On a class of multivalent functions defined by Salagean operator

Sevtap Sümer Eker and Bilal Şeker

Abstract

The present paper investigates new subclasses of multivalent functions involving Salagean operator. Coefficient inequalities and other interesting properties of these classes are studied.

2000 Mathematical Subject Classification: Primary 30C45

Keywords : Multivalent functions, Salagean operator, Coefficient Inequalities, Extreme Points, Integral Means.

1 Introduction and definitions

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \tag{1}
\end{equation*}
$$

which are analytic in the open disc $\mathbb{U}=\{z:|z|<1\}$.
For $f(z) \in \mathcal{A}$, Salagean [1] introduced the following operator:

$$
\begin{aligned}
& D^{0} f(z)=f(z) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
& D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in \mathbb{N}=1,2,3, \ldots)
\end{aligned}
$$

We note that,

$$
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

Let \mathcal{A}_{p} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{j=p+1}^{\infty} a_{j} z^{j} \quad(p \geq 1) \tag{2}
\end{equation*}
$$

which are analytic and p-valent in the open disc \mathbb{U}. We can write the following equalities for the functions $f(z) \in \mathcal{A}_{p}$:

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =D f(z)=\frac{z}{p} f^{\prime}(z)=z^{p}+\sum_{j=p+1}^{\infty}\left(\frac{j}{p}\right) a_{j} z^{j} \\
\vdots & \vdots \\
D^{n} f(z) & =D\left(D^{n-1} f(z)\right)=z^{p}+\sum_{j=p+1}^{\infty}\left(\frac{j}{p}\right)^{n} a_{j} z^{j} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) .
\end{aligned}
$$

Let $\mathcal{N}_{p}(m, n, \alpha, \beta)$ denote the subclass of \mathcal{A}_{p} consisting of functions $f(z)$ which satisfies the inequality

$$
\operatorname{Re}\left\{\frac{D^{m} f(z)}{D^{n} f(z)}\right\}>\beta\left|\frac{D^{m} f(z)}{D^{n} f(z)}-1\right|+\alpha
$$

for some $0 \leq \alpha<1, \beta \geq 0, m \in \mathbb{N}, n \in \mathbb{N}_{0}$ and all $z \in \mathbb{U}$.
Special cases of our classes are following:
(i) $\mathcal{N}_{1}(m, n, \alpha, \beta)=\mathcal{N}_{m, n}(\alpha, \beta)$ which was studied by Eker and Owa [5].
(ii) $\mathcal{N}_{1}(1,0, \alpha, \beta)=\mathcal{S D}(\alpha, \beta)$ which was studied by Shams at all [3].
(iii) $\mathcal{N}_{1}(1,0, \alpha, 0)=\mathcal{S}^{*}(\alpha)$ and $\mathcal{N}_{1}(2,1, \alpha, 0)=\mathcal{K}(\alpha)$ which was studied by Silverman [2].
(iv) $\mathcal{N}_{1}(m, n, \alpha, 0)=\mathcal{K}_{m, n}(\alpha)$ which was studied by Eker and Owa [4].

2 Coefficient inequalities for classes

$$
\mathcal{N}_{p}(m, n, \alpha, \beta)
$$

Theorem 1. If $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\begin{equation*}
\sum_{j=2}^{\infty} \Psi_{p}(m, n, j, \alpha, \beta)\left|a_{j}\right| \leq 2(1-\alpha) \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
\Psi_{p}(m, n, j, \alpha, \beta)=\left|(1+\alpha)\left(\frac{j}{p}\right)^{n}-\left(\frac{j}{p}\right)^{m}\right|+\left((1-\alpha)\left(\frac{j}{p}\right)^{n}+\left(\frac{j}{p}\right)^{m}\right) \tag{4}\\
+2 \beta\left|\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right|
\end{gather*}
$$

for some $\alpha(0 \leq \alpha<1), \beta \geq 0, m \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$ then $f(z) \in \mathcal{N}_{p}(m, n, \alpha, \beta)$.

Proof. Suppose that (3) is true for $\alpha(0 \leq \alpha<1), \beta \geq 0, m \in \mathbb{N}, n \in \mathbb{N}_{0}$. Using the fact that Rew $>\alpha$ if and only if $|1-\alpha+w|>|1+\alpha-w|$, it suffices to show that

$$
\begin{gather*}
\left|(1-\alpha) D^{n} f(z)+D^{m} f(z)-\beta e^{i \theta}\right| D^{m} f(z)-D^{n} f(z)| | \tag{5}\\
-\left|(1+\alpha) D^{n} f(z)-D^{m} f(z)+\beta e^{i \theta}\right| D^{m} f(z)-D^{n} f(z)| |>0
\end{gather*}
$$

Substituting for $D^{n} f(z)$ and $D^{m} f(z)$ in (5) yields,

$$
\begin{aligned}
& \left|(1-\alpha) D^{n} f(z)+D^{m} f(z)-\beta e^{i \theta}\right| D^{m} f(z)-D^{n} f(z)| | \\
& -\left|(1+\alpha) D^{n} f(z)-D^{m} f(z)+\beta e^{i \theta}\right| D^{m} f(z)-D^{n} f(z)| | \\
& =\left|(2-\alpha) z^{p}+\sum_{j=p+1}^{\infty}\left[(1-\alpha)\left(\frac{j}{p}\right)^{n}+\left(\frac{j}{p}\right)^{m}\right] a_{j} z^{j}-\beta e^{i \theta}\right| \sum_{j=p+1}^{\infty}\left[\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right] a_{j} z^{j}| | \\
& -\left|\alpha z^{p}+\sum_{j=p+1}^{\infty}\left[(1+\alpha)\left(\frac{j}{p}\right)^{n}-\left(\frac{j}{p}\right)^{m}\right] a_{j} z^{j}+\beta e^{i \theta}\right| \sum_{j=p+1}^{\infty}\left[\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right] a_{j} z^{j}| | \\
& \geq(2-\alpha)|z|^{p}-\sum_{j=p+1}^{\infty}\left|(1-\alpha)\left(\frac{j}{p}\right)^{n}+\left(\frac{j}{p}\right)^{m}\right|\left|a_{j}\right||z|^{j}-\beta\left|e^{i \theta}\right| \sum_{j=p+1}^{\infty}\left|\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right|\left|a_{j}\right||z|^{j} \\
& -\alpha|z|^{p}-\sum_{j=p+1}^{\infty}\left|(1+\alpha)\left(\frac{j}{p}\right)^{n}-\left(\frac{j}{p}\right)^{m}\right|\left|a_{j}\right||z|^{j}-\beta\left|e^{i \theta}\right| \sum_{j=p+1}^{\infty}\left|\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right|\left|a_{j}\right||z|^{j} \\
& \geq 2(1-\alpha)-\sum_{j=p+1}^{\infty}\left[\left|(1+\alpha)\left(\frac{j}{p}\right)^{n}-\left(\frac{j}{p}\right)^{m}\right|+\left((1-\alpha)\left(\frac{j}{p}\right)^{n}+\left(\frac{j}{p}\right)^{m}\right)+2 \beta\left|\left(\frac{j}{p}\right)^{m}-\left(\frac{j}{p}\right)^{n}\right|\right]\left|a_{j}\right| \\
& \geq 0
\end{aligned}
$$

Example 1. The function $f(z)$ given by

$$
f(z)=z^{p}+\sum_{j=p+1}^{\infty} \frac{2(p+1+\delta)(1-\alpha) \epsilon_{j}}{(j+\delta)(j+1+\delta) \Psi_{p}(m, n, j, \alpha, \beta)} z^{j}
$$

belongs to the class $\mathcal{N}_{p}(m, n, \alpha, \beta)$ for $\delta>-p-1,0 \leq \alpha<1, \beta \geq 0, \epsilon_{j} \in \mathbb{C}$ and $\left|\epsilon_{j}\right|=1$.

$3 \quad$ Relation for $\widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$

In view of Theorem 1 , we now introduce the subclass $\widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ which consist of functions $f(z) \in \mathcal{A}_{p}$ whose Taylor-Maclaurin coefficients satisfy the inequality (3). By the coefficient inequality for the class $\widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ we see,

Theorem 2. If $f(z) \in \mathcal{A}_{p}$, then

$$
\tilde{\mathcal{N}}_{p}\left(m, n, \alpha, \beta_{2}\right) \subset \widetilde{\mathcal{N}}_{p}\left(m, n, \alpha, \beta_{1}\right)
$$

for some β_{1} and $\beta_{2}, 0 \leq \beta_{1} \leq \beta_{2}$.

Proof. For $0 \leq \beta_{1} \leq \beta_{2}$ we obtain

$$
\sum_{j=p+1}^{\infty} \Psi_{p}\left(m, n, j, \alpha, \beta_{1}\right)\left|a_{j}\right| \leq \sum_{j=p+1}^{\infty} \Psi_{p}\left(m, n, j, \alpha, \beta_{2}\right)\left|a_{j}\right|
$$

Therefore, if $f(z) \in \widetilde{\mathcal{N}}_{p}\left(m, n, \alpha, \beta_{2}\right)$, then $f(z) \in \widetilde{\mathcal{N}}_{p}\left(m, n, \alpha, \beta_{1}\right)$. Hence we get the required result.

4 Extreme points

The determination of the extreme points of a family F of univalent functions enables us to solve many extremal problems for F.

Theorem 3. Let $f_{p}(z)=z^{p}$ and

$$
f_{j}(z)=z^{p}+\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} z^{j} \quad\left(j=p+1, p+2, \ldots ;\left|\epsilon_{j}\right|=1\right)
$$

Then $f \in \widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ if and only if it can be expressed in the form

$$
f(z)=\lambda_{p} f_{p}(z)+\sum_{j=p+1}^{\infty} \lambda_{j} f_{j}(z),
$$

where $\lambda_{j}>0$ and $\lambda_{p}=1-\sum_{j=p+1}^{\infty} \lambda_{j}$.
Proof. Suppose that

$$
f(z)=\lambda_{p} f_{p}(z)+\sum_{j=p+1}^{\infty} \lambda_{j} f_{j}(z)=z^{p}+\sum_{j=p+1}^{\infty} \lambda_{j} \frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} z^{j}
$$

Then

$$
\begin{gathered}
\sum_{j=p+1}^{\infty} \Psi_{p}(m, n, j, \alpha, \beta)\left|\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} \lambda_{j}\right|=\sum_{j=p+1}^{\infty} 2(1-\alpha) \lambda_{j} \\
=2(1-\alpha) \sum_{j=p+1}^{\infty} \lambda_{j} \\
=2(1-\alpha)\left(1-\lambda_{p}\right) \\
\leq 2(1-\alpha)
\end{gathered}
$$

Thus, $f(z) \in \widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ from the definition of the class of $\widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$.
Conversely, suppose that $f(z) \in \widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$. Since

$$
\left|a_{j}\right| \leq \frac{2(1-\alpha)}{\Psi_{p}(m, n, j, \alpha, \beta)} \quad(j=p+1, p+2, \ldots)
$$

we may set

$$
\lambda_{j}=\frac{\Psi_{p}(m, n, j, \alpha, \beta)}{2(1-\alpha) \epsilon_{j}} a_{j} \quad\left(\left|\epsilon_{j}\right|=1\right)
$$

and

$$
\lambda_{p}=1-\sum_{j=p+1}^{\infty} \lambda_{j} .
$$

Then,

$$
f(z)=\lambda_{p} f_{p}(z)+\sum_{j=p+1}^{\infty} \lambda_{j} f_{j}(z) .
$$

This completes the proof of theorem.
Corollary 1. The extreme points of $\widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ are the functions $f_{p}(z)=z^{p}$ and

$$
\begin{equation*}
f_{j}(z)=z^{p}+\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} z^{j} \quad\left(j=p+1, p+2, \ldots ;\left|\epsilon_{j}\right|=1\right) \tag{6}
\end{equation*}
$$

5 Integral means inequalities

Definition 1. (Subordination Principle) For two functions f and g, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U} with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

In 1925, Littlewood [6] proved the following subordination theorem. (See also Duren [7])

Theorem 4. (Littlewood [6]) If f and g are analytic in \mathbb{U} with $f \prec g$, then for $\mu>0$ and $z=r e^{i \theta}(0<r<1)$

$$
\int_{0}^{2 \pi}|f(z)|^{\mu} d \theta \leqq \int_{0}^{2 \pi}|g(z)|^{\mu} d \theta
$$

We will make use of Theorem 5 to prove

Theorem 5. Let $f(z) \in \widetilde{\mathcal{N}}_{p}(m, n, \alpha, \beta)$ and supposed that $f_{j}(z)$ is defined by (6). If there exists an analytic function $w(z)$ given by

$$
\{w(z)\}^{j-p}=\frac{\Psi_{p}(m, n, j, \alpha, \beta)}{2(1-\alpha) \epsilon_{j}} \sum_{j=p+1}^{\infty} a_{j} z^{j-p}
$$

then for $z=r e^{i \theta}$ and $0<r<1$,

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|f_{j}\left(r e^{i \theta}\right)\right|^{\mu} d \theta \quad(\mu>0)
$$

Proof We must show that

$$
\int_{0}^{2 \pi}\left|1+\sum_{j=p+1}^{\infty} a_{j} z^{j-p}\right|^{\mu} d \theta \leq \int_{0}^{2 \pi}\left|1+\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} z^{j-p}\right|^{\mu} d \theta
$$

By applying Littlewood's subordination theorem, it would suffice to show that

$$
1+\sum_{j=p+1}^{\infty} a_{j} z^{j-p} \prec 1+\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)} z^{j-p}
$$

By setting

$$
1+\sum_{j=p+1}^{\infty} a_{j} z^{j-p}=1+\frac{2(1-\alpha) \epsilon_{j}}{\Psi_{p}(m, n, j, \alpha, \beta)}\{w(z)\}^{j-p}
$$

we find that

$$
\{w(z)\}^{j-p}=\frac{\Psi_{p}(m, n, j, \alpha, \beta)}{2(1-\alpha) \epsilon_{j}} \sum_{j=p+1}^{\infty} a_{j} z^{j-p}
$$

which readily yields $w(0)=0$.
Furthermore, using (3), we obtain

$$
\begin{aligned}
|\{w(z)\}|^{j-p} & =\left|\frac{\Psi_{p}(m, n, j, \alpha, \beta)}{2(1-\alpha) \epsilon_{j}} \sum_{j=p+1}^{\infty} a_{j} z^{j-p}\right| \\
& \leq \frac{\Psi_{p}(m, n, j, \alpha, \beta)}{2(1-\alpha)\left|\epsilon_{j}\right|} \sum_{j=p+1}^{\infty}\left|a_{j}\right||z|^{j-p} \\
& \leq|z|<1
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer-Verlag 1013,(1983), 362-372.
[2] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1) (1975), 109-116.
[3] S.Shams, S.R.Kulkarni, J.M.Jahangiri, Classes of uniformly starlike and convex functions, International Journal of Mathematics and Mathematical Sciences, Vol. 2004 (2004), Issue 55, 2959-2961.
[4] S.S.Eker, S.Owa, New applications of classes of analytic functions involving Salagean operator, International Symposium on Complex Function Theory and Applications, Brasov, Romania 1-5 September 2006
[5] S.S.Eker, S.Owa, Certain Classes Of Analytic Functions Involving Salagean Operator, J. Inequal. Pure Appl. Math. (in course of publication).
[6] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23(1925), 481-519.
[7] P. L. Duren, Univalent Functions, Springer-Verlag, New York ,1983.

Department of Mathematics
Faculty of Science and Letters
Dicle University
Diyarbakır, Turkey
Email address: sevtaps@dicle.edu.tr and bseker@dicle.edu.tr

