General Mathematics Vol. 15, Nr. 2-3(2007), 190-200

On some analytic functions with negative coefficients

Mugur Acu

Abstract

We will study some classes of analytic functions with negative coefficients introduced by using a modified Sălăgean operator.

2000 Mathematical Subject Classification: 30C45

1 Introduction and preliminaries

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In [7] the subfamily T of S consisting of functions f of the form

(1)
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$

was introduced.

Let D^n be the Sălăgean differential operator (see [6]) $D^n : A \to A$, $n \in \mathbb{N}$, defined as:

$$D^{0}f(z) = f(z)$$
$$D^{1}f(z) = Df(z) = zf'(z)$$
$$D^{n}f(z) = D(D^{n-1}f(z))$$

Let $n \in \mathbb{N}$ and $\lambda \geq 0$. Let denote with D_{λ}^{n} the Al-Oboudi operator (see [4]) defined by

 $D^n \cdot A \to A$

$$D_{\lambda}^{0}f(z) = f(z) , \quad D_{\lambda}^{1}f(z) = (1-\lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z) ,$$
$$D_{\lambda}^{n}f(z) = D_{\lambda} \left(D_{\lambda}^{n-1}f(z)\right) .$$

Definition 1. [3] Let $\beta, \lambda \in \mathbb{R}, \beta \geq 0, \lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$. We denote by D_{λ}^{β} the linear operator defined by

$$D_{\lambda}^{\beta} : A \to A ,$$
$$D_{\lambda}^{\beta} f(z) = z + \sum_{j=2}^{\infty} \left(1 + (j-1)\lambda \right)^{\beta} a_j z^j .$$

Theorem 1. [6] If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

(i)
$$\sum_{j=2}^{\infty} ja_j \le 1$$

(ii) $f \in T$

(iii) $f \in T^*$, where $T^* = T \bigcap S^*$ and S^* is the well-known class of starlike functions.

Definition 2. [6] Let $\alpha \in [0, 1)$ and $n \in \mathbb{N}$, then

$$S_n(\alpha) = \left\{ f \in A : Re\frac{D^{n+1}f(z)}{D^n f(z)} > \alpha, z \in U \right\}$$

is the set of n-starlike functions of order α .

Definition 3. [5] Let $\alpha \in [0,1), \beta \in (0,1]$ and let $n \in \mathbb{N}$; we define the class $T_n(\alpha, \beta)$ of n-starlike functions of order α and type β with negative coefficients by

$$T_n(\alpha,\beta) = \{ f \in A : |J_n(f,\alpha;z)| < \beta, z \in U \},\$$

where

$$J_n(f,\alpha;z) = \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{\frac{D^{n+1}f(z)}{D^n f(z)} + 1 - 2\alpha}, \ z \in U$$

Remark 1. The class $T_n(\alpha, 1)$ is the class of n-starlike functions of order α with negative coefficients i.e. $T_n(\alpha, 1) = T \bigcap S_n(\alpha)$.

Theorem 2. [5] Let $\alpha \in [0,1), \beta \in (0,1]$ and $n \in \mathbb{N}$. The function f of the form (1) is in $T_n(\alpha, \beta)$ if and only if

$$\sum_{j=2}^{\infty} j^n [j-1+\beta(j+1-2\alpha)]a_j \le 2\beta(1-\alpha)$$

Remark 2. From Remark 1 and Theorem 2, for f(z) of the form (1), we have $f \in T_n(\alpha, 1) = T_n(\alpha)$ iff

$$\sum_{j=2}^{\infty} j^n (j-\alpha) a_j \le 1-\alpha, \text{ where } \alpha \in [0,1)$$

192

We denote by f * g the modified Hadamard product of two functions $f(z), g(z) \in T, f(z) = z - \sum_{j=2}^{\infty} a_j z^j, (a_j \ge 0, j = 2, 3, ...)$ and $g(z) = z - \sum_{j=2}^{\infty} b_j z^j, (b_j \ge 0, j=2,3,...)$, is defined by $(f * g)(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j.$

We say that an analytic function f is subordinate to an analytic function g if $f(z) = g(w(z)), z \in U$, for some analytic function w with w(0) = 0 and $|w(z)| < 1(z \in U)$. We denote the subordination relation by $f \prec g$.

2 Main results

Definition 4. [1], [2] Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$.

We say that f is in the class $TL_{\beta}(\alpha)$ if:

$$Re\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} > \alpha, \quad \alpha \in [0,1), \quad \lambda \ge 0, \quad \beta \ge 0, \quad z \in U.$$

We say that f is in the class $T^{c}L_{\beta}(\alpha)$ if:

$$Re\frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} > \alpha, \quad \alpha \in [0,1), \quad \lambda \ge 0, \quad \beta \ge 0, \quad z \in U$$

Remark 3. We observe that both classes may also be defined, by using the subordination relation, such that:

$$TL_{\beta}(\alpha) = \left\{ f \in T : \frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - \alpha \prec \frac{1+z}{1-z} , \alpha \in [0,1), \lambda \ge 0, \beta \ge 0, z \in U \right\}$$

and

$$T^{c}L_{\beta}(\alpha) = \left\{ f \in T : \frac{D_{\lambda}^{\beta+2}f(z)}{D_{\lambda}^{\beta+1}f(z)} - \alpha \prec \frac{1+z}{1-z} , \, \alpha \in [0,1), \, \lambda \ge 0, \, \beta \ge 0, \, z \in U \right\} \,.$$

Theorem 3. [1], [2] Let $\alpha \in [0, 1)$, $\lambda \ge 0$ and $\beta \ge 0$.

The function $f \in T$ of the form (1) is in the class $TL_{\beta}(\alpha)$ iff

(2)
$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha.$$

The function $f \in T$ of the form (1) is in the class $T^{c}L_{\beta}(\alpha)$ iff

(3)
$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta+1}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha.$$

Proof. Let $f \in TL_{\beta}(\alpha)$, with $\alpha \in [0, 1)$, $\lambda \ge 0$ and $\beta \ge 0$. We have

$$Re\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} > \alpha.$$

If we take $z \in [0, 1), \beta \ge 0, \lambda \ge 0$, we have (see Definition 1.1):

(4)
$$\frac{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} a_j z^{j-1}} > \alpha.$$

From the above we obtain:

$$1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j z^{j-1} > \alpha - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} \alpha a_j z^{j-1},$$
$$\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha) a_j z^{j-1} < 1 - \alpha.$$

Letting $z \to 1^-$ along the real axis we have:

$$\sum_{j=2}^{\infty} (1+(j-1)\lambda)^{\beta} (1+(j-1)\lambda-\alpha)a_j < 1-\alpha.$$

Conversely, let take $f \in T$ for which the relation (2) hold. The condition $Re \frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} > \alpha$ is equivalent with

(5)
$$\alpha - Re\left(\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right) < 1.$$

We have

$$\begin{split} & \alpha - Re\left(\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right) \leq \alpha + \left|\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right| \\ & = \alpha + \left|\frac{D_{\lambda}^{\beta+1}f(z) - D_{\lambda}^{\beta}f(z)}{D_{\lambda}^{\beta}f(z)}\right| = \alpha + \left|\frac{\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta}a_{j}[(j-1)\lambda]z^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}z^{j-1}}\right| \\ & \leq \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}|1 - j|\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda|z|^{j-1}} = \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}|z|^{j-1}} \\ & < \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda} = \frac{\alpha + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}[(j-1)\lambda - \alpha]}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}} < 1. \end{split}$$

Thus

$$\alpha + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} a_j [(j-1)\lambda + 1 - \alpha] < 1,$$

which is the condition (2).

The proof of the second part of the theorem is similarly with the above one, so it is omitted.

Remark 4. Using the conditions (2) and (3) it is easy to prove that

$$TL_{\beta+1}(\alpha) \subseteq TL_{\beta}(\alpha)$$

and
$$T^{c}L_{\beta+1}(\alpha) \subseteq T^{c}L_{\beta}(\alpha),$$

where $\beta \geq 0, \ \alpha \in [0, 1)$ and $\lambda \geq 0.$

 $\begin{aligned} \text{Theorem 4. } [1], [2] \ If \, f(z) &= z - \sum_{j=2}^{\infty} a_j z^j \in TL_{\beta}(\alpha), (a_j \ge 0, \ j = 2, 3, \ldots), \\ g(z) &= z - \sum_{j=2}^{\infty} b_j z^j \in TL_{\beta}(\alpha), \ (b_j \ge 0, \ j = 2, 3, \ldots), \ \alpha \in [0, 1), \ \lambda \ge 0, \ \beta \ge 0, \\ then \ f(z) * g(z) \in TL_{\beta}(\alpha). \\ If \ f(z) &= z - \sum_{j=2}^{\infty} a_j z^j \in T^c L_{\beta}(\alpha), \ (a_j \ge 0, \ j = 2, 3, \ldots), \\ g(z) &= z - \sum_{j=2}^{\infty} b_j z^j \in T^c L_{\beta}(\alpha), \ (b_j \ge 0, \ j = 2, 3, \ldots), \ \alpha \in [0, 1), \ \lambda \ge 0, \\ \beta \ge 0, \ then \ f(z) * g(z) \in T^c L_{\beta}(\alpha). \end{aligned}$

Proof. We have

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha]a_j < 1 - \alpha$$

and

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha] b_j < 1 - \alpha.$$

We know that $f(z) * g(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j$. From $g(z) \in T$, by using Theorem 1, we have $\sum_{j=2}^{\infty} j b_j \leq 1$. We notice that $b_j < 1$, j = 2, 3, ...

196

On some analytic functions with negative coefficients

Thus,

$$\sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [(j-1)\lambda+1-\alpha]a_j b_j < \sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [(j-1)\lambda+1-\alpha]a_j < 1-\alpha.$$

This means that $f(z) * g(z) \in TL_{\beta}(\alpha), \quad \beta \ge 0, \quad \alpha \in [0, 1) \text{ and } \lambda \ge 0.$

The proof of the second part of the theorem is similarly with the above one, so it is omitted.

Theorem 5. [1], [2] Let $f_1(z) = z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j - 1)\lambda)^\beta (1 - \alpha + (j - 1)\lambda)} z^j, \ j = 2, 3, \dots$$

Then $f \in TL_{\beta}(\alpha)$ iff it can be expressed in the form $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$, where $\lambda_j \ge 0$ and $\sum_{j=1}^{\infty} \lambda_j = 1$. Let $f_1(z) = z$ and $f_j(z) = z - \frac{1-\alpha}{(1+(j-1)\lambda)^{\beta+1}(1-\alpha+(j-1)\lambda)} z^j$, j = 2, 3, ...Then $f \in T^c L_{\beta}(\alpha)$ iff it can be expressed in the form $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$,

where $\lambda_j \ge 0$ and $\sum_{j=1}^{\infty} \lambda_j = 1$.

Proof. Let $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z), \ \lambda_j \ge 0, \ j=1,2, \dots$, with $\sum_{j=1}^{\infty} \lambda_j = 1$. We obtain

$$f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z) = \lambda_1 z + \sum_{j=2}^{\infty} \lambda_j \left(z - \frac{1 - \alpha}{[1 + (j - 1)\lambda]^{\beta} [1 - \alpha + (j - 1)\lambda]} z^j \right)$$
$$= \sum_{j=1}^{\infty} \lambda_j z - \sum_{j=2}^{\infty} \lambda_j \frac{1 - \alpha}{[1 + (j - 1)\lambda]^{\beta} [1 - \alpha + (j - 1)\lambda]} z^j$$

$$= z - \sum_{j=2}^{\infty} \lambda_j \frac{1-\alpha}{[1+(j-1)\lambda]^{\beta}[1-\alpha+(j-1)\lambda]} z^j.$$

We have

$$\sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [1-\alpha+(j-1)\lambda] \lambda_j \frac{1-\alpha}{[1+(j-1)\lambda]^{\beta} [1-\alpha+(j-1)\lambda]}$$
$$= (1-\alpha) \sum_{j=2}^{\infty} \lambda_j = (1-\alpha) (\sum_{j=1}^{\infty} \lambda_j - \lambda_1) < 1-\alpha$$

which is the condition (2) for $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$. Thus $f(z) \in TL_{\beta}(\alpha)$.

Conversely, we suppose that $f(z) \in TL_{\beta}(\alpha), f(z) = z - \sum_{j=2}^{\infty} a_j z^j, a_j \ge 0$ and we take $\lambda_j = \frac{[1 + (j-1)\lambda]^{\beta}[1 - \alpha + (j-1)\lambda]}{1 - \alpha}a_j \ge 0, \ j=2,3, \dots$, with $\lambda_1 = 1 - \sum_{j=2}^{\infty} \lambda_j$.

$$\lambda_1 = 1 - \sum_{j=2} \lambda_j.$$

Using the condition (2), we obtain

$$\sum_{j=2}^{\infty} \lambda_j = \frac{1}{1-\alpha} \sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [1-\alpha+(j-1)\lambda] a_j < \frac{1}{1-\alpha} (1-\alpha) = 1.$$

Then $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j$, where $\lambda_j \ge 0$, $j=1,2, \dots$ and $\sum_{j=1}^{\infty} \lambda_j = 1$. This completes our proof.

The proof of the second part of the theorem is similarly with the above one, so it is omitted.

Corollary 1. [1], [2] The extreme points of $TL_{\beta}(\alpha)$ are $f_1(z) = z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j - 1)\lambda)^\beta (1 - \alpha + (j - 1)\lambda)} z^j, \ j = 2, 3, \dots$$

The extreme points of $T^c L_\beta(\alpha)$ are $f_1(z) = z$ and
$$f_i(z) = z - \frac{1 - \alpha}{1 - \alpha} z^j, \ i = 2, 3$$

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j - 1)\lambda)^{\beta + 1}(1 - \alpha + (j - 1)\lambda)} z^j, \ j = 2, 3, \dots$$

198

Remark 5. We notice that in the particulary case, obtained for $\lambda = 1$ and $\beta \in \mathbb{N}$, we find similarly results for the class $T_n(\alpha)$ of the n-starlike functions of order α with negative coefficients (inclusive the necessary and sufficiently condition presented in Remark 2) and for the class $T_n^c(\alpha)$ of the n-convex functions of order α with negative coefficients.

References

- M. Acu and all, On some starlike functions with negative coefficients, (to appear).
- [2] M. Acu and all, About some convex functions with negative coefficients, (to appear).
- [3] M. Acu, S. Owa, Note on a class of starlike functions, Proceeding Of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory - Kyoto 2006, 1-10.
- [4] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
- [5] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj - Napoca, 1983.
- [6] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj
 Napoca, 1999.
- [7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 5(1975), 109-116.

This paper is a result of the joint-work between Department of Mathematics from "Lucian Blaga" University, Sibiu, Romania and Department of Mathematics from School of Sciences and Engineering, Kinki University, Higashi-Osaka, Japan.

Department of Mathematics Faculty of Science University "Lucian Blaga" of Sibiu Str. I. Ratiu, no. 5-7, 550012 - Sibiu, Romania Email address: acu_mugur@yahoo.com