Carlson - Shaffer operator and their applications to certain subclass of uniformly convex functions¹

G.Murugusundaramoorthy, T. Rosy and K.Muthunagai

Abstract

Making use of Carlson - Shaffer operator, we define a new subclass of uniformly convex functions with negative coefficients and obtain the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class $TS(\lambda, \alpha, \beta)$. Furthermore, partial sums $f_k(z)$ of functions f(z) in the class $S(\lambda, \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of f(z) to $f_k(z)$ and f'(z) to $f'_k(z)$ are determined.

2000 Mathematical Subject Classification: 30C45. Key words: Univalent, convex, starlike, uniformly convex.

1 Introduction

Let A denote the class of functions of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

Accepted for publication (in revised form) 22 December, 2007

¹Received 16 August, 2007

which are analytic and univalent in the open disc $U = \{z : z \in \mathfrak{C} | z| < 1\}$. Also denote by T the subclass of A consisting of functions of the form

(1.2)
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad (a_n \ge 0)$$

Following Gooodman [3, 4], Rønning [5, 6] introduced and studied the following subclasses

(i) A function $f \in A$ is said to be in the class $S_p(\alpha, \beta)$ of uniformly β -starlike functions if it satisfies the condition

(1.3)
$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} - \alpha \right\} > \beta \left| \frac{zf'(z)}{f(z)} - 1 \right|, \ z \in U,$$

 $-1 < \alpha \le 1$ and $\beta \ge 0$.

(ii) A function $f \in A$ is said to be in the class $UCV(\alpha, \beta)$ of uniformly β -convex functions if it satisfies the condition

(1.4)
$$\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} - \alpha \right\} > \beta \left| \frac{zf''(z)}{f'(z)} \right|, \ z \in U,$$

and $-1 < \alpha \le 1$ and $\beta \ge 0$.

Indeed it follows from (1.3) and (1.4) that

(1.5)
$$f \in UCV(\alpha, \beta)$$
 is equivalent with $zf' \in S_p(\alpha, \beta)$.

For functions $f \in A$ given by (1.1) and $g(z) \in A$ given by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, we define the Hadamard product (or Convolution) of f and g by

(1.6)
$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in U.$$

Let $\phi(a, c; z)$ be the incomplete beta function defined by

(1.7)
$$\phi(a,c;z) = z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} z^n, \quad c \neq 0, -1, -2, \dots$$

where $(x)_n$ is the Pochhammer symbol defined in terms of the Gamma functions, by

(1.8)
$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1 & \text{n} = 0\\ x(x+1)(x+2)\dots(x+n-1), & n \in N \end{cases}$$

Further, for $f \in A$

(1.9)
$$L(a,c)f(z) = \phi(a,c;z) * f(z) = z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_n z^n,$$

where L(a, c) is called Carlson - Shaffer operator [2] and the operator * stands for the hadamard product (or convolution product) of two power series as given by (1.6).

We notice that

$$L(a, a)f(z) = f(z), L(2, 1)f(z) = zf'(z).$$

For $-1 \le \alpha < 1$, $0 \le \lambda \le 1$ and $\beta \ge 0$, we let $S(\lambda, \alpha, \beta)$ be the subclass of A consisting of functions of the form (1.1) and satisfying the analytic criterion

(1.10)
$$\operatorname{Re} \left\{ \frac{z(L(a,c)f(z))' + \lambda z^{2}(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - \alpha \right\}$$
$$> \beta \left| \frac{z(L(a,c)f(z))' + \lambda z^{2}(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - 1 \right|, \ z \in U$$

where L(a,c)f(z) is given by (1.9). We also let $TS(\lambda,\alpha,\beta)=S(\lambda,\alpha,\beta)\cap T$.

By suitably specializing the values of λ , (a) and (c), the class $S(\lambda, \alpha, \beta)$ can be reduces to the class studied earlier by Rønning [5, 6]. Also choosing $\alpha = 0$ and $\beta = 1$ the class coincides with the classes studied in [10] and [11] respectively.

The main object of this paper is to study the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class $TS(\lambda, \alpha, \beta)$. Furthermore, partial sums $f_k(z)$ of functions f(z) in the class $S(\lambda, \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of f(z) to $f_k(z)$ and f'(z) to $f'_k(z)$ are determined.

2 Basic Properties

In this section we obtain a necessary and sufficient condition for functions f(z) in the classes $S(\lambda, \alpha, \beta)$ and $TS(\lambda, \alpha, \beta)$.

Theorem 2.1. A function f(z) of the form (1.1) is in $S(\lambda, \alpha, \beta)$ if

(2.1)
$$\sum_{n=2}^{\infty} (1 + \lambda(n-1))[n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} |a_n| \le 1 - \alpha,$$

$$-1 \le \alpha < 1, \quad 0 \le \lambda \le 1, \beta \ge 0.$$

Proof. It sufficies to show that

$$\beta \left| \frac{z(L(a,c)f(z))' + \lambda z^2(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - 1 \right|$$

$$-\operatorname{Re}\left\{ \frac{z(L(a,c)f(z))' + \lambda z^2(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - 1 \right\}$$

$$\leq 1 - \alpha$$

We have

$$\beta \left| \frac{z(L(a,c)f(z))' + \lambda z^2(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - 1 \right|$$

$$-\operatorname{Re}\left\{\frac{z(L(a,c)f(z))' + \lambda z^{2}(L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda(zL(a,c)f(z))'} - 1\right\}$$

$$\leq (1+\beta) \left| \frac{z(L(a,c)f(z))' + \lambda z^2 (L(a,c)f(z))''}{(1-\lambda)L(a,c)f(z) + \lambda (zL(a,c)f(z))'} - 1 \right|$$

$$\leq \frac{(1+\beta)\sum_{n=2}^{\infty}(n-1)[1+\lambda(n-1)]\frac{(a)_{n-1}}{(c)_{n-1}}|a_n|}{1-\sum_{n=2}^{\infty}[1+\lambda(n-1)]\frac{(a)_{n-1}}{(c)_{n-1}}|a_n|}.$$

This last expression is bounded above by $(1 - \alpha)$ if

$$\sum_{n=2}^{\infty} [1 + \lambda(n-1)][n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} |a_n| \le 1 - \alpha,$$

and hence the proof is complete.

Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.2) to be in the class $TS(\lambda, \alpha, \beta)$, $-1 \le \alpha < 1, 0 \le \lambda \le 1, \beta \ge 0$ is that

(2.2)
$$\sum_{n=2}^{\infty} (1 + \lambda(n-1)) [n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_n \le 1 - \alpha,$$

Proof. In view of Theorem 1, we need only to prove the necessity. If $f \in TS(\lambda, \alpha, \beta)$ and z is real then

$$\frac{1 - \sum_{n=2}^{\infty} n[1 + \lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} [1 + \lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} a_n z^{n-1}} - \alpha \ge$$

$$\geq \beta \left| \frac{\sum_{n=2}^{\infty} (n-1)[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} |a_n|}{1-\sum_{n=2}^{\infty} [1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} |a_n|} \right|$$

Letting $z \to 1$ along the real axis, we obtain the desired inequality

$$\sum_{n=2}^{\infty} (1 + \lambda(n-1)) [n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_n \le 1 - \alpha.$$

Theorem 2.3. Let f(z) defined by (1.2) and g(z) defined by $g(z) = z - \sum_{n=2}^{\infty} b_n z^n$ be in the class $TS(\lambda, \alpha, \beta)$. Then the function h(z) defined by

$$h(z) = (1 - \mu)f(z) + \mu g(z) = z - \sum_{n=2}^{\infty} q_n z^n,$$

where $q_n = (1 - \mu)a_n + \mu b_n$, $0 \le \mu < 1$ is also in the class $TS(\lambda, \alpha, \beta)$.

Proof. Let the function

(2.3)
$$f_j(z) = z - \sum_{n=2}^{\infty} a_{n,j} z^n, \qquad a_{n,j} \ge 0, \qquad j = 1, 2,$$

be in the class $TS(\lambda, \alpha, \beta)$. It is sufficient to show that the function g(z) defined by

$$g(z) = \mu f_1(z) + (1 - \mu) f_2(z),$$
 $0 \le \mu \le 1,$

is in the class $TS(\lambda, \alpha, \beta)$. Since

$$g(z) = z - \sum_{n=2}^{\infty} [\mu a_{n,1} + (1 - \mu)a_{n,2}]z^{n},$$

an easy computation with the aid of Theorem 2.2 gives,

$$\sum_{n=2}^{\infty} [1 + \lambda(n-1)][n(\beta+1) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} \mu a_{n,1}$$

$$+ \sum_{n=2}^{\infty} [1 + \lambda(n-1)][n(\beta+1) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} (1-\mu) a_{n,2}$$

$$\leq \mu (1-\alpha) + (1-\mu)(1-\alpha)$$

$$< 1-\alpha,$$

which implies that $g \in TS(\lambda, \alpha, \beta)$. Hence $TS(\lambda, \alpha, \beta)$ is convex.

Theorem 2.4. (Extreme points) Let $f_1(z) = z$ and (2.4)

$$f_n(z) = z - \frac{(1-\alpha)(c)_{n-1}}{(1+n\lambda-\lambda)[n(1+\beta)-(\alpha+\beta)](a)_{n-1}} z^n \text{ for } n=2,3,4,\dots$$

Then $f(z) \in TS(\lambda, \alpha, \beta)$ if and only if f(z) can be expressed in the form $f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z)$, where $\mu_n \ge 0$ and $\sum_{n=1}^{\infty} \mu_n = 1$.

The proof of Theorem 2.4, follows on lines similar to the proof of the theorem on extreme points given in Silverman [8].

Next we prove the following closure theorem.

Theorem 2.5. (Closure theorem) Let the functions $f_j(z)$ (j = 1, 2, ...m) defined by (2.3) be in the classes $TS(\lambda, \alpha_j, \beta)$ (j = 1, 2, ...m) respectively. Then the function h(z) defined by

$$h(z) = z - \frac{1}{m} \sum_{n=2}^{\infty} \left(\sum_{j=1}^{m} a_{n,j} \right) z^{n}$$

is in the class $TS(\lambda, \alpha, \beta)$, where $\alpha = \min_{1 \le j \le m} {\{\alpha_j\}}$ where $-1 \le \alpha_j < 1$.

Proof. Since $f_j(z) \in TS(\lambda, \alpha_j, \beta)$ (j = 1, 2, 3, ...m) by applying Theorem 2.2, to (2.3) we observe that

$$\sum_{n=2}^{\infty} (1 + \lambda(n-1)) [n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} \left(\frac{1}{m} \sum_{j=1}^{m} a_{n,j} \right)$$

$$= \frac{1}{m} \sum_{j=1}^{m} \left(\sum_{n=2}^{\infty} (1 + \lambda(n-1)) [n(1+\beta) - (\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n,j} \right)$$

$$\leq \frac{1}{m} \sum_{j=1}^{m} (1 - \alpha_j) \leq 1 - \alpha$$

which in view of Theorem 2.2, again implies that $h(z) \in TS(\lambda, \alpha, \beta)$ and so the proof is complete.

Theorem 2.6. Let $f \in TS(\lambda, \alpha, \beta)$. Then

1. f is starlike of order $\delta(0 \le \delta < 1)$ in the disc $|z| < r_1$; that is, $Re\left\{\frac{zf'(z)}{f(z)}\right\} > \delta$, $(|z| < r_1; 0 \le \delta < 1)$, where

$$r_1 = \inf_{n \le 2} \left\{ \frac{(a)_{n-1}}{(c)_{n-1}} \left(\frac{1-\delta}{n-\delta} \right) \frac{(1+n\lambda-\lambda)[n(1+\beta)-(\alpha+\beta)]}{1-\alpha} \right\}^{\frac{1}{n-1}}.$$

2. f is convex of order δ $(0 \le \delta < 1)$ in the disc $|z| < r_2$, that is $Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \delta$, $(|z| < r_2; 0 \le \delta < 1)$, where

$$r_2 = \inf_{n \le 2} \left\{ \frac{(a)_{n-1}}{(c)_{n-1}} \frac{(1-\delta)(1+n\lambda-\lambda)[n(1+\beta)-(\alpha+\beta)]}{n(n-\delta)} \right\}^{\frac{1}{n-1}}.$$

Each of these results are sharp for the extremal function f(z) given by (2.4).

Proof. Given $f \in A$, and f is starlike of order δ , we have

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \delta.$$

For the left hand side of (2.5) we have

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}.$$

The last expression is less than $1 - \delta$ if

$$\sum_{n=2}^{\infty} \frac{n-\delta}{1-\delta} a_n |z|^{n-1} < 1.$$

Using the fact, that $f \in TS(\lambda, \alpha, \beta)$ if and only if

$$\sum_{n=2}^{\infty} \frac{(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{1-\alpha} \frac{(a)_{n-1}}{(c)_{n-1}} a_n < 1.$$

We can say (2.5) is true if

$$\frac{n-\delta}{1-\delta}|z|^{n-1} < \frac{(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{1-\alpha} \frac{(a)_{n-1}}{(c)_{n-1}}.$$

Or, equivalently,

$$|z|^{n-1} < \frac{(1-\delta)(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{(n-\delta)(1-\alpha)} \frac{(a)_{n-1}}{(c)_{n-1}}$$

which yields the starlikeness of the family.

(ii) Using the fact that f is convex if and only if zf' is starlike, we can prove (ii), on lines similar to the proof of (i).

3 Partial Sums

Following the earlier works by Silverman [8] and Silvia [9] on partial sums of analytic functions. We consider in this section partial sums of functions in the class $TS(\lambda, \alpha, \beta)$ and obtain sharp lower bounds for the ratios of real part of f(z) to $f_k(z)$ and f'(z) to $f'_k(z)$.

Theorem 3.1. Let $f(z) \in TS(\lambda, \alpha, \beta)$ be given by (1.1) and define the partial sums $f_1(z)$ and $f_k(z)$, by

(3.1)
$$f_1(z) = z$$
; and $f_k(z) = z + \sum_{n=2}^k a_n z^n$, $(k \in N/1)$

Suppose also that

$$\sum_{n=2}^{\infty} d_n |a_n| \le 1,$$

where

(3.2)
$$d_n := \frac{(1 + \lambda(n-1))[n(\alpha + \beta) - (\alpha + \beta)]}{(1-\alpha)} \frac{(a)_{n-1}}{(c)_{n-1}}.$$

Then $f \in TS(\lambda, \alpha, \beta)$. Furthermore,

(3.3)
$$Re\left\{\frac{f(z)}{f_k(z)}\right\} > 1 - \frac{1}{d_{k+1}} \ z \in U, k \in N$$

and

(3.4)
$$Re\left\{\frac{f_k(z)}{f(z)}\right\} > \frac{d_{k+1}}{1 + d_{k+1}}.$$

Proof. For the coefficients d_n given by (3.2) it is not difficult to verify that

$$(3.5) d_{n+1} > d_n > 1.$$

Therefore we have

(3.6)
$$\sum_{n=2}^{k} |a_n| + d_{k+1} \sum_{n=k+1}^{\infty} |a_n| \le \sum_{n=2}^{\infty} d_n |a_n| \le 1$$

by using the hypothesis (3.2). By setting

(3.7)
$$g_{1}(z) = d_{k+1} \left\{ \frac{f(z)}{f_{k}(z)} - \left(1 - \frac{1}{d_{k+1}}\right) \right\}$$
$$= 1 + \frac{d_{k+1} \sum_{n=k+1}^{\infty} a_{n} z^{n-1}}{1 + \sum_{n=2}^{k} a_{n} z^{n-1}}$$

and applying (3.6), we find that

$$\left| \frac{g_1(z) - 1}{g_1(z) + 1} \right| \leq \frac{d_{k+1} \sum_{n=k+1}^{\infty} |a_n|}{2 - 2 \sum_{n=2}^{n} |a_n| - d_{k+1} \sum_{n=k+1}^{\infty} |a_n|} \\
\leq 1, \quad z \in U,$$
(3.8)

which readily yields the assertion (3.3) of Theorem 3.1. In order to see that

(3.9)
$$f(z) = z + \frac{z^{k+1}}{d_{k+1}}$$

gives sharp result, we observe that for $z=re^{i\pi/k}$ that $\frac{f(z)}{f_k(z)}=1+\frac{z^k}{d_{k+1}}\to 1-\frac{1}{d_{k+1}}$ as $z\to 1^-$. Similarly, if we take

(3.10)
$$g_2(z) = (1+d_{k+1}) \left\{ \frac{f_k(z)}{f(z)} - \frac{d_{k+1}}{1+d_{k+1}} \right\}$$
$$= 1 - \frac{(1+d_{n+1}) \sum_{n=k+1}^{\infty} a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}}$$

and making use of (3.6), we can deduce that

(3.11)
$$\left| \frac{g_2(z) - 1}{g_2(z) + 1} \right| \le \frac{(1 + d_{k+1}) \sum_{n=k+1}^{\infty} |a_n|}{2 - 2 \sum_{n=2}^{k} |a_n| - (1 - d_{k+1}) \sum_{n=k+1}^{\infty} |a_n|}$$

which leads us immediately to the assertion (3.4) of Theorem 3.1.

The bound in (3.4) is sharp for each $k \in N$ with the extremal function f(z) given by (3.9). The proof of the Theorem 3.1, is thus complete.

Theorem 3.2. If f(z) of the form (1.1) satisfies the condition (2.1). Then

(3.12)
$$Re\left\{\frac{f'(z)}{f'_{k}(z)}\right\} \ge 1 - \frac{k+1}{d_{k+1}}.$$

Proof. By setting

$$g(z) = d_{k+1} \left\{ \frac{f'(z)}{f'_{k}(z)} - \left(1 - \frac{k+1}{d_{k+1}}\right) \right\}$$

$$= \frac{1 + \frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n a_{n} z^{n-1} + \sum_{n=2}^{\infty} n a_{n} z^{n-1}}{1 + \sum_{n=2}^{k} n a_{n} z^{n-1}}$$

$$= 1 + \frac{\frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n a_{n} z^{n-1}}{1 + \sum_{n=2}^{k} n a_{n} z^{n-1}}.$$

$$\frac{d_{k+1}}{d_{k+1}} \sum_{n=k+1}^{\infty} n a_{n} z^{n-1}$$

$$\frac{d_{k+1}}{d_{k+1}} \sum_{n=k+1}^{\infty} n |a_{n}|$$

$$\frac{d_{k+1}}{d_{k+1}} \sum_{n=k+1}^{\infty} n |a_{n}|$$

$$\frac{d_{k+1}}{d_{k+1}} \sum_{n=k+1}^{\infty} n |a_{n}|$$

$$\frac{d_{k+1}}{d_{k+1}} \sum_{n=k+1}^{\infty} n |a_{n}|$$

Now

$$\left| \frac{g(z) - 1}{g(z) + 1} \right| \le 1$$

if

(3.14)
$$\sum_{n=2}^{k} n|a_n| + \frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n|a_n| \le 1$$

since the left hand side of (3.14) is bounded above by $\sum_{n=2}^{k} d_n |a_n|$ if

(3.15)
$$\sum_{n=2}^{k} (d_n - n)|a_n| + \sum_{n=k+1}^{\infty} d_n - \frac{d_{k+1}}{k+1}n|a_n| \ge 0,$$

and the proof is complete.

The result is sharp for the extremal function $f(z) = z + \frac{z^{k+1}}{c_{k+1}}$.

Theorem 3.3. If f(z) of the form (1.1) satisfies the condition (2.1) then

(3.16)
$$Re\left\{\frac{f'_k(z)}{f'(z)}\right\} \ge \frac{d_{k+1}}{k+1+d_{k+1}}.$$

Proof. By setting

$$g(z) = [(k+1) + d_{k+1}] \left\{ \frac{f'_k(z)}{f'(z)} - \frac{d_{k+1}}{k+1 + d_{k+1}} \right\}$$
$$= 1 - \frac{\left(1 + \frac{d_{k+1}}{k+1}\right) \sum_{n=k+1}^{\infty} n a_n z^{n-1}}{1 + \sum_{n=2}^{k} n a_n z^{n-1}}$$

and making use of (3.15), we deduce that

$$\left| \frac{g(z) - 1}{g(z) + 1} \right| \le \frac{\left(1 + \frac{d_{k+1}}{k+1} \right) \sum_{n=k+1}^{\infty} n |a_n|}{2 - 2 \sum_{n=2}^{k} n |a_n| - \left(1 + \frac{d_{k+1}}{k+1} \right) \sum_{n=k+1}^{\infty} n |a_n|} \le 1,$$

which leads us immediately to the assertion of Theorem 3.3.

References

- [1] E.Aqlan, J.M. Jahangiri and S.R. Kulkarni, Classes of k-uniformly convex and starlike functions, Tamkang Journal of Mathematics 35(3), (2004), 261–266.
- [2] B.C.Carlson and S.B.Shaffer, Starlike and prestarlike hypergrometric functions, SIAM J.Math. Anal., 15 (2002), 737 745.
- [3] A.W. Goodman, On uniformly convex functions, Ann. polon. Math., 56 (1991), 87-92.
- [4] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. & Appl., 155 (1991),364-370.

- [5] F.Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, (1993),189-196.
- [6] F.Rønning, Integral representations for bounded starlike functions, Annal.Polon.Math., 60, (1995),289-297.
- [7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, (1975), 109 116.
- [8] H. Silverman, Partial sums of starlike and convex functions, J. Math.Anal. & Appl., 209 (1997), 221- 227.
- [9] E.M. Silvia., Partial sums of convex functions of order α, Houston.J.Math., Math.Soc., 11(3) (1985), 397 - 404.
- [10] K.G.Subramanian, G.Murugusundaramoorthy, P.Balasubrahmanyam and H.Silverman, Subclasses of uniformly convex and uniformly starlike functions. Math. Japonica., 42 No.3,(1995),517 - 522.
- [11] K.G.Subramanian, T.V.Sudharsan, P.Balasubrahmanyam and H.Silverman, Classes of uniformly starlike functions. Publ.Math.Debrecen., 53 3-4,(1998),309 -315.

G.Murugusundaramoorthy, School of Science and Humanities, VIT University, Vellore - 632014, India.

E-mail:gmsmoorthy@yahoo.com

Thomas Rosy
Department of Mathematics
Madras Christian College,
Chennai - 600059,
India.

K.Muthunagai Department of Mathematics, Hindustan College of Engineering, Chennai, India.