Euler polynomials associated with p-adic q-Euler measure

Hacer Ozden, Yilmaz Simsek, Ismail Naci Cangul

Abstract

In this paper we define two variable q-l-function. By applying Hankel's contour and Cauchy-Residue Theorem, we prove that this function interpolates generalized q-Euler numbers at negative integers. The main purpose of this paper is also to construct p-adic q-Euler measure on \mathbb{Z}_{p} and to give applications of this measure. Furthermore, we obtain relations between p-adic q-integral, p-adic q-Euler measure and the q-Euler numbers and polynomials.

2000 Mathematical Subject Classification: Primary 28B99; Secondary 11B68, 11S40, 11S80, 44A05.

Key words and phrases: p-adic q-integral, Euler number, Euler polynomial, p-adic Volkenborn integral, q-Euler measure

1 Introduction, definitions and notations

In this section, we give some notations and definitions, which are used in this paper.

Let p be a fixed odd prime. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} will respectively denote the ring of p-adic rational integers, the field of p adic rational numbers, the complex number field and the completion of the algebraic closure of \mathbb{Q}_{p}. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=1 / p$, cf. ([3], [4], [5]). When we talk of q-extension, q is variously considered as an indeterminate, either a complex $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, we normally assume $|q|<1$. If $q \in \mathbb{C}_{p}$, then we assume $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$, cf. ([6], [7], [21]).

For a fixed positive integer d with $(p, d)=1$, set

$$
\begin{gathered}
\mathbb{X}_{d}=\lim _{\overleftarrow{N}} \mathbb{Z} / d p^{N} \mathbb{Z}, \quad \mathbb{X}_{1}=\mathbb{Z}_{p} \\
\mathbb{X}^{*}=\underset{\substack{0<a<d p \\
(a, p)=1}}{\cup}\left(a+d p \mathbb{Z}_{p}\right), \\
a+d p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{X}: x \equiv a\left(\bmod d p^{N}\right)\right\},
\end{gathered}
$$

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a<d p^{N}$, cf. ([21], [15]).
For a uniformly differentiable function f at a point $a \in \mathbb{Z}_{p}$ we write $f \in U D\left(\mathbb{Z}_{p}\right)$, if the difference quotient

$$
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}
$$

has a limit $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, an invariant p-adic q-integral was defined by

$$
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x}
$$

where

$$
[x]_{q}=\left\{\begin{array}{cc}
\frac{1-q^{x}}{1-q} & , q \neq 1 \\
x & , q=1
\end{array},\right.
$$

and

$$
[x]_{-q}=\frac{1-(-q)^{x}}{1+q}
$$

The modified p-adic q-integral on \mathbb{Z}_{p} is defined by

$$
\begin{equation*}
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x) \tag{1}
\end{equation*}
$$

where $d \mu_{-q}(x)=\lim _{q \rightarrow-q} d \mu_{q}(x)$ cf. ([10], [2], [7], [8], [3], [4], [9], [11], [6], [21], [16]).

The classical Euler numbers are defined by the following generating function

$$
\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!},|t|<\pi
$$

From the above function, we have

$$
E_{0}=1, E_{1}=\frac{-1}{2}, E_{2}=0, E_{3}=\frac{1}{4}, \cdots
$$

These numbers are interpolated by the following function at the negative integers:

$$
\begin{equation*}
\zeta_{E}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}, s \in \mathbb{C} . \tag{2}
\end{equation*}
$$

This function interpolates Euler numbers at negative integers. For $s=-n$, $n \in \mathbb{Z}^{+}$, we have

$$
\zeta_{E}(-n)=E_{n},
$$

cf. (see for detail [12], [22], [21], [3], [4], [5], [6], [7], [21], [1], [10], [2], [8], [11], [14], [13], [17], [18], [19], [20]).

The main motivation of this paper are summarized as follows:
In Section 2, we define two variable q-l-functions. By using Hankel's contour and Cauchy-Residue Theorem, we find explicit values of the two variable q-l-functions at negative integers.

In Section 3, we construct p-adic q-Euler measure on \mathbb{Z}_{p}. By using this measure, we prove relations between p-adic q-integral, p-adic q-Euler measure and the q-Euler numbers and polynomials. We also give some applications as well.

2 Interpolation functions of the q-Euler numbers and polynomials on \mathbb{C}

In this chapter, we assume that $q \in \mathbb{C}$, with $|q|<1$.
q-extension of Euler polynomials, $E_{n, q}(x)$ are defined by

$$
\begin{equation*}
F_{q}(t, x)=\frac{2 e^{t x}}{q e^{t}+1}=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} \text { cf. [14]. } \tag{3}
\end{equation*}
$$

By using (3), and Taylor series of $e^{t x}$, we have

$$
\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} E_{n, q}^{(h)}(x) \frac{t^{n}}{n!}
$$

By Cauchy product in the above, we have the following theorem:

Theorem 1. ([14]) Let $n \in \mathbb{N}$. Then we have

$$
\begin{equation*}
E_{n, q}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} E_{k, q}^{(h)}(x) . \tag{4}
\end{equation*}
$$

Theorem 2. ([14])(Distribution Relation) For d is an odd positive integer, $k \in \mathbb{N}$, we have

$$
\begin{equation*}
E_{k, q}(x, q)=d^{k} \sum_{a=0}^{d-1}(-1)^{a} q^{a} E_{k, q^{d}}\left(\frac{x+a}{d}\right) . \tag{5}
\end{equation*}
$$

By applying Mellin transform to (3), we define Hurwitz type zeta function as follows:

$$
\begin{equation*}
\zeta_{q}(s, x)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} F_{q}(-t, x) d t \tag{6}
\end{equation*}
$$

(for detail see also [14]).
This function interpolates $E_{n, q}(x)$ polynomial at negative integers. By using the complex integral representation of generating function of the polynomials $E_{n, q}(x)$, we have

$$
\frac{1}{\Gamma(s)} \oint_{C} t^{s-1} F_{q}(-t, x) d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} E_{n, q}(x)}{n!} \frac{1}{\Gamma(s)} \oint_{C} t^{n+s-1} d t
$$

where C is Hankel's contour along the cut joining the points $z=0$ and $z=\infty$ on the real axis, which starts from the point at ∞, encircles the origin $(z=0)$ once in the positive (counter-clockwise) direction, and returns to the point at ∞, (see for detail [23], [11], [19], [21]). By using (6) and Cauchy-Residue Theorem, we arrive at the following theorem:

Theorem 3. Let $k \in \mathbb{N}$. Then we have

$$
\begin{equation*}
\zeta_{q}(-k, x)=E_{k, q}(x) \tag{7}
\end{equation*}
$$

Generalized q-Euler polynomials are defined by means of the following generating function [14]:

$$
\begin{equation*}
F_{q}(t, x, \chi)=\frac{2 \sum_{a=0}^{d-1}(-1)^{a} \chi(a) e^{t(a+x)} q^{a}}{q e^{t d}+1}=\sum_{n=0}^{\infty} E_{n, \chi, q}(x) \frac{t^{n}}{n!}, \quad|t+\log q|<\frac{\pi}{d} \tag{8}
\end{equation*}
$$

Remark 1. From the above generating function we assume that d is an odd integer, we have

$$
\begin{align*}
F_{q}(t, x, \chi) & =\frac{2 \sum_{a=0}^{d-1}(-1)^{a} \chi(a) e^{t(a+x)} q^{a}}{q e^{t d}+1} \tag{9}\\
& =2 \sum_{a=0}^{d-1}(-1)^{a} \chi(a) e^{t(a+x)} q^{a} \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{t d n} \\
& =2 \sum_{m=0}^{\infty}(-1)^{m} \chi(m) q^{m} e^{(m+x) t}
\end{align*}
$$

By applying Mellin transform to (9), we define two variable q-l-function as follows:

$$
\begin{align*}
l_{q}(s, \chi ; x) & =\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} F_{q}(-t, x, \chi) d t \tag{10}\\
& =2 \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) q^{n}}{(n+x)^{s}} .
\end{align*}
$$

Definition 1. Let $s \in \mathbb{C}$. We define

$$
l_{q}(s, \chi ; x)=2 \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) q^{n}}{(n+x)^{s}}
$$

Observe that if $x=1$, then $l_{q}(s, \chi ; x)$ reduces to

$$
l_{q}(s, \chi ; x)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \chi(n) q^{n}}{n^{s}}
$$

This function interpolates q-generalized Euler numbers at negative integers.
And

$$
\lim _{q \rightarrow 1} l_{q}(s, \chi)=l(s, \chi)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \chi(n)}{n^{s}}
$$

this function interpolates generalized Euler numbers at negative integers. Substituting $\chi \equiv 1$ into the above, then the function $l(s, 1)$ reduces to (2).

By using the complex integral representation of generating function in (9), we have

$$
\frac{1}{\Gamma(s)} \oint_{C} t^{s-1} F_{q}(-t, x, \chi) d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} E_{n, \chi, q}(x)}{n!} \frac{1}{\Gamma(s)} \oint_{C} t^{n+s-1} d t
$$

where C is Hankel's contour along the cut joining the points $z=0$ and $z=\infty$ on the real axis, which starts from the point at ∞, encircles the origin ($z=0$) once in the positive (counter-clockwise) direction, and returns to the point at ∞. By using (10) and Cauchy-Residue Theorem, we arrive at the following theorem:

Theorem 4. Let $k \in \mathbb{N}$. Then we have

$$
l_{q}(-k, \chi ; x)=E_{n, \chi, q}(x) .
$$

Remark 2. Proofs of Theorem 2 and Theorem 3 were given by Ozden and Simsek. Their proofs are related to derivative operator on generating functions of the q-Euler polynomials and generalized q-Euler polynomials.

3 p-adic q-Euler measure on \mathbb{X}

In this section, we assume that $q \in \mathbb{C}_{p}$ with $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. Let χ be a primitive Dirichlet character with
a conductor $d(=o d d) \in \mathbb{N}$.
By using (5), we define a distribution on \mathbb{X}. By using this distribution, we construct a measure on \mathbb{X}. We give relations between p-adic q-Euler measure, p-adic q-integral and q-Euler numbers and polynomials.

Let N, k and $d(=o d d)$ be positive integers. We define $\mu_{k}^{*}=\mu_{k, q ; E}^{*}$ as follows:

$$
\begin{equation*}
\mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right)=(-1)^{a}\left(d p^{N}\right)^{k-1} q^{a} E_{k}\left(\frac{a}{d p^{N}}, q^{d p^{N}}\right) \tag{11}
\end{equation*}
$$

Now we show that $\mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right)$ is a distribution on \mathbb{X} as follows:
By using (5) and (11), we obtain

$$
\begin{aligned}
& \sum_{j=0}^{p-1} \mu_{k}^{*}\left(a+j d p^{N}+d p^{N+1} \mathbb{Z}_{p}\right) \\
= & \sum_{j=0}^{p-1}(-1)^{a+j d p^{N}}\left(d p^{N+1}\right)^{k-1} q^{a+j d p^{N}} E_{k}\left(\frac{a+j d p^{N}}{d p^{N+1}}, q^{d p^{N+1}}\right) \\
= & (-1)^{a} q^{a}\left(d p^{N+1}\right)^{k-1} \sum_{j=0}^{p-1}(-1)^{j d p^{N}} q^{j d p^{N}} E_{k}\left(\frac{\frac{a}{d p^{N}}+j}{p},\left(q^{d p^{N}}\right)^{p}\right) \\
= & (-1)^{a} q^{a}\left(d p^{N}\right)^{k-1} p^{k-1} \sum_{j=0}^{p-1}(-1)^{j}\left(q^{d p^{N}}\right)^{j} E_{k}\left(\frac{\frac{a}{d p^{N}}+j}{p},\left(q^{d p^{N}}\right)^{p}\right) \\
= & (-1)^{a} q^{a}\left(d p^{N}\right)^{k-1} p^{k-1} E_{k}\left(\frac{a}{d p^{N}}, q^{d p^{N}}\right) \\
= & \mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right) .
\end{aligned}
$$

Therefore we easily arrive at the following theorem
Theorem 5. Let N, k and $d(=o d d)$ be positive integers, then

$$
\mu_{k}^{*}\left(a+d p^{N} \mathbb{Z}_{p}\right)=(-1)^{a}\left(d p^{N}\right)^{k-1} q^{a} E_{k}\left(\frac{a}{d p^{N}}, q^{d p^{N}}\right)
$$

is a distribution on \mathbb{X}.

Substituting $f(x)=q^{x} e^{t x}$ into (1), we obtain (3) cf. [14]. By using (3), we have

$$
\begin{equation*}
\frac{2 e^{t x}}{q e^{t}+1}=\sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{t(n+x)} \tag{12}
\end{equation*}
$$

From the above series and Theorem 5, we arrive at the following theorem:
Theorem 6. If $q \in \mathbb{Z}_{p}$ with $|1-q|_{p} \leq 1$, then μ_{k}^{*} is a measure on \mathbb{X}.
Proof. From Theorem 5, (5) and (12) we easily arrive at the desired result.
Theorem 7. For any positive integer k, we have

$$
\int_{\mathbb{Z}_{p}} d \mu_{k}^{*}(x)=E_{k}(q) .
$$

Proof. By Theorem 6 we have

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} d \mu_{k}^{*}(x) & =\lim _{N \rightarrow \infty} \sum_{x=0}^{d p^{N}-1} \mu_{k}^{*}\left(x+d p^{N} \mathbb{Z}_{p}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{a=0}^{d-1} \sum_{j=0}^{p^{N}-1} \mu_{k}^{*}\left(a+j d+d p^{N} \mathbb{Z}_{p}\right) .
\end{aligned}
$$

By using Theorem 5, we get

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \sum_{a=0}^{d-1} \sum_{j=0}^{p^{N}-1}(-1)^{a+j d}\left(d p^{N}\right)^{k-1} q^{a+j d} E_{k}\left(\frac{a+j d}{d p^{N}}, q^{d p^{N}}\right) \\
& =\sum_{a=0}^{d-1}(-1)^{a} q^{a} d^{k-1} \lim _{N \rightarrow \infty}\left(p^{N}\right)^{k-1} \sum_{j=0}^{p^{N}-1}(-1)^{j}\left(q^{j}\right)^{d} E_{k}\left(\frac{\frac{a}{d}+j}{p^{N}},\left(q^{d}\right)^{p^{N}}\right) \\
& =\sum_{a=0}^{d-1}(-1)^{a} q^{a} d^{k-1} E_{k}\left(\frac{a}{d}, q^{d}\right) \\
& =E_{k}(q)
\end{aligned}
$$

Thus we complete the proof.

Theorem 8. Let χ be the Dirichlet's character with an odd conductor $d \in$ \mathbb{N}. Then we have

$$
\int_{\mathbb{X}} \chi(x) d \mu_{k}^{*}(x)=E_{k, \chi}(q)
$$

Proof.

$$
\begin{aligned}
\int_{\mathbb{X}} \chi(x) d \mu_{k}^{*}(x)= & \lim _{N \rightarrow \infty} \sum_{x=0}^{d p^{N}-1} \chi(x) \mu_{k}^{*}\left(x+d p^{N} \mathbb{Z}_{p}\right) \\
= & \lim _{N \rightarrow \infty} \sum_{a=0}^{d-1} \sum_{j=0}^{p^{N}-1} \chi(a+j d) \mu_{k}^{*}\left(a+j d+d p^{N} \mathbb{Z}_{p}\right) \\
= & \lim _{N \rightarrow \infty} \sum_{a=0}^{d-1} \chi(a) \sum_{j=0}^{p^{N}-1}(-1)^{a+j d} q^{a+j d}\left(d p^{N}\right)^{k-1} E_{k}\left(\frac{a+j d}{d p^{N}}, q^{d p^{N}}\right) \\
= & d^{k-1} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \chi(a) \\
& \times \lim _{N \rightarrow \infty}\left(p^{N}\right)^{k-1} \sum_{j=0}^{p^{N}-1}(-1)^{j}\left(q^{d}\right)^{j} E_{k}\left(\frac{\frac{a}{d}+j}{p^{N}},\left(q^{d}\right)^{p^{N}}\right) \\
= & d^{k-1} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \chi(a) E_{k}\left(\frac{a}{d}, q^{d}\right) \\
= & E_{k, \chi(q)}
\end{aligned}
$$

Remark 3. By using μ_{k}^{*} on \mathbb{X}^{*}, and $\int_{\mathbb{X}^{*}} f(x) \chi(x) d \mu_{k}^{*}(x)$, we may have many applications related to p-adic l-function and q-generalized Euler numbers.

Acknowledgement 1 The first and fourth authors are supported by the Scientific Research Fund of Uludag University, Project no: F-2006/40. The second author is supported by the Research Fund of Akdeniz University

References

[1] L-C. Jang, On a q-analogue of the p-adic generalized twisted Lfunctions and p-adic q-integrals, J. Korean Math. Soc. 44(1) (2007), 1-10.
[2] T. Kim, q-Volkenborn integation, Russ. J. Math. Phys. 9 (2002), 288299.
[3] T. Kim, The modified q-Euler numbers and polynomials, ArXive:math.NT/0702523.
[4] T. Kim, On a q-analogue of the p-adic log gamma functions, J. Number Theory 16 (1999), 320-329.
[5] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465.
[6] T. Kim, Sums of powers of consecutive q-integers, Advan. Stud. Contemp. Math. 9 (2004), 15-18.
[7] T. Kim, An invariant p-adic q-integral on \mathbb{Z}_{p}, Appl. Math. Letters, In Press, Corrected Proof, Available online 20 February 2007.
[8] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Z_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007), 779-792.
[9] T. Kim, q-Euler numbers and polynomials associated with p-adic q integrals, J. Nonlinear Math. Phys. 14(1) (2007), 15-27.

Euler polynomials associated with p-adic q-Euler measure
[10] T. Kim, A new approach to q-zeta function, J. Comput. Analy. Appl. 9 (2007), 395-400.
[11] T. Kim and S.-H. Rim, A new Changhee q-Euler numbers and polynomials associated with p-adic q-integral, Computers \& Math. Appl. 54(4) (2007), 484-489.
[12] Q.-M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 10 (2005), 631-642.
[13] H. Ozden, Y. Simsek, S-H. Rim and I. N. Cangul, A note on p-adic q-Euler measure, Advan. Stud. Contemp. Math., 14(2) (2007), 233-239.
[14] H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, preprint.
[15] S-H. Rim, Y. Simsek, V. Kurt and T. Kim, On p-adic twisted Euler (h, q)-l-function, ArXive:math.NT /0702310.
[16] S-H. Rim, T. Kim, A note on q-Euler numbers associated with the basic q-zeta function, Appl. Math. Letters 20(4) (2007), 366-369.
[17] Y. Simsek, On twisted generalized Euler numbers, Bull. Korean Math. Soc. 41(2) (2004), 299-306.
[18] Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, J. Number Theory 110(2) (2005), 267-278.
[19] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), 790-804.
[20] Y. Simsek, q-Hardy-Berndt type sums associated with q-Genocchi type zeta and l-functions, submitted.
[21] H. M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys. 12 (2005), 241-268.
[22] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Acedemic Publishers, Dordrecht, Boston and London, 2001.
[23] E. T. Wittaker and G. N. Watson, A Course of Modern Analysis, 4 th. Edition, Cambridge University Press, Cambridge, 1962.

Hacer Ozden and Ismail Naci Cangul
Department of Mathematics
Faculty of Arts Science
University of Uludag
16059 Bursa, Turkey
Email addresses: hozden@uludag.edu.tr , cangul@uludag.edu.tr

Yilmaz Simsek
Department of Mathematics
Faculty of Science
University of Akdeniz
07058 Antalya, Turkey
Email addresses: yilmazsimsek@hotmail.com

