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Generalized Hypergeometric Functions and

Associated Families of k-Uniformly Convex

and k-Starlike Functions

H. M. Srivastava

Abstract

In this lecture, we aim at presenting a certain linear operator

which is defined by means of the Hadamard product (or convolu-

tion) with a generalized hypergeometric function and then investi-

gating its various mapping as well as inclusion properties involving

such subclasses of analytic and univalent functions as (for exam-

ple) k-uniformly convex functions and k-starlike functions. Relevant

connections of the definitions and results presented in this lecture

with those in several earlier and recent works on the subject are also

pointed out.
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k-uniformly convex functions, k-starlike functions, parabolic starlike func-

tions, mapping and inclusion properties, coefficient inequalities, fractional

calculus operators, Gauss summation theorem.

1. Introduction, Definitions and Preliminaries

As usual, we denote by A the class of functions f normalized by

(1) f (z) = z +
∞∑

n=2

an zn,

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1} .

We also denote by S the subclass of A consisting of functions which are also

univalent in U. Furthermore, we denote by k-UCV and k-ST two interesting

subclasses of S consisting, respectively, of functions which are k-uniformly

convex and k-starlike in U. We thus have

(2)

k-UCV :=

{
f ∈ S : R

(
1 +

zf ′′ (z)

f ′ (z)

)
> k

∣∣∣∣
zf ′′ (z)

f ′ (z)

∣∣∣∣ (z ∈ U; 0 5 k < ∞)

}

and

(3)

k-ST :=

{
f ∈ S : R

(
zf ′ (z)

f (z)

)
> k

∣∣∣∣
zf ′ (z)

f (z)
− 1

∣∣∣∣ (z ∈ U; 0 5 k < ∞)

}
.

The class k-UCV was introduced by Kanas and Wísniowska [12], where its

geometric definition and connections with the conic domains were consid-

ered. The class k-ST was investigated in [13]; in fact, it is related to the
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class k-UCV by means of the well-known Alexander equivalence between the

usual classes of convex and starlike functions (see also the work of Kanas

and Srivastava [11] for further developments involving each of the classes

k-UCV and k-ST ). In particular, when k = 1, we obtain

(4) 1-UCV ≡ UCV and 1-ST ≡ SP ,

where UCV and SP are the familiar classes of uniformly convex functions

and parabolic starlike functions in U, respectively (see, for details, Goodman

([9] and [10]), Ma and Minda [14], and Rønning [22]). In fact, by making

use of a certain fractional calculus operator, Srivastava and Mishra [27]

presented a systematic and unified study of the classes UCV and SP .

A function f ∈ A is said to be in the class Rτ (A,B) if it satisfies the

following inequality:

(5)

∣∣∣∣
f ′ (z)− 1

(A−B) τ −B [f ′ (z)− 1]

∣∣∣∣ < 1

(z ∈ U; τ ∈ C \ {0} ; − 1 5 B < A 5 1) .

The class Rτ (A,B) was introduced earlier by Dixit and Pal [2]. Two of the

many interesting subclasses of the class Rτ (A,B) are worthy of mention

here. First of all, by setting

τ = e−iη cos η
(
−π

2
< η <

π

2

)
, A = 1−2β (0 5 β < 1) , and B = −1,

the class Rτ (A,B) reduces essentially to the class Rη (β) studied recently

by Ponnusamy and Rønning [18], where

Rη (β) :=
{

f ∈ A : R
(
eiη

(
f ′ (z)− β

))
> 0

(
z ∈ U; − π

2
< η <

π

2
; 0 5 β < 1

)}
.
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Secondly, if we put

τ = 1, A = β, and B = −β (0 < β 5 1) ,

we obtain the class of functions f ∈ A satisfying the following inequality:

(6)

∣∣∣∣
f ′ (z)− 1

f ′ (z) + 1

∣∣∣∣ < β (z ∈ U; 0 < β 5 1) ,

which was studied by (among others) Padmanabhan [16] and Caplinger and

Causey [1].

Next we introduce the classes S∗λ and Cλ by (cf., e.g., [18] for the class

S∗λ)

(7) S∗λ :=

{
f ∈ A :

∣∣∣∣
zf ′ (z)

f (z)
− 1

∣∣∣∣ < λ (z ∈ U; λ > 0)

}

and

(8) Cλ :=

{
f ∈ A :

∣∣∣∣
zf ′′ (z)

f ′ (z)

∣∣∣∣ < λ (z ∈ U; λ > 0)

}
,

so that, obviously,

(9) f (z) ∈ Cλ ⇐⇒ zf ′ (z) ∈ S∗λ (λ > 0) ,

which is analogous to the aforementioned Alexander equivalence (see, for

details, the monograph by Duren [3]).

Finally, we recall a sufficiently adequate special case of a convolution op-

erator which was introduced earlier by Dziok and Srivastava [4] by means of

the Hadamard product (or convolution) involving generalized hypergeomet-

ric functions. Indeed, by employing the Pochhammer symbol (or the shifted
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factorial, since (1)n = n!) (λ)n given, in terms of the Gamma functions, by

(10)

(λ)n :=
Γ (λ + n)

Γ (λ)
=





1 (n = 0)

λ (λ + 1) · · · (λ + n− 1) (n ∈ N := {1, 2, 3, . . .}) ,

a generalized hypergeometric function pFq with p numerator parameters

αj ∈ C (j = 1, . . . , p) and q denominator parameters

βj ∈ C \ Z−0
(
Z−0 := {0,−1,−2, . . .} ; j = 1, . . . , q

)

is defined by (cf., e.g., [19, p. 19 et seq.])

pFq (z) = pFq (α1, . . . , αp; β1, . . . , βq; z)

:=
∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!
(11)

(p, q ∈ N0 := N ∪ {0} ; p < q + 1 and z ∈ C;

p = q + 1 and z ∈ U; p = q + 1, z ∈ ∂U, and R (ω) > 0) ,

where an empty product is to be interpreted as 1 and

(12) ω :=

q∑
j=1

βj −
p∑

j=1

αj.

We thus obtain (see [4, p. 3], [5] and [6]; see also the more recent works [17]

and [30] dealing extensively with the Dziok-Srivastava operator)

(13)
(
I

α1,...,αp

β1,...,βq
f
)

(z) := z pFq (α1, . . . , αp; β1, . . . , βq; z) ∗ f (z)
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(f ∈ A; p 5 q + 1; z ∈ U) ,

so that, for a function f of the form (1), we have

(14)
(
I

α1,...,αp

β1,...,βq
f
)

(z) = z +
∞∑

n=2

Γn an zn,

where, for convenience,

(15) Γn :=
(α1)n−1 · · · (αp)n−1

(β1)n−1 · · · (βq)n−1

· 1

(n− 1)!
(n ∈ N \ {1}) .

Just as it was observed by Dziok and Srivastava [4, pp. 3 and 4], the

convolution operator defined by (13) includes, as its further special cases,

various other linear operators which were considered in many earlier works.

In particular, for p = 2 and q = 1, we obtain the linear operator F (α, β, γ)

defined by

(F (α, β, γ) f
)
(z) : = z 2F1 (α, β, γ; z) ∗ f (z)

=
(
Iα,β
γ f

)
(z) ,(16)

which was investigated by Hohlov [10].

It may be of interest to remark here that many univalence, starlikeness,

and convexity properties of the hypergeometric functions:

z 2F1 (α, β; γ; z)

and

z pFq (α1, . . . , αp; β1, . . . , βq; z) (p 5 q + 1)

were investigated in a number of earlier works (cf., e.g., [15], [18], [19], and

[23]; see also [28] and [29]).
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Our main objective in this lecture is to demonstrate the usefulness of the

linear operator defined by (13) in order to establish a number of connections

between the classes k-UCV , k-ST , Rτ (A,B) , and various other subclasses

of A including (for example) the classes S∗λ and Cλ defined by (7) and (8),

respectively. The various results presented here are based essentially upon

the recent investigation by Gangadharan et al. [7]. For several further

closely-related results dealing with many of the above-defined as well as

other interesting function classes, we may cite the works by (for example)

Ramachandran et al. ([20] and [21]) and Srivastava et al. ([25] and [28]).

Each of the following lemmas will be required in the investigation pre-

sented here.

Lemma 1 (Dixit and Pal [2]). If f ∈ Rτ (A,B) is of the form (1), then

(17) |an| 5 (A−B)
|τ |
n

(n ∈ N \ {1}) .

The estimate in (17) is sharp for the function:

(18) f (z) =

∫ 1

0

(
1 + (A−B)

τtn−1

1 + Btn−1

)
dt (z ∈ U; n ∈ N \ {1}) .

Lemma 2 (Dixit and Pal [2]). Let f ∈ A be of the form (1). If

(19)
∞∑

n=2

(1 + |B|) n |an| 5 (A−B) |τ |

(−1 5 B < A 5 1; τ ∈ C \ {0}) ,

then f ∈ Rτ (A,B) . The result is sharp for the function:

(20) f (z) = z +
(A−B) τ

(1 + |B|) n
zn (z ∈ U; n ∈ N \ {1}) .
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Lemma 3 (Kanas and Wísniowska [12]). Let f ∈ A be of the form (1).

If, for some k (0 5 k < ∞), the following inequality :

(21)
∞∑

n=2

n (n− 1) |an| 5 1

k + 2

holds true, then f ∈ k-UCV . The number 1/ (k + 2) cannot be increased.

Lemma 4 (Kanas and Wísniowska [13]). Let f ∈ A be of the form (1).

If, for some k (0 5 k < ∞), the following inequality :

(22)
∞∑

n=2

{n + (n− 1) k} |an| < 1

holds true, then f ∈ k-ST .

2. Mapping and Inclusion Properties Involving the Function

Classes k - UCV and k - ST

In this section, we first state and prove a mapping and inclusion property

of the convolution operator defined by (13) involving the function class k-

UCV .

Theorem 1. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> 1 +

p∑
j=1

|αj| .

If f ∈ Rτ (A,B) and, for some k (0 5 k < ∞), the following hypergeometric

inequality :

pFq (|α1|+ 1, . . . , |αp|+ 1; R (β1) + 1, . . . , R (βq) + 1; 1)

5 R (β1) · · ·R (βq)

(k + 2) (A−B) |τ | · |α1 · · ·αp| (0 5 k < ∞)(23)
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holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-UCV .

Proof. At the outset, under the first two parametric constraints stated in

Theorem 1, it is easily seen from (15) and (10) that

|Γn| =
∣∣(α1)n−1

∣∣ · · ·
∣∣(αp)n−1

∣∣
∣∣(β1)n−1

∣∣ · · ·
∣∣(βq)n−1

∣∣ ·
1

(n− 1)!

5
(|α1|)n−1 · · · (|αp|)n−1

(R (β1))n−1 · · · (R (βq))n−1

· 1

(n− 1)!

=
1

n− 1
· |α1 · · ·αp|
R (β1) · · ·R (βq)

· (|α1|+ 1)n−2 · · · (|αp|+ 1)n−2

(R (β1) + 1)n−2 · · · (R (βq) + 1)n−2

· 1

(n− 2)!
(n ∈ N \ {1}) .

(24)

Thus, for f ∈ Rτ (A,B) of the form (1), by applying Lemma 1 in conjunc-

tion with (24), we have

∞∑
n=2

n (n− 1) |Γn| · |an|

5 (A−B) |τ | · |α1 · · ·αp|
R (β1) · · ·R (βq)

·
∞∑

n=2

(|α1|+ 1)n−2 · · · (|αp|+ 1)n−2

(R (β1) + 1)n−2 · · · (R (βq) + 1)n−2

· 1

(n− 2)!

=
(A−B) |τ | · |α1 · · ·αp|

R (β1) · · ·R (βq)

· pFq (|α1|+ 1, . . . , |αp|+ 1; R (β1) + 1, . . . , R (βq) + 1; 1) ,(25)

where the convergence of the pFq (1) series is guaranteed (when p = q + 1)

by the third parametric constraint stated in Theorem 1 by analogy with the

inequality (12).
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Finally, if we make use of the hypothesis (23) in (25), we find that

(26)
∞∑

n=2

n (n− 1) |Γn| · |an| 5 1

k + 2
(0 5 k < ∞) ,

which, in view of (14) and Lemma 3, immediately proves the mapping and

inclusion property asserted by Theorem 1.

Theorem 1 can be applied to deduce the corresponding mapping and

inclusion properties, involving the class k-UCV , for all those linear operators

(listed by Dziok and Srivastava [4, pp. 3 and 4]), which happen to be further

special cases of the convolution operator defined by (13). In particular, for

the Hohlov operator F (α, β, γ) defined by (16), by appealing to the Gauss

summation theorem [26, p. 9, Equation 1.2 (20)]:

(27) 2F1 (a, b; c; 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)

(
R (c− a− b) > 0; c ∈ C \ Z−0

)
,

Theorem 1 yields

Corollary 1. Let γ be a real number such that

γ > |α|+ |β|+ 1 (α, β ∈ C \ {0}) .

If f ∈ Rτ (A,B) and, for some k (0 5 k < ∞), the following inequality :

(28)
Γ (γ) Γ (γ − |α| − |β| − 1)

Γ (γ − |α|) Γ (γ − |β|) 5 1

(k + 2) (A−B) |τ | · |αβ| (0 5 k < ∞)

holds true, then

F (α, β, γ) f ∈ k-UCV .
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In a similar manner, by applying Lemma 1 and Lemma 4 (instead of

Lemma 3), we can prove the following mapping and inclusion property,

involving the class k-ST , for the convolution operator defined by (13).

Theorem 2. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
>

p∑
j=1

|αj| .

If f ∈ Rτ (A,B) and, for some k (0 5 k < ∞), the following hypergeometric

inequality :

(k + 1) pFq (|α1| , . . . , |αp| ; R (β1) , . . . , R (βq) ; 1)

− k p+1Fq+1 (|α1| , . . . , |αp| , 1; R (β1) , . . . , R (βq) , 2; 1)

< 1 + 2k +
1

(A−B) |τ | (0 5 k < ∞)(29)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-ST .

For p = 2 and q = 1, Theorem 2 readily yields

Corollary 2. Let γ be a real number such that

γ > |α|+ |β| (α, β ∈ C \ {0}) .

If f ∈ Rτ (A,B) and, for some k (0 5 k < ∞), the following hypergeometric
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inequality :

k 3F2 (|α| , |β| , 1; γ, 2; 1)

> (k + 1)
Γ (γ) Γ (γ − |α| − |β|)
Γ (γ − |α|) Γ (γ − |β|) − 2k − 1− 1

(A−B) |τ | (0 5 k < ∞)

(30)

holds true, then

F (α, β, γ) f ∈ k-ST .

Next, for a function f of the form (1) and belonging to the class k-UCV ,

the following coefficient inequalities hold true (cf. [12]):

(31) |an| 5
(P1)n−1

n!
(n ∈ N \ {1}) ,

where P1 = P1 (k) is the coefficient of z in the function:

(32) pk (z) = 1 +
∞∑

n=1

Pn (k) zn,

which is the extremal function for the class P (pk) related to the class k-UCV
by the range of the following expression:

1 +
zf ′′ (z)

f ′ (z)
(z ∈ U) .

Similarly, if f of the form (1) belongs to the class k-ST , then (cf. [13])

(33) |an| 5
(P1)n−1

(n− 1)!
(n ∈ N \ {1}) ,

where P1 = P1 (k) is given, as above, by (32).

Making use of the coefficient inequalities (31) and (33), in place of the

coefficient inequality (17) asserted by Lemma 1, we can establish each of
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the following results (Theorem 3 and Theorem 4 below) by appealing ap-

propriately to Lemma 3 and Lemma 4, respectively.

Theorem 3. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality :

p+1Fq+1 (|α1|+ 1, . . . , |αp|+ 1, P1 + 1; R (β1) + 1, . . . , R (βq) + 1, 2; 1)

5 R (β1) · · ·R (βq)

(k + 2) |α1 · · ·αp|P1

(0 5 k < ∞)

(34)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-UCV .

Theorem 4. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 +

p∑
j=1

|αj| ,
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where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

(k+1) |α1 · · ·αp|P1

R (β1) · · ·R (βq)
p+1Fq+1 (|α1|+1, . . . , |αp|+1, P1+1; R (β1)+1, . . . , R (βq)+1,2;1)

+ p+1Fq+1 (|α1| , . . . , |αp| , P1;R (β1) , . . . , R (βq) , 1; 1) < 2 (0 5 k < ∞)

(35)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-ST .

The following (seemingly interesting) variants of Theorem 3 and Theo-

rem 4 can also be proven similarly, and we omit the details involved.

Theorem 5. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 − 1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality :

(k+1) |α1 · · ·αp|P1

2R (β1) · · ·R (βq)
p+1Fq+1 (|α1|+1, . . . , |αp|+1, P1+1; R (β1)+1, . . . ,R (βq)+1,3;1)

+ p+1Fq+1 (|α1| , . . . , |αp| , P1; R (β1) , . . . ,R (βq) , 2; 1) < 2 (0 5 k < ∞)

(36)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-ST .
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Theorem 6. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 + 1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

p+2Fq+2 (|α1|+ 1, . . . , |αp|+ 1, P1 + 1, 3; R (β1) + 1, . . . , R (βq) + 1, 2, 2; 1)

5 R (β1) · · ·R (βq)

2 (k + 2) |α1 · · ·αp|P1

(0 5 k < ∞)(37)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ k-UCV .

In its special case when p = 2 and q = 1, Theorem 3 reduces at once to

the following known result:

Corollary 3 (Kanas and Srivastava [11, p. 128, Theorem 2.5]). Let γ

be a real number such that

γ = |α|+ |β|+ P1 (α, β ∈ C \ {0}) ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality :

(38)

3F2 (|α|+ 1, |β|+ 1, P1 + 1; γ + 1, 2; 1) 5 γ

(k + 2) |αβ|P1

(0 5 k < ∞)
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holds true, then

F (α, β, γ) f ∈ k-UCV .

For p = 2 and q = 1, Theorem 4 immediately yields the following cor-

rected version of another known result:

Corollary 4 (cf. Kanas and Srivastava [11, p. 130, Theorem 3.5]). Let

γ be a real number such that

γ > |α|+ |β|+ P1 (α, β ∈ C \ {0}) ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

(k + 1) |αβ|P1

γ
3F2 (|α|+ 1, |β|+ 1, P1 + 1; γ + 1, 2; 1)(39)

+ 3F2 (|α| , |β| , P1; γ, 1; 1) < 2 (0 5 k < ∞)

holds true, then

F (α, β, γ) f ∈ k-ST .

Similar consequences of Theorem 5 and Theorem 6 would lead us, re-

spectively, to Corollary 5 and Corollary 6 below.

Corollary 5. Let γ be a real number such that

γ > P1 − 1 + |α|+ |β| (α, β ∈ C \ {0}) ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality :

(k + 1) |αβ|P1

2γ
3F2 (|α|+ 1, |β|+ 1, P1 + 1; γ + 1, 3; 1)

+ 3F2 (|α| , |β| , P1; γ, 2; 1) < 2 (0 5 k < ∞)(40)
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holds true, then

F (α, β, γ) f ∈ k-ST .

Corollary 6. Let γ be a real number such that

γ > P1 + 1 + |α|+ |β| (α, β ∈ C \ {0}) ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

4F3 (|α|+ 1, |β|+ 1, P1 + 1, 3; γ + 1, 2, 2; 1)

5 γ

2 (k + 2) |αβ|P1

(0 5 k < ∞)(41)

holds true, then

F (α, β, γ) f ∈ k-UCV .

3. Mapping and Inclusion Properties Involving the Function

Classes S�� and C�

Just as in the work of Silverman [24, p. 110] on the familiar classes of

starlike and convex functions of order µ (0 5 µ < 1) , it is fairly straight-

forward to derive Lemma 5 and Lemma 6 involving the function classes S∗λ
and Cλ defined by (7) and (8), respectively.

Lemma 5. Let f ∈ A be of the form (1). If

(42)
∞∑

n=2

(λ + n− 1) |an| 5 λ (λ > 0) ,

then f ∈ S∗λ.
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Lemma 6. Let f ∈ A be of the form (1). If

(43)
∞∑

n=2

n (λ + n− 1) |an| 5 λ (λ > 0) ,

then f ∈ Cλ.

Making use of Lemma 5 and Lemma 6, in conjunction with the coefficient

inequalities (31) and (33), we now prove several mapping and inclusion

properties for the convolution operator defined by (13), which involve the

function classes S∗λ and Cλ.

Theorem 7. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 − 1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality :

(44)

p+2Fq+2 (|α1| , . . . , |αp| , P1, λ + 1; R (β1) , . . . , R (βq) , λ, 2; 1) < 2 (λ > 0)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ S∗λ.

Proof. In view of Lemma 5, it suffices to show, for f ∈ k-UCV of the form

(1), that
∞∑

n=2

(λ + n− 1) |an| · |Γn| 5 λ (λ > 0) ,
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where Γn is defined by (15). Indeed, by applying the coefficient inequalities

(31), we observe that

∞∑
n=2

(λ + n− 1) |an| · |Γn|

5
∞∑

n=2

(λ + n− 1)
(P1)n−1

n!
· (|α1|)n−1 · · · (|αp|)n−1

(R (β1))n−1 · · · (R (βq))n−1

· 1

(n− 1)!

=
∞∑

n=1

(λ + n)
(P1)n

(n + 1)!
· (|α1|)n · · · (|αp|)n

(R (β1))n · · · (R (βq))n

· 1

n!

= λ { p+2Fq+2 (|α1| , . . . , |αp| , P1, λ + 1; R (β1) , . . . , R (βq) , λ, 2; 1)− 1}
< λ (λ > 0) ,

by virtue of the hypothesis (44). This evidently completes the proof of

Theorem 7.

Similarly, we can prove Theorem 8 below.

Theorem 8. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

(45)

p+2Fq+2 (|α1| , . . . , |αp| , P1, λ + 1; R (β1) , . . . , R (βq) , λ, 1; 1) < 2 (λ > 0)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ S∗λ.
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In an analogous manner, Lemma 6 and the coefficient inequalities (31)

and (33) would lead us to Theorem 9 and Theorem 10, respectively.

Theorem 9. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-UCV and the following hypergeometric inequality (45) holds true, then

I
α1,...,αp

β1,...,βq
f ∈ Cλ.

Theorem 10. Suppose that

αj ∈ C \ {0} (j = 1, . . . , p) , R (βj) > 0 (j = 1, . . . , q) ,

and (in the case when p = q + 1)

R

(
q∑

j=1

βj

)
> P1 + 1 +

p∑
j=1

|αj| ,

where P1 = P1 (k) is given, as before, by (32). If, for some k (0 5 k < ∞),

f ∈ k-ST and the following hypergeometric inequality :

(46) p+3Fq+3 (|α1| , . . . , |αp| , P1, λ + 1, 2; R (β1) , . . . , R (βq) , λ, 1, 1; 1) < 2

(λ > 0)

holds true, then

I
α1,...,αp

β1,...,βq
f ∈ Cλ.
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For f ∈ S∗λ of the form (1), Lemma 5 immediately yields the following

coefficient inequalities:

(47) |an| 5 λ

λ + n− 1
(n ∈ N \ {1} ; λ > 0) .

Similarly, for f ∈ Cλ of the form (1), we have the coefficient inequalities:

(48) |an| 5 λ

n (λ + n− 1)
(n ∈ N \ {1} ; λ > 0) .

By applying the coefficient inequalities (47) and (48), in conjunction

with Lemma 3 and Lemma 4, we can deduce further mapping and inclusion

properties for the convolution operator defined by (13), which are associated

with the function classes k-UCV and k-ST . The details involved in the

derivation of these mapping and inclusion properties are being left as an

exercise for the interested reader.

Finally, we remark that each of the various results in this section (The-

orems 7, 8, 9, and 10) can easily be restated, for p = 2 and q = 1, in

terms of the Hohlov operator F (α, β, γ) defined by (16). Furthermore, as

we have already observed earlier, the interested reader should refer also to

the closely-related further developments reported in the recent works by (for

example) Ramachandran et al. ([20] and [21]), Srivastava et al. ([25] and

[28]), and others. Remarkably, the Dziok-Srivastava convolution operator

as well as the analytic function classes k-ST and k-UCV (together with

many other interesting variants of these function classes k-ST and k-UCV)

are becoming increasingly popular in the recent as well as current literature

in Geometric Function Theory.
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