Convolutions for certain analytic functions

Junichi Nishiwaki and Shigeyoshi Owa

Abstract

Applying the coefficient inequalities of functions f(z) belonging to the subclasses $\mathcal{SD}(\alpha, \beta)$ and $\mathcal{KD}(\alpha, \beta)$ of certain analytic functions in the open unit disk \mathbb{U} , two subclasses $\mathcal{SD}^*(\alpha, \beta)$ and $\mathcal{KD}^*(\alpha, \beta)$ are introduced. In this present paper, some interesting convolution properties of functions f(z) in the classes $\mathcal{SD}^*(\alpha, \beta)$ and $\mathcal{KD}^*(\alpha, \beta)$ are discussed by using Shwarz inequality.

2000 Mathematical Subject Classification: 30C45

Key words and phrases: Analytic function, unifomly starlike, uniformly convex, convolution.

1 Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be a member of the class $\mathcal{SD}(\alpha, \beta)$ if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \left|\frac{zf'(z)}{f(z)} - 1\right| + \beta \qquad (z \in \mathbb{U})$$

for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$). Also $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{KD}(\alpha, \beta)$ if it satisfies $zf'(z) \in \mathcal{SD}(\alpha, \beta)$, that is,

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} + 1\right) > \alpha \left|\frac{zf''(z)}{f'(z)}\right| + \beta \qquad (z \in \mathbb{U})$$

for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$). The classes $\mathcal{SD}(\alpha, \beta)$ and $\mathcal{KD}(\alpha, \beta)$ were defined by Shams, Kulkarni and Jahangiri [3]. We try to derive some properties of functions f(z) belonging to the classes $\mathcal{SD}(\alpha, \beta)$ and $\mathcal{KD}(\alpha, \beta)$.

Remark 1. For $f(z) \in \mathcal{SD}(\alpha, \beta)$, we write w(z) = zf'(z)/f(z) = u + iv. If $\alpha > 1$, then w lies in the domain which is the part of the complex plane which contains w = 1 and is bounded by the elliptic domain such that

$$\left(u - \frac{\alpha^2 - \beta}{\alpha^2 - 1}\right)^2 + \frac{\alpha^2}{\alpha^2 - 1}v^2 < \frac{\alpha^2(\beta - 1)^2}{(\alpha^2 - 1)^2}.$$

If $\alpha = 1$, then w lies in the domain which is the part of the complex plane which contains w = 1 and is bounded by the parabolic domain such that

$$u > \frac{v^2}{2(1-\beta)} + \frac{1+\beta}{2}.$$

If $0 \le \alpha < 1$, then w lies in the domain which is the part of the complex plane which contains w = 1 and is bounded by the hyperbolic domain such that

$$\left(u - \frac{\alpha^2 - \beta}{1 - \alpha^2}\right)^2 - \frac{\alpha^2}{1 - \alpha^2}v^2 > \frac{\alpha^2(\beta - 1)^2}{(1 - \alpha^2)^2}.$$

We recall here the following lemmas due to Shams, Kulkarni and Jahangiri [3], which provide the sufficient conditions for a function $f(z) \in \mathcal{A}$ to belong to the classes $\mathcal{SD}(\alpha, \beta)$ and $\mathcal{KD}(\alpha, \beta)$, respectively.

Lemma 1. If $f(z) \in \mathcal{A}$ satisfies

(1)
$$\sum_{n=2}^{\infty} \{ (1+\alpha)(n-1) + (1-\beta) \} |a_n| \le 1-\beta$$

for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$), then $f(z) \in \mathcal{SD}(\alpha, \beta)$.

Lemma 2. If $f(z) \in A$ satisfies

(2)
$$\sum_{n=2}^{\infty} n\{(1+\alpha)(n-1) + (1-\beta)\}|a_n| \le 1-\beta$$

for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$), then $f(z) \in \mathcal{KD}(\alpha, \beta)$.

By Lemma 1, the class $\mathcal{SD}^*(\alpha, \beta)$ is considered as the subclass of $\mathcal{SD}(\alpha, \beta)$ consisting of f(z) satisfying the inequality (1) for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$). From Lemma 2, The class $\mathcal{KD}^*(\alpha, \beta)$ is also considered as the subclass of $\mathcal{KD}(\alpha, \beta)$ consisting of f(z) satisfying the inequality (2) for some α ($\alpha \geq 0$) and β ($0 \leq \beta < 1$).

2 Convolution properties of the classes

$$\mathcal{SD}^*(\alpha,\beta)$$
 and $\mathcal{KD}^*(\alpha,\beta)$

For functions $f_j(z) \in \mathcal{A} \ (j = 1, 2, \dots, m)$ given by

$$f_j(z) = z + \sum_{n=2}^{\infty} a_{n,j} z^n$$
 $(z \in \mathbb{U}),$

the Hadamard product (or convolution) of $f_1(z)$, $f_2(z)$, \cdots , $f_m(z)$ is defined by

$$G_m(z) = (f_1 * f_2 * \dots * f_m)(z) = z + \sum_{n=2}^{\infty} \left(\prod_{j=1}^{m} a_{n,j} \right) z^n.$$

The convolution was studied by Owa and Srivastava [2]. Lately, it was studied by Nishiwaki and Owa [1]. In this present paper, we discuss some convolutions for $f_j(z)$ belonging to $\mathcal{SD}^*(\alpha, \beta)$ and $\mathcal{KD}^*(\alpha, \beta)$, respectively. Our first result is

Theorem 1. If $f_j(z) \in \mathcal{SD}^*(\alpha, \beta_j)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{SD}^*(\alpha, \beta^*)$ with

$$\beta^* = 1 - \frac{(1+\alpha) \prod_{j=1}^{m} (1-\beta_j)}{\prod_{j=1}^{m} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m} (1-\beta_j)}.$$

Proof. We consider $G_2(z) \in \mathcal{SD}^*(\alpha, \beta^*)$ for $f_1(z)$ and $f_2(z)$. Letting $f(z) \in \mathcal{SD}^*(\alpha, \beta_j)$,

$$\sum_{n=2}^{\infty} \left\{ \frac{(1+\alpha)(n-1) + (1-\beta_j)}{1-\beta_j} \right\} |a_{n,j}| \le 1 \qquad (j=1,2).$$

Applying the Shwarz inequality, we have the following inequality

$$\sum_{n=2}^{\infty} \sqrt{\left\{\frac{(1+\alpha)(n-1)+(1-\beta_1)}{1-\beta_1}\right\} \left\{\frac{(1+\alpha)(n-1)+(1-\beta_2)}{1-\beta_2}\right\}} \sqrt{|a_{n,1}||a_{n,2}|} \le 1.$$

Then we will determine the largest β^* such that

$$\sum_{n=2}^{\infty} \frac{(1+\alpha)(n-1) + (1-\beta^*)}{1-\beta^*} |a_{n,1}| |a_{n,2}| \le 1,$$

that is,

$$\sum_{n=2}^{\infty} \frac{(1+\alpha)(n-1) + (1-\beta^*)}{1-\beta^*} |a_{n,1}| |a_{n,2}|$$

$$\leq \sum_{n=2}^{\infty} \sqrt{\left\{ \frac{(1+\alpha)(n-1) + (1-\beta_1)}{1-\beta_1} \right\} \left\{ \frac{(1+\alpha)(n-1) + (1-\beta_2)}{1-\beta_2} \right\}} \sqrt{|a_{n,1}| |a_{n,2}|}.$$

Therefore, we need to find the largest β^* such that

$$\frac{(1+\alpha)(n-1)+(1-\beta^*)}{1-\beta^*}\sqrt{|a_{n,1}||a_{n,2}|}$$

$$\int (1+\alpha)(n-1)+(1-\beta_1)\int (1+\alpha)(n-1)+(1-\alpha)(n-1)+($$

$$\leq \sqrt{\left\{\frac{(1+\alpha)(n-1)+(1-\beta_1)}{1-\beta_1}\right\}\left\{\frac{(1+\alpha)(n-1)+(1-\beta_2)}{1-\beta_2}\right\}}$$

for all $n \geq 2$. Thus we get

$$\frac{(1+\alpha)(n-1)+(1-\beta^*)}{1-\beta^*} \le \left\{ \frac{(1+\alpha)(n-1)+(1-\beta_1)}{1-\beta_1} \right\} \left\{ \frac{(1+\alpha)(n-1)+(1-\beta_2)}{1-\beta_2} \right\}$$

which implies

$$\beta^* \leq 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)(n-1)}{\{(1+\alpha)(n-1)+(1-\beta_1)\}\{(1+\alpha)(n-1)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}.$$

The right hand side of the above inequality is a increasing function for all $n \ge 2$. This means

$$\beta^* = \min_{n \ge 2} \left\{ 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)(n-1)}{\{(1+\alpha)(n-1) + (1-\beta_1)\}\{(1+\alpha)(n-1) + (1-\beta_2)\} - (1-\beta_1)(1-\beta_2)} \right\}$$

$$(3) = 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)}{\{(1+\alpha) + (1-\beta_1)\}\{(1+\alpha) + (1-\beta_2)\} - (1-\beta_1)(1-\beta_2)},$$

so that $G_2(z) \in \mathcal{SD}^*(\alpha, \beta^*)$. Therefore, the theorem is true for m = 2. Let us suppose that $G_{m-1}(z) \in \mathcal{SD}^*(\alpha, \beta_0)$ and $f_m(z) \in \mathcal{SD}^*(\alpha, \beta_m)$, where

$$\beta_0 = 1 - \frac{(1+\alpha) \prod_{j=1}^{m-1} (1-\beta_j)}{\prod_{j=1}^{m-1} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m-1} (1-\beta_j)}.$$

Then replacing β_1 by β_0 and β_2 by β_m in the inequality (3), we see

$$\beta^* = 1 - \frac{(1+\alpha)(1-\beta_0)(1-\beta_m)}{\{(1+\alpha)+(1-\beta_0)\}\{(1+\alpha)+(1-\beta_m)\} - (1-\beta_0)(1-\beta_m)}$$

$$= 1 - \frac{(1+\alpha)\prod_{j=1}^{m}(1-\beta_j)}{\prod_{j=1}^{m}\{(1+\alpha)+(1-\beta_j)\} - \prod_{j=1}^{m}(1-\beta_j)}.$$

For the integer m, the theorem is also true. Using the mathematical induction, we complete the proof of the theorem.

From Theorem 1, we get

Corollary 1. If $f_j(z) \in \mathcal{KD}^*(\alpha, \beta_j)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{KD}^*(\alpha, \beta^*)$ with

$$\beta^* = 1 - \frac{(1+\alpha) \prod_{j=1}^{m} (1-\beta_j)}{2^{m-1} \prod_{j=1}^{m} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m} (1-\beta_j)}.$$

Proof. Using the same way as the proof in Theorem 1, we obtain $G_2(z) \in \mathcal{KD}^*(\alpha, \beta^*)$ with

(4)
$$\beta^* = 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)}{2\{(1+\alpha)+(1-\beta_1)\}\{(1+\alpha)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}.$$

Let us suppose that $G_{m-1}(z) \in \mathcal{SD}^*(\alpha, \beta_0)$ and $f_m(z) \in \mathcal{SD}^*(\alpha, \beta_m)$, where

$$\beta_0 = 1 - \frac{(1+\alpha) \prod_{j=1}^{m-1} (1-\beta_j)}{2^{m-2} \prod_{j=1}^{m-1} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m-1} (1-\beta_j)}.$$

Then replacing β_1 by β_0 and β_2 by β_m in the inequality (4), we see

$$\beta^* = 1 - \frac{(1+\alpha)(1-\beta_0)(1-\beta_m)}{2\{(1+\alpha)+(1-\beta_0)\}\{(1+\alpha)+(1-\beta_m)\}-(1-\beta_0)(1-\beta_m)}$$

$$=1-\frac{(1+\alpha)\prod_{j=1}^{m}(1-\beta_{j})}{2^{m-1}\prod_{j=1}^{m}\{(1+\alpha)+(1-\beta_{j})\}-\prod_{j=1}^{m}(1-\beta_{j})}.$$

The corollary is true for the integer m. Using the mathematical induction, this complete the proof of the corollary.

Considering $\mathcal{SD}^*(\alpha_j, \beta)$ instead of $\mathcal{SD}^*(\alpha, \beta_j)$ in Theorem 1, we derive

Theorem 2. If $f_j(z) \in \mathcal{SD}^*(\alpha_j, \beta)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{SD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{\prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1.$$

Proof. By means of Theorem 1, we easily see that $G_2(z) \in \mathcal{SD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{\{(1+\alpha_1) + (1-\beta)\}\{(1+\alpha_2) + (1-\beta)\} - (1-\beta)^2}{1-\beta} - 1.$$

This gives us that $G_m(z) \in \mathcal{SD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{\prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1$$

from the mathematical induction. We prove the theorem.

Corollary 2. If $f_j(z) \in \mathcal{KD}^*(\alpha_j, \beta)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{KD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{2^{m-1} \prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1.$$

Proof. By means of Theorem 1, we easily know that $G_2(z) \in \mathcal{KD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{2\{(1+\alpha_1) + (1-\beta)\}\{(1+\alpha_2) + (1-\beta)\} - (1-\beta)^2}{1-\beta} - 1.$$

Therefore, applying the mathematical induction, we see that $G_m(z) \in \mathcal{KD}^*(\alpha^*,\beta)$ with

$$\alpha^* = \frac{2^{m-1} \prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1.$$

The corollary is proved.

By virtue of Theorem 1 and Corollary 1, we derive

Theorem 3. If $f_j(z) \in \mathcal{SD}^*(\alpha, \beta_j)$ for each $j = 1, 2, \dots, m$ and $f_i(z) \in \mathcal{KD}^*(\alpha, \beta_i)$ for each $i = 1, 2, \dots, k$, then $G_{m+k}(z) \in \mathcal{SD}^*(\alpha, \beta^*)$ with

$$\beta^* = 1 - \frac{(1+\alpha) \prod_{j=1}^{m+k} (1-\beta_j)}{2^k \prod_{j=1}^{m+k} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m+k} (1-\beta_j)}.$$

Proof. By using the same method as in the proof of Theorem 1, let $f_1(z) \in \mathcal{SD}^*(\alpha, \beta_1)$ and $f_2(z) \in \mathcal{KD}^*(\alpha, \beta_2)$, then $G_2(z) \in \mathcal{SD}^*(\alpha, \beta^*)$ with

(5)
$$\beta^* = 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)}{2\{(1+\alpha)+(1-\beta_1)\}\{(1+\alpha)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}.$$

On the other hand, if $f_j(z) \in \mathcal{SD}^*(\alpha, \beta_j)$ $(j = 1, 2, \dots, m)$, then $G_m(z) \in \mathcal{SD}^*(\alpha, \tilde{\beta}_1)$ with

$$\tilde{\beta}_1 = 1 - \frac{(1+\alpha) \prod_{j=1}^{m} (1-\beta_j)}{\prod_{j=1}^{m} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m} (1-\beta_j)},$$

and also if $f_i(z) \in \mathcal{KD}^*(\alpha, \beta_i)$ $(i = 1, 2, \dots, k)$, then $G_k(z) \in \mathcal{KD}^*(\alpha, \tilde{\beta}_2)$ with

$$\tilde{\beta}_2 = 1 - \frac{(1+\alpha) \prod_{i=1}^k (1-\beta_i)}{2^{k-1} \prod_{i=1}^k \{(1+\alpha) + (1-\beta_i)\} - \prod_{i=1}^k (1-\beta_i)}$$

from Theorem 1 and Corollary 1, respectively. Then replacing β_1 by $\tilde{\beta}_1$ and β_2 by $\tilde{\beta}_2$ from inequality (5), we have

$$\beta^* = 1 - \frac{(1+\alpha)(1-\tilde{\beta}_1)(1-\tilde{\beta}_2)}{2\{(1+\alpha) + (1-\tilde{\beta}_1)\}\{(1+\alpha) + (1-\tilde{\beta}_2)\} - (1-\tilde{\beta}_1)(1-\tilde{\beta}_2)}$$

$$= 1 - \frac{(1+\alpha)\prod_{j=1}^{m+k}(1-\beta_j)}{2^k\prod_{j=1}^{m+k}\{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m+k}(1-\beta_j)}.$$

This complete the proof of the theorem.

Corollary 3. If $f_j(z) \in \mathcal{SD}^*(\alpha, \beta_j)$ for each $j = 1, 2, \dots, m$ and $f_i(z) \in \mathcal{KD}^*(\alpha, \beta_i)$ for each $i = 1, 2, \dots, k$, then $G_{m+k}(z) \in \mathcal{KD}^*(\alpha, \beta^*)$ with

$$\beta^* = 1 - \frac{(1+\alpha) \prod_{j=1}^{m+k} (1-\beta_j)}{2^{k-1} \prod_{j=1}^{m+k} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m+k} (1-\beta_j)}.$$

Proof. By using the same method as in the proof of Theorem 1, let $f_1(z) \in \mathcal{SD}^*(\alpha, \beta_1)$ and $f_2(z) \in \mathcal{KD}^*(\alpha, \beta_2)$, then $G_2(z) \in \mathcal{KD}^*(\alpha, \beta^*)$ with

(6)
$$\beta^* = 1 - \frac{(1+\alpha)(1-\beta_1)(1-\beta_2)}{\{(1+\alpha)+(1-\beta_1)\}\{(1+\alpha)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}.$$

On the other hand, if $f_j(z) \in \mathcal{SD}^*(\alpha, \beta_j)$ $(j = 1, 2, \dots, m)$, then $G_m(z) \in \mathcal{SD}^*(\alpha, \tilde{\beta}_1)$ with

$$\tilde{\beta}_1 = 1 - \frac{(1+\alpha) \prod_{j=1}^{m} (1-\beta_j)}{\prod_{j=1}^{m} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m} (1-\beta_j)},$$

and also if $f_i(z) \in \mathcal{KD}^*(\alpha, \beta_i)$ $(i = 1, 2, \dots, k)$, then $G_k(z) \in \mathcal{KD}^*(\alpha, \tilde{\beta}_2)$ with

$$\tilde{\beta}_2 = 1 - \frac{(1+\alpha) \prod_{i=1}^k (1-\beta_i)}{2^{k-1} \prod_{i=1}^k \{(1+\alpha) + (1-\beta_i)\} - \prod_{i=1}^k (1-\beta_i)}$$

from Theorem 1 and Corollary 1, respectively. Then replacing β_1 by $\tilde{\beta}_1$ and β_2 by $\tilde{\beta}_2$ from inequality (6), we have

$$\beta^* = 1 - \frac{(1+\alpha)(1-\tilde{\beta}_1)(1-\tilde{\beta}_2)}{\{(1+\alpha) + (1-\tilde{\beta}_1)\}\{(1+\alpha) + (1-\tilde{\beta}_2)\} - (1-\tilde{\beta}_1)(1-\tilde{\beta}_2)}$$

$$= 1 - \frac{(1+\alpha)\prod_{j=1}^{m+k} (1-\beta_j)}{2^{k-1}\prod_{j=1}^{m+k} \{(1+\alpha) + (1-\beta_j)\} - \prod_{j=1}^{m+k} (1-\beta_j)}$$

which proves the corollary.

Using $\mathcal{SD}^*(\alpha_j, \beta)$ and $\mathcal{KD}^*(\alpha_i, \beta)$ instead of $\mathcal{SD}^*(\alpha, \beta_j)$ and $\mathcal{KD}^*(\alpha, \beta_i)$ in Theorem 3, we derive

Theorem 4. If $f_j(z) \in \mathcal{SD}^*(\alpha_j, \beta)$ for each $j = 1, 2, \dots, m$ and $f_i(z) \in \mathcal{KD}^*(\alpha_i, \beta)$ for each $i = 1, 2, \dots, k$, then $G_{m+k}(z) \in \mathcal{SD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{2^k \prod_{j=1}^{m+k} \{ (1+\alpha_j) + (1-\beta) \} - (1-\beta)^{m+k}}{(1-\beta)^{m+k-1}} - 1.$$

Proof. By the same way as Theorem 3, we obtain

$$\alpha^* = \frac{2\{(1+\tilde{\alpha_1}) + (1-\beta)\}\{(1+\tilde{\alpha_2}) + (1-\beta)\} - (1-\beta)^2}{1-\beta} - 1,$$

where

$$\tilde{\alpha}_1 = \frac{\prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1$$

and

$$\tilde{\alpha}_2 = \frac{2^{k-1} \prod_{i=1}^k \{ (1+\alpha_i) + (1-\beta) \} - (1-\beta)^k}{(1-\beta)^{k-1}} - 1,$$

which implies that

$$\alpha^* = \frac{2^k \prod_{j=1}^{m+k} \{ (1+\alpha_j) + (1-\beta) \} - (1-\beta)^{m+k}}{(1-\beta)^{m+k-1}} - 1.$$

This complete the proof of the theorem.

Corollary 4. If $f_j(z) \in \mathcal{SD}^*(\alpha_j, \beta)$ for each $j = 1, 2, \dots, m$ and $f_i(z) \in \mathcal{KD}^*(\alpha_i, \beta)$ for each $i = 1, 2, \dots, k$, then $G_{m+k}(z) \in \mathcal{KD}^*(\alpha^*, \beta)$ with

$$\alpha^* = \frac{2^{k-1} \prod_{j=1}^{m+k} \{ (1+\alpha_j) + (1-\beta) \} - (1-\beta)^{m+k}}{(1-\beta)^{m+k-1}} - 1.$$

Proof. Using the same way as Theorem 3, we obtain

$$\alpha^* = \frac{\{(1+\tilde{\alpha_1}) + (1-\beta)\}\{(1+\tilde{\alpha_2}) + (1-\beta)\} - (1-\beta)^2}{1-\beta} - 1,$$

where

$$\tilde{\alpha}_1 = \frac{\prod_{j=1}^m \{(1+\alpha_j) + (1-\beta)\} - (1-\beta)^m}{(1-\beta)^{m-1}} - 1$$

and

$$\tilde{\alpha}_2 = \frac{2^{k-1} \prod_{i=1}^k \{ (1+\alpha_i) + (1-\beta) \} - (1-\beta)^k}{(1-\beta)^{k-1}} - 1,$$

which implies that

$$\alpha^* = \frac{2^{k-1} \prod_{j=1}^{m+k} \{ (1+\alpha_j) + (1-\beta) \} - (1-\beta)^{m+k}}{(1-\beta)^{m+k-1}} - 1.$$

We complete the proof of the theorem.

Theorem 5. If $f_j(z) \in \mathcal{SD}^*(\alpha_j, \beta_j)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{SD}^*(\alpha^*, \beta^*)$ with

$$\alpha^* = \prod_{j=1}^m \{ (1 + \alpha_j) + (1 - \beta_j) \} - \prod_{j=1}^m (1 - \beta_j) - 1$$

and

$$\beta^* = 1 - \prod_{j=1}^{m} (1 - \beta_j).$$

Proof. Let $f_1(z) \in \mathcal{SD}^*(\alpha_1, \beta_1)$ and $f_2(z) \in \mathcal{SD}^*(\alpha_2, \beta_2)$. Then we know that $G_2(z) \in \mathcal{SD}^*(\alpha^*, \beta^*)$ if

$$\frac{1+\alpha^*}{1-\beta^*} \leq \frac{\{(1+\alpha_1)(n-1)+(1-\beta_1)\}\{(1+\alpha_2)(n-1)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}{(1-\beta_1)(1-\beta_2)(n-1)}$$

$$=\frac{(1+\alpha_1)(1+\alpha_2)(n-1)+\{(1-\beta_1)(1+\alpha_2)+(1+\alpha_1)(1-\beta_2)\}}{(1-\beta_1)(1-\beta_2)}$$

is satisfied. The right hand side of the above inequality is a increasing function for $n \ge 2$. This means that

$$\frac{1+\alpha^*}{1-\beta^*} = \frac{\{(1+\alpha_1)+(1-\beta_1)\}\{(1+\alpha_2)+(1-\beta_2)\}-(1-\beta_1)(1-\beta_2)}{(1-\beta_1)(1-\beta_2)}.$$

Therefore, considering

$$\alpha^* = \{(1 + \alpha_1) + (1 - \beta_1)\}\{(1 + \alpha_2) + (1 - \beta_2)\} - (1 - \beta_1)(1 - \beta_2) - 1$$

and

$$\beta^* = 1 - (1 - \beta_1)(1 - \beta_2),$$

we prove that $G_2(z) \in \mathcal{SD}^*(\alpha^*, \beta^*)$. Let us suppose that $G_k(z) \in \mathcal{SD}^*(\alpha_0, \beta_0)$ and $f_{k+1} \in \mathcal{SD}^*(\alpha_{k+1}, \beta_{k+1})$, where

$$\alpha_0 = \prod_{j=1}^{k} \{ (1 + \alpha_j) + (1 - \beta_j) \} - \prod_{j=1}^{k} (1 - \beta_j) - 1$$

and

$$\beta_0 = 1 - \prod_{j=1}^k (1 - \beta_j).$$

Then we get

$$\frac{1+\alpha^*}{1-\beta^*} = \frac{\prod_{j=1}^{k+1} \{(1+\alpha_j) + (1-\beta_j)\} - \prod_{j=1}^{k+1} (1-\beta_j)}{\prod_{j=1}^{k+1} (1-\beta_j)}.$$

The theorem is true for the integer m = k + 1. From the mathematical induction, we prove the theorem.

Corollary 5. If $f_j(z) \in \mathcal{KD}^*(\alpha_j, \beta_j)$ for each $j = 1, 2, \dots, m$, then $G_m(z) \in \mathcal{KD}^*(\alpha^*, \beta^*)$ with

$$\alpha^* = 2^{m-1} \prod_{j=1}^m \{ (1 + \alpha_j) + (1 - \beta_j) \} - \prod_{j=1}^m (1 - \beta_j) - 1$$

and

$$\beta^* = 1 - \prod_{j=1}^{m} (1 - \beta_j).$$

References

- [1] J. Nishiwaki and S. Owa, Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comp. 187(1)(2007), 350-355.
- [2] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequl. Pure. Appl. Math. 3 No3. Article42. (2002), 1-13.
- [3] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Internat. J. Math. Math. Sci. 55(2004), 2959-2961.

Department of Mathematics

Kinki University

Higashi-Osaka, Osaka 577-8502

Japan

Email addresses: owa@math.kindai.ac.jp , jerjun2002@yahoo.co.jp