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Certain inequalities concerning some

complex and positive functionals
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Abstract

In this paper we study an inequality for the complex and positive

functionals. Some applications for the Carlson′s inequality and for

complex matrices on given.
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1 Introduction

Let X be a complex algebra and F : X×X → C a complex functional with

the following properties

i) F (αx1 + βx2, y) = αF (x1, y) + βF (x2, y)for all x1, x2, y ∈ X and

α, β ∈ C
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ii) F (x, y) = F (y, x) for all x, y ∈ X

iii) F (x, x) ≥ 0 for all x ∈ X.

Appling the Cauchy - Schwartz - Buniakowski inequality we have

(1) |F (yx, z)|2 ≤ F (yx, yx) · F (z, z)

for all x, y, z ∈ X.

Let y0 = λw1 +
1

λ
w2 be an element of X where w1, w2 ∈ X, λ ∈ C,

Re(λ) 6= 0, Im(λ) 6= 0, |y0| 6= 0.

We have

(2)

F (y0x, y0x)= F

(
λw1x +

1

λ
w2x, λw1x +

1

λ
w2x

)
=

= |λ|2F (w1x,w1x) +
1

|λ|2F (w2x,w2x) + 2Re

(
λ

λ
F (w1x,w2x)

)
.

We can formulate the next lemma

Lemma 1. If |F (w1x,w1x)|6=0, |F (w2x,w2x)| 6=0 and Re (F (w1x,w2x))6=0,

there exist a complex number λ = p + qi, such that

(3) |λ|2 =

√
F (w2x,w2x)

F (w1x,w1x)

(4) Re

(
λ

λ
F (w1x,w2x)

)
= 0

(5) p2 ≥ q2
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Proof. We denote F (w1x,w2x) = a + bi, a 6= 0 and from (4) we obtain

a

(
p

q

)2

− 2b
p

q
− a = 0

with b2 + a2 > 0 and x1x2 = 1 (x1, x2 roots). Hence |x1| ≥ 1 or |x2| ≥ 1.

Then exists p, q ∈ R, p 6= 0, q 6= 0 such that

∣∣∣∣
p

q

∣∣∣∣ ≥ 1 or |p| ≥ |q|
satisfying (3), (4), (5).

With this λ, from (1) and (2) we obtain

|F (y0x, z)|2 ≤ 2
√

F (w1x, w1x) · F (w2x,w2x) · F (z, z)

so

(6) |F (y0x, z)|4 ≤ 4F 2(z, z) · F (w1x, w1x) · F (w2x,w2x).

We name (6) the Carlson - type inequality for complex and positive func-

tionals, because of (6) we obtain for example the classical Carlson integral

inequality.

2 Applications

1. Let X be the complex algebra of the complex and integrable functions

defined on [a,∞), a > 0. We consider

F (f, g) =

∞∫

a

f(t)g(t)dt

where f, g ∈ X.

F verify the conditions i), ii), iii) of introduction, evidently.
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Now we consider x(t), y0(t), z(t) ∈ X, non-nulls, and w1, w2 : [a,∞) →
(0,∞) two continuously differentiable functions such that

w′
2(t)w1(t)− w2(t)w

′
1(t) ≥ m > 0.

It is clear that

F (w1x,w1x) =

∞∫

a

w2
1(t)|x(t)|2dt ≥ 0,

F (w2x,w2x) =

∞∫

a

w2
2(t)|x(t)|2dt ≥ 0,

F (w1x,w2x) =

∞∫

a

w1(t)w2(t)|x(t)|2dt ≥ 0,

and hence, using (4) we have p2 = q2.

Of (6) we obtain

(7)

∣∣∣∣∣∣

∞∫

a

y0(t)x(t)z(t)dt

∣∣∣∣∣∣

4

≤

4




∞∫

a

z(t)z(t)dt




2

·
∞∫

a

w2
1(t)|x(t)|2dt ·

∞∫

a

w2
2(t)|x(t)|2dt.

Since |y0(t)| 6= 0 we choose z(t) =
1

y0(t)
in (7) and we get

(8)

∣∣∣∣∣∣

∞∫

a

x(t)dt

∣∣∣∣∣∣

4

≤ 4




∞∫

a

dt

|y0(t)|2




2

·
∞∫

a

w2
1(t)|x(t)|2dt ·

∞∫

a

w2
2(t)|x(t)|2dt.

Clearly

∫
dt

|y0(t)|2 =

∫
dt∣∣∣∣λw1(t) +

1

λ
w2(t)

∣∣∣∣
2 =

∫ |λ|2
w2

1(t)∣∣∣∣λ2 +
w2(t)

w1(t)

∣∣∣∣
2dt.



112 Emil C. Popa

Since λ = p + qi, p2 = q2, we have
∣∣∣∣λ2 +

w2(t)

w1(t)

∣∣∣∣
2

= |λ|4 +
w2

2(t)

w2
1(t)

.

Hence

(9)

∫
dt

|y0(t)|2 =

∫ 1

|λ|2w2
1(t)

1 +

(
w2(t)

|λ|2w1(t)

)2dt ≤

≤ 1

m

∫
(

w2(t)

|λ|2w1(t)

)′

1 +

(
w2(t)

|λ|2w1(t)

)2dt =
1

m
arctg

w2(t)

|λ|2w1(t)

and we have the following result

Theorem 1.Let x(t) : [a,∞) → C, a > 0, an integrable function and

w1(t), w2(t) : [a,∞) → (0,∞) two continuously differentiable functions

with w′
2(t)w1(t)− w2(t)w

′
1(t) ≥ m > 0, lim

t→∞
w2(t)

w1(t)
= ∞.

Then

(10)

∣∣∣∣∣∣

∞∫

a

x(t)dx

∣∣∣∣∣∣

4

≤ 4

(
π

2m
− 1

m
arctg

w2(a)

c · w1(a)

)2

·

·
∞∫

a

w2
1(t)|x(t)|2dt ·

∞∫

a

w2
2(t)|x(t)|2dt

where

c = c(w1, w2) =

√√√√√√√√√√√

∞∫

a

w2
2(t)|x(t)|2dt

∞∫

a

w2
1(t)|x(t)|2dt
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and

∞∫

a

w2
1(t)|x(t)|2dt > 0.

Proof. Of (8) and (9) we obtain

∣∣∣∣∣∣

∞∫

a

x(t)dt

∣∣∣∣∣∣

4

≤ 4

(
π

2m
− 1

m
arctg

w2(a)

|λ|2w1(a)

)2

·

·
∞∫

a

w2
1(t)|x(t)|2dt ·

∞∫

a

w2
2(t)|x(t)|2dt

where

|λ|2 =

√√√√√√√√√√√

∞∫

a

w2
2(t)|x(t)|2dt

∞∫

a

w2
1(t)|x(t)|2dt

in conformity with (3).

Remark 1. When w1(t) = 1, w2(t) = t then the inequality (10) reduces to

(11)

∣∣∣∣∣∣

∞∫

a

x(t)dt

∣∣∣∣∣∣

4

≤ 4

(
π

2
− arctg

a

c(1, t)

)2

·
∞∫

a

|x(t)|2dt ·
∞∫

a

t2|x(t)|2dt.

When a → 0, inequality (11) reduces to the well known Carlson′s integral

inequality

(12)

∣∣∣∣∣∣

∞∫

0

x(t)dt

∣∣∣∣∣∣

4

≤ π2

∞∫

0

|x(t)|2dt ·
∞∫

0

t2|x(t)|2dt

(see [7]).
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Hence (10) and (11) are an improvement of (12).

2. We consider now the complex algebra of square matrices with com-

plex elements X = Mn(C). If A is a n× n matrix, we write tr A to denote

the trace of A.

If

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

an1 an2 ... ann




, aij ∈ C

we denote

A∗ =




a11 a21 ... an1

a12 a22 ... an2

... ... ... ...

a1n a2n ... ann




.

Let F be a complex functional defined by

F (x, y) = tr(y∗x) , F : X ×X → C

which verify i), ii), iii), evidently.

Using (6) we get

(13) |tr(z∗y0x)|4 ≤ 4tr2(z∗z) · tr(x∗w∗
1w1x) · tr(x∗w∗

2w2x)

where x, z, w1, w2 ∈ X and y0 = λw1 +
1

λ
w2, y0 ∈ X, with λ of (3), (4), (5).

If y∗0y0 = In then choosing in (13) z = y0 we obtain

(14) |trx|4 ≤ 4tr2(y∗0y0) · tr(x∗w∗
1w1x) · tr(x∗w∗

2w2x)

and we have the next
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Theorem 2. Let x,w1, w2 be some matrices of Mn(C). If

(
λw1 +

1

λ
w2

)∗ (
λw1 +

1

λ
w2

)
= In

with λ complex number which verify

(15) |λ|2 =

√
tr(x∗w∗

2w2x)

tr(x∗w∗
1w1x)

(16) Re

(
λ

λ
· tr(x∗w∗

2w1x)

)
= 0

(17) (Re(λ))2 ≥ (Im(λ))2,

then we have the following inequality of Carlson′s type

(18) |tr x|4 ≤ 4n2 · tr(x∗w∗
1w1x) · tr(x∗w∗

2w2x).

Proof. Using the inequality (14) and (3), (4), (5) we get (15), evidently.

Remark 1. For w1 = w2 =
1

2p
w, where p = Re(λ) and w∗w = In, we obtain

(
λw1 +

1

λ
w2

)∗ (
λw1 +

1

λ
w2

)
=

1

4p2

(λ2 + 1)(λ
2
+ 1)

λλ
w∗w =

=
1

4p2

(λ2 + 1)(λ
2
+ 1)

λλ
In.

Since (15), (16), (17) we have |λ|2 = 1 and (Re(λ))2 = (In(λ))2. Hence

|λ|2 = 2p2 = 1 and

(
λw1 +

1

λ
w2

)∗ (
λw1 +

1

λ
w2

)
= In.
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Therefore from (18) it follows that

|trx|4 ≤ n2

4p4
tr2(x∗x).

This implies

(19) |trx|2 ≤ n · tr(x∗x).

Remark 2.We observe the fact that from (19) we get the well known in-

equality

|a1 + a2 + ... + an|2 ≤ n(|a1|2 + |a2|2 + ... + |an|2)

for ai ∈ C, i = 1, 2.
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