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Applications of Pompeiu areolary derivative

in expressing of the Gauss total negative

curvature
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Abstract

This paper expresses the error of approximation of some surface

with negative Gauss curvature using the areolary derivative of D.

Pompeiu. New interpretations for this derivative are given.
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1 Introduction

We consider a surface with Gauss negative curvature [1] of the form:

(1) (SG) : r = (f(t), M(t, v), N(t, v)) ; (t, v) ∈ D∗ ⊂ R
2
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D∗ - simple connected domain functions f(t), M(t, v), N(t, v) ∈ C2(D∗)

Using a transformation of the form:

(2)







t = t(x, y)

v = v(x, y)
with (x, y) ∈ D ⊂ R

2 and
D(t, v)

D(x, y)
6= 0

in D – simple connected domain.

In the case of surfaces of form (1), we note:

(3) y = f(t)

and in the case of the existence of the inverted function from relation (3),

with [f−1(y)]
/ 6= 0 in D, we will obtain from the transformation (2) the

functions M(t, v) and N(t, v) of the form:

(4)
M(t, v) = M(f−1(y), v(x, f−1(y))) = U(x, y)

N(t, v) = N(f−1(y), v(x, f−1(y))) = V (x, y)

In our paper [1], we determined the function v(x, f−1(y)) by imposing the

Cauchy-Riemann monogenity conditions on functions U(x, y) and V (x, y)

from (4).

(5) Ux = Vy and Uy = −Vx

System (5) allows the determination of partial derivatives vx, vy and

the determination of function v (x, y) is reduced to the determination of a

function when its partial derivatives are known. System (5) will also give

an expression of function y = f ∗(t), generally different from its expression

given in (1) and (3). Analyzing this situation constitutes the objective of

the paper [1].
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In the case f(t) ≡ f ∗(t) when .obtained by applying the monogenity

conditions (5) , then surface (1) is transformed into a surface we called

monogenous of the form (Sm):

(6) (Sm) : r = (f (t) , U (x, y) , V (x, y))

with y = f(t) = f ∗(t). Surfaces (1) and (6) have the same negative Gauss

curvature. In this situation, the following monogenous function can be

attached to surface (6):

(7) F (z) = U(x, y) + iV (x, y)

If from the imposing of monogenity conditions to functions U (x, y) and

.V (x, y) given in relation (4) we obtain vx, vy, but y = f(t) 6= f ∗(t), where

f (t) is initially given in relation (1), then we’ll say that the surface of form:

(8) (SG) : r = (f ∗ (t) , U (x, f ∗(t)) , V (x, f ∗(t))) with y = f ∗ (t)

is the surface which approximates the given surface (1).

In paper [1], the approximation error was calculated using the Euclidian

distance between surfaces (1) and (8).

2 The areolary derivative of D. Pompeiu

In this paper we will evaluate the approximation error of a surface with

negative Gauss curvature of form (1) through a monogenous surface of form

(8). This subject was first introduced in [1] and [2].

In this case we’ll evaluate the approximation error using the areolary

derivative of Pompeiu, but also a geometric point of view.
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The given surface (1), having the negative Gauss curvature (SG) (SG) :

r = (f(t),M(t, v), N(t, v)),with (t, v) ∈ D∗ ⊂ R
2, D∗−simple connected

domain and the functions: f(t),M(t, v), N(t, v) ∈ C2(D∗) are approximated

with the monogenous surface of form (8)

(Sm) : r = (f ∗(t),M(t∗, v), N(t∗, v)),

where we noted t∗ = f ∗
−1

(y).

The function y = f ∗(t) was determined from the Cauchy-Riemann

monogenity conditions applied to functions U and V , with the notations:

M(t∗, v) = M(f ∗
−1

(y), v(x, f ∗
−1

(y)) = U(x, y)

N(t∗, v) = N(f ∗
−1

(y), v(x, f ∗
−1

(y)) = V (x, y)

It is known [2] that the areolary derivative of D. Pompeiu expresses the

distance of monogenity of a complex function and, for a function F (z) , it

has the expression:

(9) lim
δ→0

∮

γ

F (z)dz

∫∫

D

dxdy
= lim

δ→0

2i
∫∫

D

∂F
∂z

dxdy

∫∫

D

dxdy
= 2i

(

∂F

∂z

)

P

where D – simple connected domain; γ− frontier of D, γ – omotop with

zero, and δ = sup
M→P

d(M,P )

The last equality from (9) will give the value of the areolary derivative

2i

(

∂F

∂z

)

in an arbitrary point P ∈ D0.

Using the derivation operators
∂

∂z
=

1

2

(

∂

∂x
−i

∂

∂y

)

,
∂

∂z
=

1

2

(

∂

∂x
+i

∂

∂y

)

in the case of a function

F (z) = U(x, y) + iV (x, y) = M(t, v) + iN(t, v) =

= M(f−1(y), v(x, f−1(y) + iN(f−1(y), v(x, f−1(y))
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we obtain:

(10)











































































∂U

∂x
= Mv · vx

∂U

∂y
= Mt · ty + Mv · vy = Mt · [f−1(y)]′ + Mv · vy

∂V

∂x
= Nv · vx

∂V

∂y
= Nt · ty + Nv · vy = Nt[f

−1(y)]′ + Nv · vy

and thus

∂F

∂z
=

1

2

{

Mv · vx−Nt ·
[

f−1(y)
]

′−Nv · vy+i
[

Nv · vx+Mt

(

f−1(y)
)

′

+Mv · vy

]}

We mention that functions M(t, v) ; N(t, v) are given, and t = f−1(y)

supposedly exists having the derivative [f−1(y)]
′ 6= 0 in D ⊂ C.

Relation (11), which expresses the areolary derivative of the complex

function with complex variable F (z) = F (x, y) = U(x, y) + iV (x, y), is

not null in the case when .y = f(t) 6= f ∗(t). It expresses analytically the

monogenity distance of the complex function with complex variable F (z)

(12) F (z) = F (x, y) = M(f−1(y), v(x, y) + iN(f−1(y), v(x, y))

attached to surface (1) having negative Gauss curvature.

In the case when the derivative
∂F

∂z
= 0, the surface (1) is identically

transformed into the monogenous surface (Sm)

(13) (Sm) : r = (y,M(f−1(y), v(x, y)), N(f−1(y), v(x, y)))

Surfaces (1) and (13) have the same negative Gauss curvature when f ∗(t) =

f(t).
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3 The geometric interpretation of the situa-

tion y = f ∗(t) 6= f(t).

We consider again surfaces (1) and (8) in the system

(14)







(SG) : r(f(t),M(t, v), N(t, v) , y = f(t)

(Sm) : r(f ∗(t),M(t∗, v), N(t∗, v)); t∗ = f ∗−1(y) and y = f ∗(t)

The parameter x is the same in both cases of surfaces from (14), only y

differs from (SG) to (Sm). The expressions of functions M and N are the

same in the system of surfaces (14).

From geometric point of view, for each x = x0 = constant, the surfaces

from (14) have the same curve of coordinates, which we obtain by replacing

x with x0 in (14)

(15)






rG(x0, y) = rG(y) = (y,M(f−1(y), v(x0, y)), N(f−1(y), v(x0, y)))

rm(x0, y) = rm(y) = (y,M(f ∗−1(y), v(x0, y)), N(f−1(y), v(x0, y)))

Geometrical characteristics (see [1], [2], [3]-it verifies immediately)

1. The surfaces from (14) have different negative Gauss curvature.

2. The coordinate curves of surfaces from relation (15) are rectangular.

3. The coordinate curve x = x0 is plane (respectively).

In the figure below, we sketched the surfaces (SG) and (Sm) in a plane

section. In the plane of the sketch, the coordinate curvatures from relation

(15) appear, noted with rG(y). respectively rm(y).
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The approximation error of surface (SG) through a monogenous sur-

face (Sm) will be evaluated as follows by comparing the curvatures of the

coordinate curves from system (15).

Generally [4], for a curvature in space of form

(16) r = r(x(t), y(t), z(t)) , t ∈ I

the curvature can be calculated using the known formula:

(17) K =
1

R2
=

A2 + B2 + C2

(x′2 + y′2 + z′2)2

In the case of coordinate curves x = x0 = constant, we will replace
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(x, y, z) from (16) with

(18)



















x → y

y → M(f−1(y) respectively M(f ∗−1(y)

z → N(f−1(y)), respectively N(f ∗−1(y)

and thus system (15) becomes of form:

(19)







rG(y) = (y,M(f−1(y)), N(f−1(y))), with t = f−1(y)

rm(y) = (y,M(f ∗−1(y)), N(f ∗−1(y))), with t∗ = f ∗−1(y)

The variable parameter on the curvature will be noted y instead of t. The

curves of the curvatures given in (19) will be noted with KG, respectively

Km.

KG =

∣

∣M
′

t · t′
[

N
′′

t2(t
′)2 + N ′

t t′′
]

− N ′

t t′[M ′′

t2(t
′)2 + M ′

t · t′′]
∣

∣

[(M ′

t · t′)2 + N ′

t · (t′)2]2
=

=
1

(t′)3
·
∣

∣(t′)2[M ′

tN
′′

t2 − N ′

tM
′′

t2 ] + t′′[M ′

t · N ′

t − N ′

t · M ′

t ]
∣

∣

[M ′2
t + N ′2

t ]2
=

=

∣

∣M ′

t · N ′′

t2 − N ′

t · M ′′

t2

∣

∣

|t′| [M ′

t2 + N ′

t2 ]
2

= of form
A

B |t′|
The structure of curvature Km expression will be of form

(21) Km =
A

B |t∗′|
because the expressions of functions M,N are the same

(22)
KG

Km

=

∣

∣

∣

∣

t∗′

t′

∣

∣

∣

∣

Ratio (22) will give an image of the ”distances” of the coordinate curves

from the surfaces in a point of contact (figure 1). Formula (22) is useful for

evaluating the approximation error of a surface (SG) through a monogenous

surface (Sm). We can formulate theorems:
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Theorem 1 For any surface having the Gauss negative curvature of form

(SG) : r = (f(t),M(t, v), N(t, v)), (t, v) ∈ D2 ⊂ R
2, t = f−1(y)

approximated with a monogenous surface of form

(Sm) : r = (f ∗(t),M(t∗, v), N(t∗, v)), (t∗, v) ∈ D2 ⊂ R
2, t = f ∗−1(y)

the coordinate curves x = x0 have the ratio of curvatures given by relation

KG

Km

=

∣

∣

∣

∣

t∗′

t′

∣

∣

∣

∣

4 The areolary derivative in a particular case:

x = x0

We consider the difference function φ(z) = F (x, y) − F ∗(x, y), where the

complex functions of complex variable F and F ∗. are respectively:

(23)
F (x, y) = U(x, y) + iV (x, y) , y = f(t)

F ∗(x, y) = U(x, y∗) + iV (x, y∗) , y∗ = f ∗(t)

Function F ∗(x, y) is monogenous and
∂F ∗

∂z
= 0 in all the points of mono-

genity.

We remind that the determination of function .f ∗(t) was done by impos-

ing the monogenity conditions. Relations (10) and (11) for the evaluation

of the areolary derivative in the general case are laborious. In the particu-

lar case of the difference function φ(x, y), we will use the advantage of the

common expressions of functions M and N form (19).
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For the case x = x0 = constant, the areolary derivative of function φ

becomes:

(24)
∂φ

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

φ =
i

2

∂φ

∂y

(25)
∣

∣

∣

∣

∂φ

∂z

∣

∣

∣

∣

=
1

2

∣

∣M ′(t′y − t∗−1

y ) + N ′(t−1

y − t∗−1

y )
∣

∣ =
1

2
|M ′ + N ′| ·

∣

∣(t−1

y − t∗−1

y )
∣

∣

Relation (25) is especially interesting. We can formulate the following the-

orem:

Theorem 2 Let there be surfaces (SG) and (Sm) having negative Gauss

curvatures

(SG) : r = (f(t),M(t, v), N(t, v)), (t, v) ∈ D∗ ⊂ R
2, t = f−1(y)

(Sm) : r = (f ∗(t),M(t∗, v), N(t∗, v)), t∗ = f ∗−1(y) , (t∗, v) ∈ D∗ ⊂ R
2

The complex function of complex variable, attached to surface (SG) dif-

fers from the monogenous function attached to surface (Sm) along a curve

of coordinates x = x0 (not the same on (Sm) and (SG)). The error of mono-

genity distance along the curvature x = x0 is evaluated with the module of

the areolary derivative, being directly proportional with
∣

∣t−1
y − t∗−1

y

∣

∣

∣

∣

∣

∣

∂φ

∂z

∣

∣

∣

∣

=
1

2
|M ′ + N ′| ·

∣

∣(t−1

y − t∗−1

y )
∣

∣

Conclusion:

The evaluations of the approximation error of surface (SG) through

monogenous surfaces (Sm) depend, in both cases, on the approach, on the

derivatives of functions t = f−1(y) , t∗ = f ∗−1(y).
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Example

The surfaces (SG) and (Sm) are figured in a particular case, of the form:

(SG) : r = (a log(t +
√

t2 − a2), t cos x, t sin x), a > 0

or using

y = f(t) = a log(t +
√

t2 − a2)

(SG) : r =

(

y,
1

2

(

e

y

a + a2e
−

y

a

)

cos x,
1

2

(

e

y

a + a2e
−

y

a

)

sin x

)

(Sm) : r =
(

y, eK1y+K2 · cos(−K1x + b), eK1y+K2 · sin(−K1x + b
)

)

(Sm) is the monogenous surface which approximates surface (SG).

The representations, noted with M for (SG) and respectively with N for

(Sm), were realized by my colleague, computer expert Gheorghe Ardelean,

from the Department of Mathematics – Informatics from the North Univer-

sity of Baia Mare, whom I wish to offer my gratitude for his cooperation.
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