Some Results on Subclasses of Janowski λ-Spirallike Functions of Complex Order

Yaşar Polatoğlu and Arzu Şen

Abstract
We give some results of Janowski λ-spirallike functions of complex order in the open unit disc $\mathbb{D}=\{z:|z|<1\}$.
2000 Mathematical Subject Classification: Primary 30C45.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $\mathbb{D}=\{z:|z|<1\}$.
For a function $f(z)$ belonging to the class \mathcal{A} we say that $f(z)$ is Janowski λ-spirallike functions of complex order in \mathbb{D} if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0 \tag{2}
\end{equation*}
$$

for some real $\lambda,|\lambda|<\frac{\pi}{2}, b \neq 0$, complex. We denote this class by $\mathcal{S}^{\lambda}(b)$. It was introduced and studied by Al-Oboudi and Haidan [1].

Let Ω be the family of functions $\omega(z)$ regular in the unit disc $\mathbb{D}=\{z$: $|z|<1\}$ and satisfying the conditions $\omega(0)=0,|\omega(z)|<1$ for $z \in \mathbb{D}$.

For arbitrary fixed numbers $A, B,-1 \leq B<A \leq 1$, denote by $\mathcal{P}(A, B)$ the family of functions

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{3}
\end{equation*}
$$

regular in \mathbb{D}, and such that $p(z) \in \mathcal{P}(A, B)$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+A \omega(z)}{1+B \omega(z)} \tag{4}
\end{equation*}
$$

for some functions $\omega(z) \in \Omega$ and every $z \in \mathbb{D}$. This class was introduced by W. Janowski [5].

Next we consider the following class of functions defined in \mathbb{D}. Let $\mathcal{S}^{\lambda}(A, B, b)$ denote the family of functions the equality (1) regular in \mathbb{D}, such that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ if and only if

$$
\begin{equation*}
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\frac{1+A \omega(z)}{1+B \omega(z)}=p(z) \tag{5}
\end{equation*}
$$

where $b \neq 0, b$ is a complex number, for some functions $\omega(z) \in \Omega$ and all $z \in \mathbb{D}$, and $p(0)=1, \operatorname{Rep}(z)>0$ in \mathbb{D}. The class $\mathcal{S}^{\lambda}(A, B, b)$ is called Janowski λ-spirallike functions of complex order.

We note that by giving special values to A, B, b and λ, then we obtain the following subclasses.

1. For $A=1, B=-1 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\left(-1+2 b e^{-i \lambda} \cos \lambda\right) z}{1-z}$
2. For $A=1, B=-1, b=1, \lambda=0 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}$
3. For $A=1-2 \beta, B=-1,0 \leq \beta<1 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\left(-1+2(1-\beta) b e^{-i \lambda} \cos \lambda\right) z}{1-z}$
4. For $A=1-2 \beta, B=-1, b=1, \lambda=0 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+(1-2 \beta) z}{1-z}$
5. For $A=1, B=0 ; z \frac{f^{\prime}(z)}{f(z)} \prec 1+b e^{-i \lambda} \cos \lambda z$
6. For $A=1, B=0, b=1, \lambda=0 ; z \frac{f^{\prime}(z)}{f(z)} \prec 1+z$
7. For $A=\beta, B=0,0 \leq \beta<1 ; z \frac{f^{\prime}(z)}{f(z)} \prec 1+\beta b e^{-i \lambda} \cos \lambda z$
8. For $A=\beta, B=0, b=1, \lambda=0,0 \leq \beta<1 ; z \frac{f^{\prime}(z)}{f(z)} \prec 1+\beta z$
9. For $A=1, B=-1+\frac{1}{M}, M>\frac{1}{2}$;

$$
z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\left(\left(-1+\frac{1}{M}\right)+\left(2-\frac{1}{M}\right) b e^{-i \lambda} \cos \lambda\right) z}{1+\left(-1+\frac{1}{M}\right) z}
$$

10. For $A=1, B=-1+\frac{1}{M}, M>\frac{1}{2}, b=1, \lambda=0$;

$$
z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\left(\left(-1+\frac{1}{M}\right)+\left(2-\frac{1}{M}\right)\right) z}{1+\left(-1+\frac{1}{M}\right) z}
$$

11. For $A=\beta, B=-\beta, 0 \leq \beta<1 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\left(-\beta+2 \beta b e^{-i \lambda} \cos \lambda\right) z}{1-\beta z}$
12. For $A=\beta, B=-\beta, b=1, \lambda=0,0 \leq \beta<1 ; z \frac{f^{\prime}(z)}{f(z)} \prec \frac{1+\beta z}{1-\beta z}$

2 Theorems

From the definition of the classes $\mathcal{P}(A, B)$ and $\mathcal{S}^{\lambda}(A, B, b)$ we easily obtain the following theorems.

Theorem 1. $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belongs to $S^{\lambda}(A, B, b)$ if and only if

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \begin{cases}\frac{(A-B) b \cos \lambda z}{1+B z}, & B \neq 0 \\ A b \cos \lambda z, & B=0\end{cases}
$$

Proof. We prove first the necessity of the condition.
Let $B \neq 0$ and

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \frac{(A-B) b \cos \lambda z}{1+B z} .
$$

It follows that using subordination principle

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{(A-B) b \cos \lambda \omega(z)}{1+B \omega(z)}
$$

and then

$$
\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{(A-B) \omega(z)}{1+B \omega(z)} .
$$

This equality can be written in the form

$$
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{1+A \omega(z)}{1+B \omega(z)}
$$

This means that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$.
Let $B=0$ and

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec A b \cos \lambda z .
$$

It follows that

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=A b \cos \lambda \omega(z) .
$$

This equality can be written in the form

$$
\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=A \omega(z)
$$

and then

$$
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=1+A \omega(z)=\frac{1+A \omega(z)}{1+B \omega(z)}
$$

This shows that $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$.
The condition is also sufficient. Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and $B \neq 0$. Then

$$
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=p(z)
$$

for some $p(z) \in \mathcal{P}(A, B)$. On the other hand the boundary function $p_{0}(z)$ of $\mathcal{P}(A, B)$ with respect to this equality has the form

$$
p_{0}(z)=\frac{1+A \omega(z)}{1+B \omega(z)}
$$

Therefore we have the equality

$$
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{1+A \omega(z)}{1+B \omega(z)}
$$

for every boundary function. After simple calculations we deduce

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{(A-B) b \cos \lambda \omega(z)}{1+B \omega(z)} .
$$

If we apply the subordination principle [1] to this equality we obtain

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \frac{(A-B) b \cos \lambda z}{1+B z} .
$$

Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and $B=0$. Then

$$
1+\frac{e^{i \lambda}}{b \cos \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=p(z)
$$

for some $p(z) \in \mathcal{P}(A, B)$ and so we obtain

$$
e^{i \lambda}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec A b \cos \lambda z .
$$

The assertion is also proved.

Theorem 2.If $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ then for all $z \in \mathbb{D}$ we have

$$
\left|1-\left(\frac{f(z)}{z}\right)^{\frac{B}{(A-B) e^{-i \lambda} b \cos \lambda}}\right|<1 .
$$

This inequality is called Marx-Strohhacker inequality for the class $\mathcal{S}^{\lambda}(A, B, b)$, and if the special values to $b \neq 0$ are given obtain new Marx-Strohhacker type inequalities for the subclasses of starlike functions, which one mentioned in the special cases.

Proof. We define the function $\omega(z)$ by

$$
\begin{equation*}
\frac{f(z)}{z}=(1+B \omega(z))^{\frac{(A-B) e^{-i \lambda_{b} \cos \lambda}}{B}} \tag{7}
\end{equation*}
$$

where choose the determination of the power such that $(1+B \omega(z)) \frac{(A-B) e^{-i \lambda_{b} \cos \lambda}}{B}$ has the value 1 at the origin. Then $\omega(z)$ is analytic in \mathbb{D} and satisfies $\omega(0)=0$, and if we take logarithmic derivative we obtain

$$
\begin{equation*}
e^{i \lambda} z \frac{f^{\prime}(z)}{f(z)}-e^{i \lambda}=\frac{(A-B) b \cos \lambda z \omega^{\prime}(z)}{1+B \omega(z)} . \tag{8}
\end{equation*}
$$

From the previous equality, using Theorem 1, it follows that $|\omega(z)|<1$ for all $z \in \mathbb{D}$. Indeed, assuming the contrary, there exists $z_{1} \in \mathbb{D}$ with $\left|\omega\left(z_{1}\right)\right|=$ 1 such that $|\omega(z)|$ attains its maximum value on the circle $|z|=\left|z_{1}\right|<1$ at the point z_{1}.

Using Jack's lemma [4] in this equality we obtain

$$
e^{i \lambda} z_{1} \frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-e^{i \lambda}=\frac{(A-B) b \cos \lambda k \omega\left(z_{1}\right)}{1+B \omega\left(z_{1}\right)}=F\left(\omega\left(z_{1}\right)\right) \notin F(\mathbb{D})
$$

because $\left|\omega\left(z_{1}\right)\right|=1$ and $k \geq 1$. But this contradicts Theorem 1, and therefore we have $|\omega(z)|<1$ for every $z \in \mathbb{D}$. Now using (6) we obtain

$$
\left|1-\left(\frac{f(z)}{z}\right)^{\frac{B}{(A-B) e^{-i \lambda} b \cos \lambda}}\right|=|B \omega(z)|<|B| .
$$

Therefore the theorem is proved.

Theorem 3.If $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belongs to $\mathcal{S}^{\lambda}(A, B, b)$ then

$$
\begin{equation*}
G(r,-A,-B,|b|) \leq|f(z)| \leq G(r, A, B,|b|) \tag{9}
\end{equation*}
$$

where

$$
G(r, A, B,|b|)= \begin{cases}\frac{r(1+B r)^{\frac{(A-B) \cos \lambda(| | b \mid+R e b \cos \lambda)}{2 B}}}{(1-B r)^{\frac{(A-B) \cos \lambda| | \mid-R e b \cos \lambda)}{2 B}},} & B \neq 0 \\ r e^{A|b| \cos \lambda r}, & B=0\end{cases}
$$

Remark 1. This bound is sharp, because the extremal function is

$$
f_{*}(z)= \begin{cases}z(1+B z)^{\frac{(A-B) b e^{-i \lambda} \cos \lambda}{B}}, & B \neq 0 \\ z e^{A b e^{-i \lambda}} \cos \lambda z, & B=0\end{cases}
$$

Proof. Let $f(z) \in \mathcal{S}^{\lambda}(A, B, b)$ and $B \neq 0$. The set of the values of $\left(z \frac{f^{\prime}(z)}{f(z)}\right)$ is the closed disc with the center

$$
C(r)=\left(\frac{1-B^{2} r^{2}-B(A-B) b \cos ^{2} \lambda r^{2}}{1-B^{2} r^{2}}, \frac{B(A-B) b \cos \lambda \sin \lambda r^{2}}{1-B^{2} r^{2}}\right)
$$

and the radius $\rho(r)=\frac{(A-B)| | \mid \cos \lambda r}{1-B^{2} r^{2}}$. Therefore we can write

$$
\begin{equation*}
\left|z \frac{f^{\prime}(z)}{f(z)}-\frac{1-B^{2} r^{2}-B(A-B) b \cos ^{2} \lambda r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B)|b| \cos \lambda r}{1-B^{2} r^{2}} \tag{12}
\end{equation*}
$$

This inequality can be written in the form

$$
\begin{equation*}
M_{1}(r) \leq \operatorname{Re}\left(z \frac{f \prime(z)}{f(z)}\right) \leq M_{2}(r) \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{1}(r)=\frac{1-(A-B)|b| \cos \lambda r-\left(B^{2}+B(A-B) R e b \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}} \\
& M_{2}(r)=\frac{1+(A-B)|b| \cos \lambda r-\left(B^{2}+B(A-B) R e b \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}}
\end{aligned}
$$

On the other hand

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)=r \frac{\partial}{\partial r} \log |f(z)| . \tag{14}
\end{equation*}
$$

By considering (10) and (11) we can write $M_{1}(r) \leq r \frac{\partial}{\partial r} \log |f(z)| \leq M_{2}(r)$ then we obtain desired result by integration.

If we take $B=0$ in the inequality (10) then the proof of Theorem 3 is complete.

For example if we take $A=1, B=-1, \lambda=0, b=1$; we obtain

$$
\frac{r}{(1+r)^{2}} \leq|f(z)| \leq \frac{r}{(1-r)^{2}} .
$$

This is the well known which is the distortion theorem of starlike functions [3].

Corollary 1. The radius of starlikeness of the class $\mathcal{S}^{\lambda}(A, B, b)$ is
$r_{s}=\frac{(A-B)|b| \cos \lambda-\sqrt{(A-B)^{2}|b|^{2} \cos ^{2} \lambda+4 B^{2}+4 B(A-B) R e b \cos ^{2} \lambda}}{2\left[-B^{2}-B(A-B) R e b \cos ^{2} \lambda\right]}$.
This radius is sharp, because the extremal function is

$$
f_{*}(z)=z(1+B z)^{\frac{(A-B) b e^{-i \lambda} \cos \lambda}{B}} .
$$

Proof. From (10) we have

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \geq \frac{1-(A-B)|b| \cos \lambda r-\left(B^{2}+B(A-B) \operatorname{Reb} \cos ^{2} \lambda\right) r^{2}}{1-B^{2} r^{2}} \tag{15}
\end{equation*}
$$

For $r<r_{s}$ the right hand side of the preceding inequality is positive, which implies
$r_{s}=\frac{(A-B)|b| \cos \lambda-\sqrt{(A-B)^{2}|b|^{2} \cos ^{2} \lambda+4 B^{2}+4 B(A-B) R e b \cos ^{2} \lambda}}{2\left[-B^{2}-B(A-B) R e b \cos ^{2} \lambda\right]}$.

We note also that the inequality (12) becomes an equality for the function

$$
f_{*}(z)=z(1+B z)^{\frac{(A-B) b e^{-i \lambda} \cos \lambda}{B}} .
$$

It follows that
$r_{s}=\frac{(A-B)|b| \cos \lambda-\sqrt{(A-B)^{2}|b|^{2} \cos ^{2} \lambda+4 B^{2}+4 B(A-B) R e b \cos ^{2} \lambda}}{2\left[-B^{2}-B(A-B) \operatorname{Reb} \cos ^{2} \lambda\right]}$,
and the proof is complete. For $A=1, B=-1, b=1, \lambda=0$; we obtain $r_{s}=1$.

References

[1] F.M. Al-Oboudi, M.M. Haidan, Spirallike functions of complex order, J.Natural Geom., 19 (2000), 53-72.
[2] M.K. Aouf, F.M. Al-Oboudi, M.M. Haidan, On some results for λ spirallike and λ-Robertson functions of complex order, Publications De L'nstitut Mathe'matique, Nouvella serie, tome 75 (91) (2005), 93-98.
[3] A.W. Goodman, Univalent Functions, Volume I and Volume II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
[4] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2), 3 (1971), 469-474.
[5] W. Janowski, Some extremal problems for certain families of analytic functions, I.Annales Polon.Math., XXIII (1973) 297-326.

Department of Mathematics and Computer Science,
Faculty of Science and Letters,
İstanbul Kültür University,
34156 İstanbul, Turkey
E-mail Address: y.polatoglu@iku.edu.tr
E-mail Address: a.sen@iku.edu.tr

