r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(m, n, p, \alpha)\left|a_{k+p-1}\right|+D(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\} r^{k-1}} \\
&< \frac{\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\left(\frac{k+p-1}{p}\right)^{n}\right]\left|a_{k+p-1}\right|}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(m, n, p, \alpha)\left|a_{k+p-1}\right|+D(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\}} \\
&+ \frac{\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n}\left(\frac{k+p-1}{p}\right)^{n}\right]\left|b_{k+p-1}\right|}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(m, n, p, \alpha)\left|a_{k+p-1}\right|+D(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\}} \\
& \leq 1
\end{aligned}
$$

The harmonic univalent functions
(6) $f(z)=z^{p}+\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha)} x_{k} z^{k+p-1}+\sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha)} \overline{y_{k} z^{k+p-1}}$
where $m \in \mathbb{N}, n \in \mathbb{N}_{0}, m \geq n$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$, show that the coefficient bound given by (5) is sharp. The functions of the form (6) are in $H_{p}(m, n, \alpha)$ because

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left\{\Psi(m, n, p, \alpha)\left|a_{k+p-1}\right|+\Theta(m, n, p, \alpha)\left|b_{k+p-1}\right|\right\} \\
= & 1+\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=2 .
\end{aligned}
$$

In the following theorem it is shown that the condition (5) is also necessary for functions $f_{m}=h+\overline{g_{m}}$ where h and g_{m} are of the form (4).

Theorem 2. Let $f_{m}=h+\overline{g_{m}}$ be given by (4). Then $f_{m} \in \bar{H}_{p}(m, n, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\Psi(m, n, p, \alpha) a_{k+p-1}+\Theta(m, n, p, \alpha) b_{k+p-1}\right\} \leq 2 \tag{7}
\end{equation*}
$$

where $a_{p}=1,0 \leq \alpha<1, m \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $m>n$.
Proof. Since $\bar{H}_{p}(m, n, \alpha) \subset H_{p}(m, n, \alpha)$, we only need to prove the "only if" part of the theorem. For functions f_{m} of the form (4), we note that the condition

$$
\operatorname{Re}\left\{\frac{D^{m} f_{m}(z)}{D^{n} f_{m}(z)}\right\}>\alpha
$$

is equivalent to

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{(1-\alpha) z^{p}-\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} z^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k+p-1}+(-1)^{m+n-1} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} b_{k+p-1} \bar{z}^{k+p-1}}\right. \tag{8}\\
& \left.+\frac{(-1)^{2 m-1} \sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{n}\right] b_{k+p-1} \bar{z}^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} z^{k+p-1}+(-1)^{m+n-1} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} b_{k+p-1} \bar{z}^{k+p-1}}\right\} \geq 0
\end{align*}
$$

The above required condition (8) must hold for all values of z in \mathbb{U}. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{aligned}
& \text { (9) } \frac{(1-\alpha)-\sum_{k=2}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-\alpha\left(\frac{k+p-1}{p}\right)^{n}\right] a_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} r^{k-1}-(-1)^{m-n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} b_{k+p-1} r^{k-1}} \\
& +\frac{-\sum_{k=1}^{\infty}\left[\left(\frac{k+p-1}{p}\right)^{m}-(-1)^{m-n} \alpha\left(\frac{k+p-1}{p}\right)^{n}\right] b_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} a_{k+p-1} r^{k-1}-(-1)^{m-n} \sum_{k=1}^{\infty}\left(\frac{k+p-1}{p}\right)^{n} b_{k+p-1} r^{k-1}} \geq 0
\end{aligned}
$$

If the condition (7) does not hold, then the expression in (9) is negative for r sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (9) is negative. This contradicts the required condition for $f_{m} \in \bar{H}_{p}(m, n, \alpha)$. And so the proof is complete.

Next we determine the extreme points of the closed convex hull of $\bar{H}_{p}(m, n, \alpha)$, denoted by $\operatorname{clco} \bar{H}_{p}(m, n, \alpha)$.

Theorem 3. Let f_{m} be given by (4). Then $f_{m} \in \bar{H}_{p}(m, n, \alpha)$ if and only if

$$
f_{m}(z)=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{m_{k+p-1}}(z)\right]
$$

where

$$
h_{p}(z)=z^{p}, h_{k+p-1}(z)=z^{p}-\frac{1}{\Psi(m, n, p, \alpha)} z^{k+p-1} ; \quad(k=2,3, \ldots)
$$

and

$$
g_{m_{k+p-1}}(z)=z^{p}+(-1)^{m-1} \frac{1}{\Theta(m, n, p, \alpha)} \bar{z}^{k+p-1} ; \quad(k=1,2,3, \ldots)
$$

$x_{k+p-1} \geq 0, y_{k+p-1} \geq 0, x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}$. In particular, the extreme points of $\bar{H}_{p}(m, n, \alpha)$ are $\left\{h_{k+p-1}\right\}$ and $\left\{g_{k+p-1}\right\}$.

Proof. For functions f_{m} of the form (5)

$$
\begin{aligned}
f_{m}(z) & =\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+\left(y_{k+p-1} g_{m_{k+p-1}}(z)\right]\right. \\
& =\sum_{k=1}^{\infty}\left(x_{k+p-1}+y_{k+p-1}\right) z^{p}-\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha)} x_{k+p-1} z^{k+p-1} \\
& +(-1)^{m-1} \sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha)} y_{k+p-1} \bar{z}^{k+p-1}
\end{aligned}
$$

Then
$\sum_{k=2}^{\infty} \Psi(m, n, p, \alpha)\left(\frac{1}{\Psi(m, n, p, \alpha)} x_{k+p-1}\right)+\sum_{k=1}^{\infty} \Theta(m, n, p, \alpha)\left(\frac{1}{\Theta(m, n, p, \alpha)} y_{k+p-1}\right)$
$=\sum_{k=2}^{\infty} x_{k+p-1}+\sum_{k=1}^{\infty} y_{k+p-1}=1-x_{p} \leq 1$
and so $f_{m}(z) \in \operatorname{clco} \bar{H}_{p}(m, n, \alpha)$.
Conversely, suppose $f_{m}(z) \in \operatorname{clco} \bar{H}_{p}(m, n, \alpha, \beta)$. Letting $x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}$ Set

$$
x_{k+p-1}=\Psi(m, n, p, \alpha) a_{k+p-1}, \quad(k=2,3, \ldots)
$$

and

$$
y_{k+p-1}=\Theta(m, n, p, \alpha) b_{k+p-1}, \quad(k=1,2,3, \ldots)
$$

we obtain the required representation ,since
$f_{m}(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}$
$=z^{p}-\sum_{k=2}^{\infty} \frac{1}{\Psi(m, n, p, \alpha)} x_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} \frac{1}{\Theta(m, n, p, \alpha)} y_{k+p-1} \overline{z^{k+p-1}}$

$$
\begin{aligned}
& =z^{p}-\sum_{k=2}^{\infty}\left[z^{p}-h_{k+p-1}(z)\right] x_{k+p-1}-\sum_{k=1}^{\infty}\left[z^{p}-g_{m_{k+p-1}}(z)\right] y_{k+p-1} \\
& =\left[1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}\right] z^{p}+\sum_{k=2}^{\infty} x_{k+p-1} h_{k+p-1}(z)+\sum_{k=1}^{\infty} y_{k+p-1} g_{m_{k+p-1}}(z) \\
& =\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{m_{k+p-1}}(z)\right] .
\end{aligned}
$$

The following theorem gives the distortion bounds for functions in $\bar{H}_{p}(m, n, \alpha)$ which yields a covering results for this class.

Theorem 4. Let $f_{m} \in \bar{H}_{p}(m, n, \alpha)$. Then for $|z|=r<1$ we have

$$
\left|f_{m}(z)\right| \leq\left(1+b_{p}\right) r^{p}+\left\{\Phi(m, n, p, \alpha)-\Omega(m, n, p, \alpha) b_{p}\right\} r^{n+p}
$$

and

$$
\left|f_{m}(z)\right| \geq\left(1-b_{p}\right) r^{p}-\left\{\Phi(m, n, p, \alpha)-\Omega(m, n, p, \alpha) b_{p}\right\} r^{n+p}
$$

where,

$$
\begin{aligned}
& \Phi(m, n, p, \alpha)=\frac{1-\alpha}{\left(\frac{p+1}{p}\right)^{m}-\alpha\left(\frac{p+1}{p}\right)^{n}} \\
& \Omega(m, n, p, \alpha)=\frac{1-(-1)^{m-n} \alpha}{\left(\frac{p+1}{p}\right)^{m}-\alpha\left(\frac{p+1}{p}\right)^{n}}
\end{aligned}
$$

Proof. We prove the right hand side inequality for $\left|f_{m}\right|$. The proof for the left hand inequality can be done using similar arguments. Let $f_{m} \in$ $\bar{H}_{p}(m, n, \alpha)$. Taking the absolute value of f_{m} then by Theorem 2 , we obtain:
$\left|f_{m}(z)\right|=\left|z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{m-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}\right|$
$\leq r^{p}+\sum_{k=2}^{\infty} a_{k+p-1} r^{k+p-1}+\sum_{k=1}^{\infty} b_{k+p-1} r^{k+p-1}$

$$
\begin{aligned}
& =r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{k+p-1} \\
& \leq r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
& =\left(1+b_{p}\right) r^{p}+\Phi(m, n, p, \alpha) \sum_{k=2}^{\infty} \frac{1}{\Phi(m, n, p, \alpha)}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
& \leq\left(1+b_{p}\right) r^{p}+\Phi(m, n, p, \alpha) r^{n+p}\left[\sum_{k=2}^{\infty} \Psi(m, n, p, \alpha) a_{k+p-1}+\Theta(m, n, p, \alpha) b_{k+p-1}\right] \\
& \leq\left(1+b_{p}\right) r^{p}+\left\{\Phi(m, n, p, \alpha)-\Omega(m, n, p, \alpha) b_{p}\right\} r^{n+p} .
\end{aligned}
$$

The following covering result follows from the left hand inequality in Theorem 4.

Corollary 1. Let $f_{m} \in \bar{H}_{p}(m, n, \alpha)$, then for $|z|=r<1$ we have

$$
\left\{w:|w|<1-b_{p}-\left[\Phi(m, n, p, \alpha)-\Omega(m, n, p, \alpha) b_{p}\right] \subset f_{m}(\mathbb{U})\right\} .
$$

Remark 1. If we take $m=1, n=0$ and $p=1$, then the above covering result given in [3]. Furthermore, taking $m=n+1$ and $p=1$ we obtain the results given in [4].

Remark 2. The results of this paper, for $p=1$, coincide with the results in [8].

References

[1] J. Clunie,T. Sheil-Small, Harmonic Univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math, 9(1984), 3-25.
[2] Y. Avcı, E Zlotkiewicz, On harmonic Univalent mappings, Ann. Univ. Marie Crie-Sklodowska Sect.A, 44(1991), 1-7.
[3] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.
[4] J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl.Math., 2(2002), 7782.
[5] G.S. Salagean, Subclass of univalent functions, Lecture Notes in Math. Springer-Verlag, 1013(1983), 362-372.
[6] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math.Anal.Appl., 220(1998), 283-289.
[7] H. Silverman, E.M.Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28(1999), 275-284.
[8] S.Yalçın, A new class of salagean-type harmonic univalent functions, Applied Mathematics Letters, Vol.18, 2(2005), 191-198.
[9] Ahuja O.P, Jahangiri J.M., Multivalent harmonic starlike functions, Ann. Univ. Marie Crie-Sklodowska Sect.A, LV 1(2001), 1-13.

Department of Mathematics
Faculty of Science and Letters
Dicle University
Diyarbakır, Turkey
Email address: bseker@dicle.edu.tr and sevtaps@dicle.edu.tr

