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On a class of multivalent functions defined

by Salagean operator
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Abstract

The present paper investigates new subclasses of multivalent

functions involving Salagean operator. Coefficient inequalities and

other interesting properties of these classes are studied.

2000 Mathematical Subject Classification: Primary 30C45

Keywords : Multivalent functions, Salagean operator, Coefficient

Inequalities, Extreme Points, Integral Means.

1 Introduction and definitions

Let A denote the class of functions f(z) of the form

(1) f (z) = z +
∞∑

j=2

ajz
j

154
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which are analytic in the open disc U = {z : |z| < 1}.
For f(z) ∈ A, Salagean [1] introduced the following operator:

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z)) (n ∈ N = 1, 2, 3, ...).

We note that,

Dnf (z) = z +
∞∑

j=2

jnajz
j (n ∈ N0 = N ∪ {0}).

Let Ap denote the class of functions f(z) of the form

(2) f (z) = zp +
∞∑

j=p+1

ajz
j (p ≥ 1)

which are analytic and p-valent in the open disc U. We can write the

following equalities for the functions f(z) ∈ Ap :

D0f(z) = f(z)

D1f(z) = Df(z) =
z

p
f ′(z) = zp +

∞∑
j=p+1

(
j

p

)
ajz

j

...
...

Dnf(z) = D(Dn−1f(z)) = zp +
∞∑

j=p+1

(
j

p

)n

ajz
j (n ∈ N0 = N ∪ {0}).

Let Np(m, n, α, β) denote the subclass of Ap consisting of functions f(z)

which satisfies the inequality

Re

{
Dmf (z)

Dnf (z)

}
> β

∣∣∣∣
Dmf (z)

Dnf (z)
− 1

∣∣∣∣ + α.



156 Sevtap Sümer Eker and Bilal Şeker

for some 0 ≤ α < 1, β ≥ 0, m ∈ N, n ∈ N0 and all z ∈ U.

Special cases of our classes are following:

(i)N1(m,n, α, β) = Nm,n(α, β) which was studied by Eker and Owa [5].

(ii)N1(1, 0, α, β) = SD(α, β) which was studied by Shams at all [3].

(iii) N1(1, 0, α, 0) = S∗(α) and N1(2, 1, α, 0) = K(α) which was studied

by Silverman [2].

(iv) N1(m,n, α, 0) = Km,n(α) which was studied by Eker and Owa [4].

2 Coefficient inequalities for classes

Np(m,n, α, β)

Theorem 1. If f(z) ∈ Ap satisfies

(3)
∞∑

j=2

Ψp(m,n, j, α, β) |aj| ≤ 2(1− α)

where

(4) Ψp(m, n, j, α, β) =
∣∣∣∣(1 + α)

(
j

p

)n

−
(

j

p

)m∣∣∣∣ +
(

(1− α)
(

j

p

)n

+
(

j

p

)m)

+2β

∣∣∣∣
(

j

p

)m

−
(

j

p

)n∣∣∣∣

for some α(0 ≤ α < 1), β ≥ 0, m ∈ N and n ∈ N0 then f(z) ∈ Np(m,n, α, β).

Proof. Suppose that (3) is true for α(0 ≤ α < 1), β ≥ 0, m ∈ N , n ∈ N0.

Using the fact that Rew > α if and only if |1 − α + w| > |1 + α − w|, it

suffices to show that
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(5)
∣∣(1− α)Dnf(z) + Dmf(z)− βeiθ |Dmf(z)−Dnf(z)|

∣∣

−
∣∣(1 + α)Dnf(z)−Dmf(z) + βeiθ |Dmf(z)−Dnf(z)|

∣∣ > 0

Substituting for Dnf(z) and Dmf(z) in (5) yields,
∣∣(1− α)Dnf(z) + Dmf(z)− βeiθ |Dmf(z)−Dnf(z)|

∣∣
−

∣∣(1 + α)Dnf(z)−Dmf(z) + βeiθ |Dmf(z)−Dnf(z)|
∣∣

=

∣∣∣∣∣(2−α)zp+
∞∑

j=p+1

[
(1−α)

(
j

p

)n

+

(
j

p

)m]
ajz

j−βeiθ

∣∣∣∣∣
∞∑

j=p+1

[(
j

p

)m

−
(

j

p

)n]
ajz

j

∣∣∣∣∣

∣∣∣∣∣

−
∣∣∣∣∣αzp+

∞∑
j=p+1

[
(1+α)

(
j

p

)n

−
(

j

p

)m]
ajz

j+βeiθ

∣∣∣∣∣
∞∑

j=p+1

[(
j

p

)m

−
(

j

p

)n]
ajz

j

∣∣∣∣∣

∣∣∣∣∣

≥(2−α)|z|p−
∞∑

j=p+1

∣∣∣∣(1−α)

(
j

p

)n

+

(
j

p

)m∣∣∣∣|aj| |z|j−β
∣∣eiθ

∣∣
∞∑

j=p+1

∣∣∣∣
(

j

p

)m

−
(

j

p

)n∣∣∣∣ |aj| |z|j

−α|z|p−
∞∑

j=p+1

∣∣∣∣(1+α)

(
j

p

)n

−
(

j

p

)m∣∣∣∣ |aj| |z|j−β
∣∣eiθ

∣∣
∞∑

j=p+1

∣∣∣∣
(

j

p

)m

−
(

j

p

)n∣∣∣∣ |aj| |z|j

≥ 2(1−α)−
∞∑

j=p+1

[∣∣∣∣(1+α)
(

j

p

)n

−
(

j

p

)m∣∣∣∣+
(

(1−α)
(

j

p

)n

+
(

j

p

)m)
+2β

∣∣∣∣
(

j

p

)m

−
(

j

p

)n∣∣∣∣
]
|aj |

≥ 0

Example 1.The function f(z) given by

f(z) = zp +
∞∑

j=p+1

2(p + 1 + δ)(1− α)εj

(j + δ)(j + 1 + δ)Ψp(m,n, j, α, β)
zj

belongs to the class Np(m,n, α, β) for δ > −p−1, 0 ≤ α < 1, β ≥ 0, εj ∈ C
and |εj| = 1.
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3 Relation for Ñp(m,n, α, β)

In view of Theorem 1, we now introduce the subclass Ñp(m,n, α, β) which

consist of functions f(z) ∈ Ap whose Taylor-Maclaurin coefficients satisfy

the inequality (3). By the coefficient inequality for the class Ñp(m,n, α, β)

we see,

Theorem 2. If f(z) ∈ Ap, then

Ñp(m,n, α, β2) ⊂ Ñp(m,n, α, β1)

for some β1 and β2, 0 ≤ β1 ≤ β2.

Proof. For 0 ≤ β1 ≤ β2 we obtain

∞∑
j=p+1

Ψp(m,n, j, α, β1) |aj| ≤
∞∑

j=p+1

Ψp(m,n, j, α, β2) |aj| .

Therefore, if f(z) ∈ Ñp(m,n, α, β2), then f(z) ∈ Ñp(m,n, α, β1). Hence we

get the required result.

4 Extreme points

The determination of the extreme points of a family F of univalent functions

enables us to solve many extremal problems for F .

Theorem 3. Let fp(z) = zp and

fj(z) = zp +
2(1− α)εj

Ψp(m,n, j, α, β)
zj (j = p + 1, p + 2, ... ; |εj| = 1).
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Then f ∈ Ñp(m,n, α, β) if and only if it can be expressed in the form

f(z) = λpfp(z) +
∞∑

j=p+1

λjfj(z),

where λj > 0 and λp = 1−
∞∑

j=p+1

λj.

Proof. Suppose that

f(z) = λpfp(z) +
∞∑

j=p+1

λjfj(z) = zp +
∞∑

j=p+1

λj
2(1− α)εj

Ψp(m,n, j, α, β)
zj

Then

∞∑
j=p+1

Ψp(m,n, j, α, β)

∣∣∣∣
2(1− α)εj

Ψp(m,n, j, α, β)
λj

∣∣∣∣ =
∞∑

j=p+1

2(1−α)λj

= 2(1− α)
∞∑

j=p+1

λj

= 2(1− α)(1− λp)

≤ 2(1− α)

Thus, f(z) ∈ Ñp(m,n, α, β) from the definition of the class of Ñp(m,n, α, β).

Conversely, suppose that f(z) ∈ Ñp(m,n, α, β). Since

|aj| ≤ 2(1− α)

Ψp(m,n, j, α, β)
(j = p + 1, p + 2, ...),

we may set

λj =
Ψp(m, n, j, α, β)

2(1− α)εj

aj (|εj| = 1)

and

λp = 1−
∞∑

j=p+1

λj.
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Then,

f(z) = λpfp(z) +
∞∑

j=p+1

λjfj(z).

This completes the proof of theorem.

Corollary 1. The extreme points of Ñp(m,n, α, β) are the functions

fp(z) = zp and

(6) fj(z) = zp +
2(1− α)εj

Ψp(m,n, j, α, β)
zj (j = p + 1, p + 2, ... ; |εj| = 1).

5 Integral means inequalities

Definition 1. (Subordination Principle) For two functions f and g,

analytic in U, we say that the function f(z) is subordinate to g(z) in U,

and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z), analytic in U with

w(0) = 0 and |w(z)| < 1 ,

such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U, the above subordination is

equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

In 1925, Littlewood [6] proved the following subordination theorem. (See

also Duren [7])
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Theorem 4. (Littlewood [6]) If f and g are analytic in U with f ≺ g,

then for µ > 0 and z = reiθ(0 < r < 1)

∫ 2π

0

|f(z)|µ dθ 5
∫ 2π

0

|g (z)|µ dθ.

We will make use of Theorem 5 to prove

Theorem 5. Let f(z) ∈ Ñp(m,n, α, β) and supposed thatfj(z) is defined by

(6). If there exists an analytic function w(z) given by

{w(z)}j−p =
Ψp(m,n, j, α, β)

2(1− α)εj

∞∑
j=p+1

ajz
j−p,

then for z = reiθ and 0 < r < 1,

∫ 2π

0

∣∣f(reiθ)
∣∣µ dθ ≤

∫ 2π

0

∣∣fj(re
iθ)

∣∣µ dθ (µ > 0).

Proof We must show that

∫ 2π

0

∣∣∣∣∣1 +
∞∑

j=p+1

ajz
j−p

∣∣∣∣∣

µ

dθ ≤
∫ 2π

0

∣∣∣∣1 +
2(1− α)εj

Ψp(m,n, j, α, β)
zj−p

∣∣∣∣
µ

dθ.

By applying Littlewood’s subordination theorem, it would suffice to show

that

1 +
∞∑

j=p+1

ajz
j−p ≺ 1 +

2(1− α)εj

Ψp(m,n, j, α, β)
zj−p.

By setting

1 +
∞∑

j=p+1

ajz
j−p = 1 +

2(1− α)εj

Ψp(m,n, j, α, β)
{w(z)}j−p

we find that

{w(z)}j−p =
Ψp(m,n, j, α, β)

2(1− α)εj

∞∑
j=p+1

ajz
j−p
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which readily yields w(0) = 0.

Furthermore, using (3), we obtain

|{w(z)}|j−p =

∣∣∣∣∣
Ψp(m, n, j, α, β)

2(1− α)εj

∞∑
j=p+1

ajz
j−p

∣∣∣∣∣

≤ Ψp(m,n, j, α, β)

2(1− α) |εj|
∞∑

j=p+1

|aj| |z|j−p

≤ |z| < 1.

This completes the proof of the theorem.
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