First order strong differential superordination

Georgia Irina Oros

Abstract

The notion of differential superordination was introduced in [3] by S.S. Miller and P.T. Mocanu as a dual concept of differential subordination [2]. The notion of strong differential subordination was introduced by J.A. Antonino, S. Romaguera in [1]. The notion of strong differential superordination was introduced in [4] as a dual concept of strong differential subordination. In this paper we refer at the special case of first order strong differential superordinations.

2000 Mathematical Subject Classification: 30C45, 30A20, 34A30.
Key words and phrases: analytic function, differential subordination, differential superordination.

1 Introduction

Let Ω be any set in the complex plane \mathbb{C}, let p be analytic in the unit disk U and let $\psi(r, s, t ; z, \xi): \mathbb{C}^{3} \times U \times \bar{U} \rightarrow \mathbb{C}$.

In this article we consider the dual problem of determining properties of functions p that satisfy the strong differential superordination

$$
\Omega \subset\left\{\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z, \xi\right) \mid z \in U, \xi \in \bar{U}\right\} .
$$

Let $\mathcal{H}=\mathcal{H}(U)$ denote the class of functions analytic in U. For n a positive integer and $a \in \mathbb{C}$, let

$$
\begin{aligned}
& \mathcal{H}[a, n]=\left\{f \in \mathcal{H} ; f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in U\right\}, \\
& A_{n}=\left\{f \in A, f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots, z \in U\right\},
\end{aligned}
$$

with $A_{1}=A$.
In addition, we need the classes of convex (univalent) functions given respectively by

$$
K=\left\{f \in A, \operatorname{Re} z f^{\prime \prime}(z) / f^{\prime}(z)+1>0\right\}
$$

and

$$
S^{*}=\left\{f \in A, \operatorname{Re} z f^{\prime}(z) / f(z)>0\right\}
$$

For $0<r<1$, we let $U_{r}=\{z ;|z|<r\}$.
In order to prove our main results, we use the following definitions and lemmas:

Definition 1. [2, p.24] We denote by Q the set of functions f that are analytic and injective in $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U ; \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$. The subclass of Q for which $f(0)=a$ is defined by $Q(a)$.

Lemma A. [3, Lemma A]. Let $p \in Q(a)$, and let

$$
q(z)=a+a_{n} z^{n}+\ldots
$$

be analytic in U with $q(z) \neq a$ and $n \geq 1$. If q is not subordinate to p, then there exists points $z_{0}=r_{0} e^{i \theta_{0}} \in U$ and $\zeta_{0} \in \partial U \backslash E(p)$, and an $m \geq n \geq 1$ for which $q\left(U_{r_{0}}\right) \subset p(U)$,
i) $q\left(z_{0}\right)=p\left(\zeta_{0}\right)$
ii) $z_{0} q^{\prime}\left(z_{0}\right)=m \zeta_{0} p^{\prime}\left(\zeta_{0}\right)$.

Lemma B. [2, Theorem 2.6.4, p.67] Let $f \in A$ and $L_{\gamma}: A \rightarrow A$ is the integral operator defined by

$$
L_{\gamma}(f)=F(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} f(t) t^{\gamma-1} d t, \quad \operatorname{Re} \gamma \geq 0
$$

then

$$
L_{\gamma}[K] \subset K
$$

Definition 2. [4, Definition 1] Let $H(z, \xi)$ be analytic in $U \times \bar{U}$ and let $f(z)$ analytic and univalent in U. The function $H(z, \xi)$ is strongly subordinate to $f(z)$, or $f(z)$ is said to be strongly superordinate to $H(z, \xi)$, written $f(z) \prec \prec$ $H(z, \xi)$ if for $\xi \in \bar{U}$, the function of $z, H(z, \xi)$ is subordinate to $f(z)$. If $H(z, \xi)$ is univalent, then $f(z) \prec \prec H(z, \xi)$ if and only if $f(0)=H(0, \xi)$ and $f(U) \subset H(U \times \bar{U})$.

2 Main results

Definition 3. Let $\varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}$ and let h be analytic in U. If p and $\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right)$ are univalent in U, for all $\xi \in \bar{U}$ and satisfy the first
order strong differential superordination

$$
\begin{equation*}
h(z) \prec \prec \varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right) \tag{1}
\end{equation*}
$$

then p is called a solution of the strong differential superordination. An analytic function q is called a subordinant of the solutions of the strong differential superordination, or more simply a subordinant if $q \prec p$ for all p satisfying (1). A univalent subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinants q of (1) is said to be the best subordinant. Note that the best subordinant is unique up to a rotation of U. For Ω a set in \mathbb{C}, with φ and p as given in Definition 3, suppose (1) is replaced by

$$
\Omega \subset\left\{\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right) \mid z \in U, \xi \in \bar{U}\right\} .
$$

Definition 4. Let Ω be a set in \mathbb{C} and $q \in \mathcal{H}[a, n]$ with $q^{\prime}(z) \neq 0$. The class of admissible functions $\phi_{n}[\Omega, q]$, consists of those functions $\varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow$ \mathbb{C} that satisfy the

$$
\begin{equation*}
\varphi(r, s ;, \zeta, \xi) \in \Omega \tag{2}
\end{equation*}
$$

whenever $r=q(z), s=\frac{z q^{\prime}(z)}{m}$, where $z \in U, \zeta \in \partial U, \xi \in \bar{U}$ and $m \geq n \geq 1$. Theorem 1. Let $\Omega \subset \mathbb{C}, q \in \mathcal{H}[a, n], \varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}$, and suppose that

$$
\begin{equation*}
\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in \Omega \tag{3}
\end{equation*}
$$

for $z \in U, \zeta \in \partial U, \xi \in \bar{U}$ and $0<t<\frac{1}{n} \leq 1$. If $p \in Q(a)$ and $\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
\begin{equation*}
\Omega \subset\left\{\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right), z \in U, \xi \in \bar{U}\right\} \tag{4}
\end{equation*}
$$

implies

$$
q(z) \prec p(z), \quad z \in U .
$$

Proof. Assume q not subordinate to p. By Lemma A there exist points $z_{0}=r_{0} e^{i \theta_{0}} \in U$, and $\zeta_{0} \in \partial U \backslash E(p)$, and an $m \geq n \geq 1$ that satisfy $q\left(z_{0}\right)=$ $p\left(\zeta_{0}\right)$ and $z_{0} q^{\prime}\left(z_{0}\right)=m \zeta_{0} p^{\prime}\left(\zeta_{0}\right)$. Let $r=q\left(z_{0}\right)=p\left(\zeta_{0}\right), s=\frac{z_{0} q^{\prime}\left(z_{0}\right)}{m}=\zeta_{0} p^{\prime}\left(\zeta_{0}\right)$ and $\zeta=\zeta_{0}$ in Definition 4 and using (3) we obtain

$$
\begin{equation*}
\varphi\left(p\left(\zeta_{0}\right), \zeta_{0} p^{\prime}\left(\zeta_{0}\right) ; \zeta_{0}, \xi\right) \in \Omega \tag{5}
\end{equation*}
$$

Since ζ_{0} is a boundary point we deduce that (5) contradicts (4) and we must $q(z) \prec p(z), z \in U$.

We next consider the special situation when h is analytic on U and $h(U)=\Omega \neq \mathbb{C}$. In this case, the class $\phi_{n}[h(U), q]$ is written as $\phi_{n}[h, q]$ and the following result is an immediate consequence of Theorem 1.
Theorem 2. Let h be analytic in $U, q \in \mathcal{H}[a, n], \varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}$, and suppose that

$$
\begin{equation*}
\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in h(U), \tag{6}
\end{equation*}
$$

for $z \in U, \zeta \in \partial U, \xi \in \bar{U}$ and $0<t \leq \frac{1}{n} \leq 1$.
If $p \in Q(a)$ and $\varphi\left(p(z), z p^{\prime}(z) ; \zeta, \xi\right)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
\begin{equation*}
h(z) \prec \prec \varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right) \tag{7}
\end{equation*}
$$

implies

$$
q(z) \prec p(z), \quad z \in U .
$$

Definition 5. A strong differential superordination of the form

$$
\begin{equation*}
h(z) \prec \prec A(z, \xi) z p^{\prime}(z)+B(z, \xi) p(z), \quad z \in U, \xi \bar{U}, \tag{8}
\end{equation*}
$$

where h is analytic in U, and $A(z, \xi) z p^{\prime}(z)+B(z, \xi) p(z)$, is univalent in U, for all $\xi \in \bar{U}$, is called first order strong linear differential superordination.
Remark 1. If $A(z, \xi)=B(z, \xi) \equiv 1$, then (8) becomes

$$
h(z) \prec z p^{\prime}(z)+p(z), \quad z \in U,
$$

a differential superordination studied by S.S. Miller and P.T. Mocanu in [3].
Remark 2. If $A(z, \xi)=1$ and $B(z, \xi)=0$ then (8) becomes

$$
h(z) \prec z p^{\prime}(z), \quad z \in U,
$$

a differential superordination studied by S.S. Miller and P.T. Mocanu in [3].
For the first order strong differential superordination in (8) we prove the following theorems:
Theorem 3. Let h be convex in U, with $h(0)=a, q \in \mathcal{H}[a, n], \varphi$: $\mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}$ and suppose that

$$
\begin{equation*}
\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in h(U) \tag{9}
\end{equation*}
$$

for $z \in U, \zeta \in \partial U, \xi \in \bar{U}$ and $0<t \leq \frac{1}{n} \leq 1$.
If $p \in Q(a)$ and $p(z)+\frac{A(z, \xi) z p^{\prime}(z)}{\gamma}, \gamma \neq 0$, is univalent in U, for all
$\xi \in \bar{U}$ and

$$
\begin{equation*}
h(z) \prec \prec p(z)+\frac{A(z, \xi) z p^{\prime}(z)}{\gamma}, \quad z \in U, \xi \in \bar{U} \tag{10}
\end{equation*}
$$

then

$$
q(z) \prec p(z), \quad z \in U,
$$

where

$$
\begin{equation*}
q(z)=\frac{\gamma}{z^{\gamma}} \int_{0}^{z} h(t) t^{\gamma-1} d t \tag{11}
\end{equation*}
$$

The function q is convex.
Proof. Let $\varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}$, for $r=p(z), s=z p^{\prime}(z)$,

$$
\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right)=r+\frac{A(z, \xi) s}{\gamma}=p(z)+\frac{A(z, \xi) z p^{\prime}(z)}{\gamma}
$$

then (10) becomes

$$
\begin{equation*}
h(z) \prec \prec \varphi(r, s ; z, \xi)=\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right)=p(z)+\frac{A(z, \xi) z p^{\prime}(z)}{\gamma} . \tag{12}
\end{equation*}
$$

Since the integral operator in (11) is the one in Lemma B, by applying this lemma we obtain that q is convex. From (11) we have:

$$
\begin{equation*}
z^{\gamma} q(z)=\gamma \int_{0}^{z} h(t) t^{\gamma-1} d t \tag{13}
\end{equation*}
$$

Differentiating (13) with respect to z, we obtain

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\gamma}=h(z), \quad z \in U \tag{14}
\end{equation*}
$$

Using (9) and (14), (12) becomes
$q(z)+\frac{z q^{\prime}(z)}{\gamma}=h(z) \prec \prec \varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right)=p(z)+\frac{A(z, \xi) z p^{\prime}(z)}{\gamma}$.
By applying Theorem 2 we have $q(z) \prec p(z), z \in U$.
Remark 3. For $A(z, \xi) \equiv 1$, the result was obtained in [3, Theorem 6.].
Theorem 4. Let h be starlike in U, with $h(0)=0 q \in \mathcal{H}[0,1], \varphi: \mathbb{C}^{2} \times$ $U \times \bar{U} \rightarrow \mathbb{C}$ and suppose that

$$
\begin{equation*}
\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in h(U) \tag{15}
\end{equation*}
$$

for $z \in U, \zeta \in \partial U, \xi \in \bar{U}$ and $0<t \leq \frac{1}{n} \leq 1$.
If $p \in \mathcal{H}[0,1] \cap Q(p \in Q(0))$ and $z p^{\prime}(z) B(z, \xi)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
\begin{equation*}
h(z) \prec \prec z p^{\prime}(z) B(z, \xi) \tag{16}
\end{equation*}
$$

implies

$$
q(z) \prec p(z), \quad z \in U,
$$

where

$$
\begin{equation*}
q(z)=\int_{0}^{z} h(t) t^{-1} d t \tag{17}
\end{equation*}
$$

The function q is convex.
Proof. Differentiating (17), we obtain

$$
z q^{\prime}(z)=h(z), \quad z \in U
$$

Since h is starlike, from the Duality theorem of Alexander we have that q is convex.

Let $\varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}, \varphi(s ; z, \xi)=\varphi\left(z p^{\prime}(z) ; z, \xi\right)=z p^{\prime}(z) B(z, \xi)$. Then (16) becomes

$$
\begin{equation*}
h(z) \prec \prec \varphi\left(z p^{\prime}(z) ; z, \xi\right), \quad z \in U, \xi \in \bar{U}, \tag{18}
\end{equation*}
$$

by using (15) and applying Theorem 2 we have $q(z) \prec p(z), z \in U$.
Remark 4. For $B(z, \xi) \equiv 1$, the result was obtained in [3, Theorem 9].
Example 1. Let $h(z)=z$, from Theorem 4,

$$
q(z)=\int_{0}^{z} t \cdot t^{-1} d t=z
$$

If $p \in \mathcal{H}[0,1] \cap Q$ and $z p^{\prime}(z) B(z, \xi)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
z \prec \prec z p^{\prime}(z) B(z, \xi), \quad z \in U, \xi \in \bar{U}
$$

implies

$$
z \prec p(z), \quad z \in U .
$$

Example 2. Let $h(z)=z+\frac{z^{2}}{2}$, from Theorem 4,

$$
\begin{gathered}
q(z)=\int_{0}^{z}\left(t+\frac{t^{2}}{2}\right) t^{-1} d t=\int_{0}^{z}\left(1+\frac{t}{2}\right) d t=z+\frac{z^{2}}{4} . \\
\operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}=\operatorname{Re} \frac{2(1+z)}{2+z}=1+\frac{2(1+\cos \theta)}{2 \cos \theta+5}>0
\end{gathered}
$$

hence h is starlike in U.
If $p \in \mathcal{H}[0,1] \cap Q$ and $z p^{\prime}(z) B(z, \xi)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
z+\frac{z^{2}}{2} \prec \prec z p^{\prime}(z) B(z, \xi), \quad z \in U, \xi \in \bar{U}
$$

implies

$$
z+\frac{z^{2}}{4} \prec p(z), \quad z \in U .
$$

Theorem 5. Let $|a|<1$ and $r=r(a)=\frac{1-|a|}{2}$ and $\lambda: \bar{U} \rightarrow \mathbb{C}$ with $|\lambda(z, \xi)| \leq 1$. If $p \in \mathcal{H}[a r, 1] \cap Q$ and $p(z)+\lambda(z, \xi) z p^{\prime}(z)$ is univalent in U, for all $\xi \in \bar{U}$, then

$$
\begin{equation*}
U \subset\left\{p(z)+\lambda(z, \xi) z p^{\prime}(z) \mid, z \in U, \xi \in \bar{U}\right\} \tag{19}
\end{equation*}
$$

implies

$$
U_{r} \subset p(U)
$$

Proof. Let $\varphi: \mathbb{C}^{2} \times U \times \bar{U} \rightarrow \mathbb{C}, \varphi(r, s ; z, \xi)=r+\lambda(z, \xi) s$ where $r=p(z)$, $s=z p^{\prime}(z)$, and

$$
q(z)=r \frac{z+a}{1+\bar{a} z}
$$

then q is univalent, $q(U)=U_{r}$, and (19) can be written in the form

$$
U \subset\left\{\varphi\left(p(z), z p^{\prime}(z) ; z, \xi\right) \mid z \in U, \xi \in \bar{U}\right\}
$$

We evaluate

$$
\begin{gathered}
\left|\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right)\right|=\left|q(z)+\lambda(z, \xi) z q^{\prime}(z)\right| \\
=\left|r \frac{z+a}{1+\bar{a} z}+\lambda(z, \xi) \operatorname{tr} \frac{\left(1-|a|^{2}\right) z}{(1+\bar{a} z)^{2}}\right| \leq\left|r+\operatorname{tr} \frac{1-|a|^{2}}{(1-|a|)^{2}}\right| \\
\leq r\left[1+\frac{1+|a|}{1-|a|}\right] \leq r \frac{2}{1-|a|} \leq 1
\end{gathered}
$$

from which we have $\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in U$.
Since $\varphi\left(q(z), t z q^{\prime}(z) ; \zeta, \xi\right) \in U$ and from (19), by applying Theorem 1 we obtain

$$
q(z) \prec p(z) \text {, i.e. } U_{r} \subset p(U)
$$

Remark 5. For $a=0$, and $\lambda(z, \xi)=1, r=\frac{1}{2}$, we obtain in [3, Corollary 10.1].

Example 3. Let $a=\frac{1}{2}+\frac{1}{2} i, r=\frac{2-\sqrt{2}}{4}$.
If $p \in\left[\frac{a(2-\sqrt{2})}{4}, 1\right] \cap Q$ and $p(z)+\lambda(z, \xi) z p^{\prime}(z)$ is univalent in U, for all $\xi \in \bar{U}$, with $|\lambda(z, \xi)| \leq 1$, then

$$
U \subset\left\{p(z)+\lambda(z, \xi) z p^{\prime}(z) ; z, \xi \mid z \in U, \xi \in \bar{U}\right\}
$$

implies

$$
U_{r} \subset p(U)
$$

References

[1] José A. Antonino and Salvador Romaguera, Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations 114(1994), 101-105.
[2] S.S. Miller and P.T. Mocanu, Differential subordinations. Theory and applications, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
[3] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Variables, vol.48, no.10, 815-826.
[4] Georgia Irina Oros and Gh. Oros, Strong differential subordination (to appear).

Department of Mathematics
University of Oradea
Str. Universităţii, No. 1
410087 Oradea, Romania
E-mail: georgia_oros_ro@yahoo.co.uk

