General Mathematics Vol. 15, Nr. 2-3(2007), 88-97

Some Results on Subclasses of Janowski λ -Spirallike Functions of Complex Order

Yaşar Polatoğlu and Arzu Şen

Abstract

We give some results of Janowski λ -spirallike functions of complex order in the open unit disc $\mathbb{D} = \{z : |z| < 1\}.$

2000 Mathematical Subject Classification: Primary 30C45.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

(1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disc $\mathbb{D} = \{z : |z| < 1\}.$

For a function f(z) belonging to the class \mathcal{A} we say that f(z) is Janowski λ -spirallike functions of complex order in \mathbb{D} if and only if

(2)
$$\operatorname{Re}\left\{1 + \frac{e^{i\lambda}}{b\cos\lambda}\left(\frac{zf'(z)}{f(z)} - 1\right)\right\} > 0$$

for some real $\lambda, |\lambda| < \frac{\pi}{2}, b \neq 0$, complex. We denote this class by $S^{\lambda}(b)$. It was introduced and studied by Al-Oboudi and Haidan [1].

Let Ω be the family of functions $\omega(z)$ regular in the unit disc $\mathbb{D} = \{z : |z| < 1\}$ and satisfying the conditions $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in \mathbb{D}$.

For arbitrary fixed numbers $A, B, -1 \leq B < A \leq 1$, denote by $\mathcal{P}(A, B)$ the family of functions

(3)
$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$$

regular in \mathbb{D} , and such that $p(z) \in \mathcal{P}(A, B)$ if and only if

(4)
$$p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)},$$

for some functions $\omega(z) \in \Omega$ and every $z \in \mathbb{D}$. This class was introduced by W. Janowski [5].

Next we consider the following class of functions defined in \mathbb{D} . Let $\mathcal{S}^{\lambda}(A, B, b)$ denote the family of functions the equality (1) regular in \mathbb{D} , such that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ if and only if

(5)
$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(\frac{zf'(z)}{f(z)} - 1\right) = \frac{1 + A\omega(z)}{1 + B\omega(z)} = p(z),$$

where $b \neq 0$, b is a complex number, for some functions $\omega(z) \in \Omega$ and all $z \in \mathbb{D}$, and p(0) = 1, Rep(z) > 0 in \mathbb{D} . The class $S^{\lambda}(A, B, b)$ is called Janowski λ -spirallike functions of complex order.

We note that by giving special values to A, B, b and λ , then we obtain the following subclasses.

- 1. For A = 1, B = -1; $z \frac{f'(z)}{f(z)} \prec \frac{1 + (-1 + 2be^{-i\lambda} \cos \lambda)z}{1 z}$
- 2. For A = 1, B = -1, b = 1, $\lambda = 0$; $z \frac{f'(z)}{f(z)} \prec \frac{1+z}{1-z}$

3. For $A = 1 - 2\beta$, B = -1, $0 \le \beta < 1$; $z \frac{f'(z)}{f(z)} \prec \frac{1 + (-1 + 2(1 - \beta)be^{-i\lambda}\cos\lambda)z}{1 - z}$ 4. For $A = 1 - 2\beta$, B = -1, b = 1, $\lambda = 0$; $z \frac{f'(z)}{f(z)} \prec \frac{1 + (1 - 2\beta)z}{1 - z}$ 5. For A = 1, B = 0; $z \frac{f'(z)}{f(z)} \prec 1 + b e^{-i\lambda} \cos \lambda z$ 6. For $A = 1, B = 0, b = 1, \lambda = 0; z \frac{f'(z)}{f(z)} \prec 1 + z$ 7. For $A = \beta$, B = 0, $0 \le \beta < 1$; $z \frac{f'(z)}{f(z)} \prec 1 + \beta b e^{-i\lambda} \cos \lambda z$ 8. For $A = \beta$, B = 0, b = 1, $\lambda = 0$, $0 \le \beta < 1$; $z \frac{f'(z)}{f(z)} \prec 1 + \beta z$ 9. For A = 1, $B = -1 + \frac{1}{M}$, $M > \frac{1}{2}$; $z\frac{f'(z)}{f(z)} \prec \frac{1 + \left(\left(-1 + \frac{1}{M}\right) + \left(2 - \frac{1}{M}\right)be^{-i\lambda}\cos\lambda\right)z}{1 + \left(-1 + \frac{1}{M}\right)z}$ 10. For A = 1, $B = -1 + \frac{1}{M}$, $M > \frac{1}{2}$, b = 1, $\lambda = 0$; $z\frac{f'(z)}{f(z)} \prec \frac{1 + \left(\left(-1 + \frac{1}{M}\right) + \left(2 - \frac{1}{M}\right)\right)z}{1 + \left(-1 + \frac{1}{M}\right)z}$ 11. For $A = \beta$, $B = -\beta$, $0 \le \beta < 1$; $z \frac{f'(z)}{f(z)} \prec \frac{1 + \left(-\beta + 2\beta b e^{-i\lambda} \cos\lambda\right)z}{1 - \beta z}$ 12. For $A = \beta$, $B = -\beta$, b = 1, $\lambda = 0$, $0 \le \beta < 1$; $z \frac{f'(z)}{f(z)} \prec \frac{1+\beta z}{1-\beta z}$

2 Theorems

From the definition of the classes $\mathcal{P}(A, B)$ and $\mathcal{S}^{\lambda}(A, B, b)$ we easily obtain the following theorems. **Theorem 1.** $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ belongs to $S^{\lambda}(A, B, b)$ if and only if

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right)\prec\begin{cases} \frac{(A-B)b\cos\lambda z}{1+Bz}, & B\neq 0\\ Ab\cos\lambda z, & B=0 \end{cases}$$

Proof. We prove first the necessity of the condition.

Let $B \neq 0$ and

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) \prec \frac{(A-B)b\cos\lambda z}{1+Bz}.$$

It follows that using subordination principle

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) = \frac{(A-B)b\cos\lambda\omega(z)}{1+B\omega(z)},$$

and then

$$\frac{e^{i\lambda}}{b\cos\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) = \frac{(A-B)\omega(z)}{1+B\omega(z)}.$$

This equality can be written in the form

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(z \frac{f'(z)}{f(z)} - 1 \right) = \frac{1 + A\omega(z)}{1 + B\omega(z)}.$$

This means that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$.

Let B = 0 and

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right)\prec Ab\cos\lambda z.$$

It follows that

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) = Ab\cos\lambda\omega(z).$$

This equality can be written in the form

$$\frac{e^{i\lambda}}{b\cos\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) = A\omega(z)$$

and then

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(z\frac{f'(z)}{f(z)} - 1 \right) = 1 + A\omega(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}$$

This shows that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$.

The condition is also sufficient. Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and $B \neq 0$. Then

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(z \frac{f'(z)}{f(z)} - 1 \right) = p(z)$$

for some $p(z) \in \mathcal{P}(A, B)$. On the other hand the boundary function $p_0(z)$ of $\mathcal{P}(A, B)$ with respect to this equality has the form

$$p_0(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}.$$

Therefore we have the equality

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(z\frac{f'(z)}{f(z)} - 1 \right) = \frac{1 + A\omega(z)}{1 + B\omega(z)}$$

for every boundary function. After simple calculations we deduce

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) = \frac{(A-B)b\cos\lambda\omega(z)}{1+B\omega(z)}.$$

If we apply the subordination principle [1] to this equality we obtain

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1\right) \prec \frac{(A-B)b\cos\lambda z}{1+Bz}$$

Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and B = 0. Then

$$1 + \frac{e^{i\lambda}}{b\cos\lambda} \left(z \frac{f'(z)}{f(z)} - 1 \right) = p(z)$$

for some $p(z) \in \mathcal{P}(A, B)$ and so we obtain

$$e^{i\lambda}\left(z\frac{f'(z)}{f(z)}-1
ight)\prec Ab\cos\lambda z.$$

The assertion is also proved.

Theorem 2. If $f(z) \in S^{\lambda}(A, B, b)$ then for all $z \in \mathbb{D}$ we have

$$\left|1 - \left(\frac{f(z)}{z}\right)^{\frac{B}{(A-B)e^{-i\lambda_b \cos\lambda}}}\right| < 1.$$

This inequality is called Marx-Strohhacker inequality for the class $S^{\lambda}(A, B, b)$, and if the special values to $b \neq 0$ are given obtain new Marx-Strohhacker type inequalities for the subclasses of starlike functions, which one mentioned in the special cases.

Proof. We define the function $\omega(z)$ by

(7)
$$\frac{f(z)}{z} = (1 + B\omega(z))^{\frac{(A-B)e^{-i\lambda_b \cos\lambda}}{B}}$$

where choose the determination of the power such that $(1+B\omega(z))^{\frac{(A-B)e^{-i\lambda_{b}\cos\lambda}}{B}}$ has the value 1 at the origin. Then $\omega(z)$ is analytic in \mathbb{D} and satisfies $\omega(0) = 0$, and if we take logarithmic derivative we obtain

(8)
$$e^{i\lambda}z\frac{f'(z)}{f(z)} - e^{i\lambda} = \frac{(A-B)b\cos\lambda z\omega'(z)}{1+B\omega(z)}$$

From the previous equality, using Theorem 1, it follows that $|\omega(z)| < 1$ for all $z \in \mathbb{D}$. Indeed, assuming the contrary, there exists $z_1 \in \mathbb{D}$ with $|\omega(z_1)| =$ 1 such that $|\omega(z)|$ attains its maximum value on the circle $|z| = |z_1| < 1$ at the point z_1 .

Using Jack's lemma [4] in this equality we obtain

$$e^{i\lambda}z_1\frac{f'(z_1)}{f(z_1)} - e^{i\lambda} = \frac{(A-B)b\cos\lambda k\omega(z_1)}{1+B\omega(z_1)} = F(\omega(z_1)) \notin F(\mathbb{D})$$

because $|\omega(z_1)| = 1$ and $k \ge 1$. But this contradicts Theorem 1, and therefore we have $|\omega(z)| < 1$ for every $z \in \mathbb{D}$. Now using (6) we obtain

$$\left|1 - \left(\frac{f(z)}{z}\right)^{\frac{B}{(A-B)e^{-i\lambda_{b\cos\lambda}}}}\right| = |B\omega(z)| < |B|.$$

Therefore the theorem is proved.

Theorem 3. If $f(z) = z + a_2 z^2 + a_3 z^3 + ...$ belongs to $S^{\lambda}(A, B, b)$ then

(9)
$$G(r, -A, -B, |b|) \le |f(z)| \le G(r, A, B, |b|),$$

where

$$G(r, A, B, |b|) = \begin{cases} \frac{r(1+Br)^{\frac{(A-B)\cos\lambda(|b|+Reb\cos\lambda)}{2B}}}{(1-Br)^{\frac{(A-B)\cos\lambda(|b|-Reb\cos\lambda)}{2B}}}, & B \neq 0, \\ re^{A|b|\cos\lambda r}, & B = 0. \end{cases}$$

Remark 1. This bound is sharp, because the extremal function is

$$f_*(z) = \begin{cases} z(1+Bz)^{\frac{(A-B)be^{-i\lambda}\cos\lambda}{B}}, & B \neq 0, \\ ze^{Abe^{-i\lambda}}\cos\lambda z, & B = 0. \end{cases}$$

Proof. Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and $B \neq 0$. The set of the values of $\left(z\frac{f'(z)}{f(z)}\right)$ is the closed disc with the center

$$C(r) = \left(\frac{1 - B^2 r^2 - B(A - B)b\cos^2 \lambda r^2}{1 - B^2 r^2}, \frac{B(A - B)b\cos \lambda \sin \lambda r^2}{1 - B^2 r^2}\right)$$

and the radius $\rho(r) = \frac{(A-B)|b|\cos \lambda r}{1-B^2r^2}$. Therefore we can write

(12)
$$\left| z \frac{f'(z)}{f(z)} - \frac{1 - B^2 r^2 - B(A - B)b\cos^2 \lambda r^2}{1 - B^2 r^2} \right| \le \frac{(A - B)|b|\cos \lambda r}{1 - B^2 r^2}.$$

This inequality can be written in the form

(13)
$$M_1(r) \le Re\left(z\frac{f'(z)}{f(z)}\right) \le M_2(r),$$

where

$$M_1(r) = \frac{1 - (A - B)|b|\cos\lambda r - (B^2 + B(A - B)Reb\cos^2\lambda)r^2}{1 - B^2r^2},$$
$$M_2(r) = \frac{1 + (A - B)|b|\cos\lambda r - (B^2 + B(A - B)Reb\cos^2\lambda)r^2}{1 - B^2r^2}.$$

On the other hand

(14)
$$Re\left(z\frac{f'(z)}{f(z)}\right) = r\frac{\partial}{\partial r}\log|f(z)|$$

By considering (10) and (11) we can write $M_1(r) \leq r \frac{\partial}{\partial r} log |f(z)| \leq M_2(r)$ then we obtain desired result by integration.

If we take B = 0 in the inequality (10) then the proof of Theorem 3 is complete.

For example if we take $A = 1, B = -1, \lambda = 0, b = 1$; we obtain

$$\frac{r}{(1+r)^2} \le |f(z)| \le \frac{r}{(1-r)^2}.$$

This is the well known which is the distortion theorem of starlike functions [3].

Corollary 1. The radius of starlikeness of the class $S^{\lambda}(A, B, b)$ is

$$r_s = \frac{(A-B)|b|\cos\lambda - \sqrt{(A-B)^2|b|^2\cos^2\lambda + 4B^2 + 4B(A-B)Reb\cos^2\lambda}}{2\left[-B^2 - B(A-B)Reb\cos^2\lambda\right]}$$

This radius is sharp, because the extremal function is

$$f_*(z) = z(1+Bz)^{\frac{(A-B)be^{-i\lambda}\cos\lambda}{B}}.$$

Proof. From (10) we have

(15)

$$Re\left(z\frac{f'(z)}{f(z)}\right) \ge \frac{1 - (A - B)|b|\cos\lambda r - (B^2 + B(A - B)Reb\cos^2\lambda)r^2}{1 - B^2r^2}.$$

For $r < r_s$ the right hand side of the preceding inequality is positive, which implies

$$r_s = \frac{(A-B)|b|\cos\lambda - \sqrt{(A-B)^2|b|^2\cos^2\lambda + 4B^2 + 4B(A-B)Reb\cos^2\lambda}}{2\left[-B^2 - B(A-B)Reb\cos^2\lambda\right]}$$

We note also that the inequality (12) becomes an equality for the function

$$f_*(z) = z(1+Bz)^{\frac{(A-B)be^{-i\lambda}\cos\lambda}{B}}.$$

It follows that

$$r_s = \frac{(A-B)|b|\cos\lambda - \sqrt{(A-B)^2|b|^2\cos^2\lambda + 4B^2 + 4B(A-B)Reb\cos^2\lambda}}{2\left[-B^2 - B(A-B)Reb\cos^2\lambda\right]},$$

and the proof is complete. For $A = 1, B = -1, b = 1, \lambda = 0$; we obtain $r_s = 1$.

References

- F.M. Al-Oboudi, M.M. Haidan, Spirallike functions of complex order, J.Natural Geom., 19 (2000), 53-72.
- [2] M.K. Aouf, F.M. Al-Oboudi, M.M. Haidan, On some results for λspirallike and λ-Robertson functions of complex order, Publications De L'nstitut Mathe'matique, Nouvella serie, tome 75 (91) (2005), 93-98.
- [3] A.W. Goodman, Univalent Functions, Volume I and Volume II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
- [4] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2), 3 (1971), 469-474.
- [5] W. Janowski, Some extremal problems for certain families of analytic functions, I.Annales Polon.Math., XXIII (1973) 297-326.

Department of Mathematics and Computer Science, Faculty of Science and Letters, İstanbul Kültür University, 34156 İstanbul, Turkey E-mail Address: y.polatoglu@iku.edu.tr E-mail Address: a.sen@iku.edu.tr