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Best simultaneous approximation in linear
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Abstract

In this paper we established some of the results of the best simul-

taneous approximation in the context of linear 2-normed space.

2000 Mathematics Subject Classification: 41A50, 41A52, 41A99,

41A28.

Key words: Linear 2-normed space, strictly covex, uniformly convex,

2-functional and best simultaneous approximation.

1 Introduction

The problem of simultaneous approximation has been studied by several

authors. Diaz and McLaughlin [1,2] and Dunham [4] have considered the

simultaneous approximation of two real-valued functions defined on [a, b].

Several results of best simultaneous approximation in the context of normed

linear space were obtained by Goel, et al. [8,9]. Subsequently, Elumalai S.

and coworkers have developed best approximation theory with respect to

2-norm to a considerable extent [5,6,7]. The main aim of this paper is to
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drive existence and uniqueness of the best simultaneous approximation in

the context of linear 2-normed space. Section 2 provides some definitions

that are used in the sequel. Some main results of the set of best simultaneous

approximation are established in Section 3.

2 Preliminaries

Definition 2.1. Let X be a linear space over R with dimension X > 1 and

let ||·, ·|| : X × X → R be a mapping with the following properties:

(i) ||x, y|| > 0 and ||x, y|| = 0 if and only if x and y are linearly dependent,

(ii) ||x, y|| = ||y, x||,

(iii) ||λx, y|| = |λ|||x, y||,

(iv) ||x + y, z|| = ||x, z|| + ||y, z||, for all x, y, z ∈ X and λ − a scalar.

Then the mapping ||·, ·|| is called a 2-norm and the pair (X, ||·, ·||) is

called a linear 2-normed space.

Definition 2.2. A sequence {xn} is a linear 2-normed space X is called a

convergent sequence if there is an x ∈ X such that lim
n→∞

||xn − x, z|| = 0 for

all z ∈ X.

Definition 2.3. A linear 2-normed space (X, ||·, ·||) is said to be strictly

convex if ||a+b, c|| = ||a, c||+ ||b, c||, ||a, c|| = ||b, c|| = 1 and c ∈ X \V (a, b),

where V (a, b) is the subspace of X generated by a and b, which implies that

a = b.

A linear 2-normed space (X, ||·, ·||) is said to be strictly convex if and only

if ||x, z|| = ||y, z|| = 1, x 6= y and z ∈ X \V (x, y) implies that ||x+y

2
, z|| < 1.

Definition 2.4. A linear 2-normed space (X, ||·, ·||) is said to be uniformly

convex if for any sequences {xn}
∞

n=1 and {xn}
∞

n=1 in X, ||xn, z|| ≤ 1, ||yn, z|| ≤

1, n = 1, 2, 3, . . . , lim
n→∞

||
xn + yn

2
, z|| = 1 and V (c) ∩ {∩∞

n=1V (xn, yn)} = {0}

implies that lim
n→∞

||xn − yn, z|| = 0.
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Example 2.1. Let X = R×R×R with 2-norm defined as x = (a1, b1, c1),y =

(a2, b2, c2)

||x, y|| =
√

(b1c2 − b2c1)2 + (a1c2 − a2c1)2 + (a1b2 − a2b1)2.

Then (X, ||·, ·||) is both strictly convex and uniformly convex.

Definition 2.5. Let (X, ||·, ·||) be a linear 2-normed space. Let F be any

bounded subset of X and K be a subset of X. An element k∗ ∈ K is said

to be a best simultaneous approximation to the set F , if

d(F,K)z = sup
f∈F

||f − k∗, z||, z ∈ X \ V (f, k∗).

Where

d(F,K)z = inf
k∈K

sup
f∈F

||f − k, z||, z ∈ X \ V (f, k).

Definition 2.6. A 2-functional is a real-valued mapping defined on A×M ,

where A and M are linear subspaces of a linear 2-normed space (X, ||·, ·||).

Definition 2.7. A 2-functional f is said to be continuous at (x, y) if for a

given ε > 0 there exists a δ > 0 such that

|f(x, y) − f(z, s)| < ε whenever ||x − z, y|| < δ and ||z, y − s|| < δ or ||x −

−z, s|| < δ and ||x, y− s||. Then f is said to be continuous at each point of

this domain.

3 Main Results

Lemma 3.1. Let (X, ||·, ·||) be a linear 2-normed space, let K ⊂ X and F

be a bounded subset of X. Then Φ(k, z) = sup
f∈F

||f − k, z||, z ∈ X \ V (f, k) is

a continuous functional on X.

Proof. For any f ∈ F and k, k′ ∈ X, we have

||f − k, z|| ≤ ||f − k′, z|| + ||k − k′, z||, z ∈ X \ V (f, k, k′).



76 S. Elumalai and R. Vijayaragavan

Then

sup
f∈F

||f − k, z|| ≤ sup
f∈F

(||f − k′, z|| + ||k − k′, z||).

Now, if

||k − k′, z|| < ǫ, then Φ(k, z) ≤ Φ(k′, z) + ǫ.

By interchanging k and k′, we obtain

Φ(k′, z) ≤ Φ(k, z) + ǫ.

Thus

|Φ(k, z) − Φ(k′, z)| < ǫ,

which completes the proof.

Lemma 3.2. Let (X, ||·, ·||) be a linear 2-normed space. Let K be a finite

dimensional subspace of X. Then there exists a best simultaneous approxi-

mation k∗ ∈ K to any given compact subset F ⊂ X.

Proof. Since F is compact, there exists a finite constant M such that

||f, b|| ≤ M , for all f ∈ F and b ∈ X

Now we define the subset S of K as S ≡ S(0, 2M). Then

inf
k∈S

sup
f∈F

||f − k, b|| = inf
k∈K

sup
f∈F

||f − k, b||, b ∈ X \ V (f, k) ≤ M.

Since S is compact, the continuous functional Φ(k, b) attains its mini-

mum over S for some k∗ ∈ K. Which is the best simultaneous approxima-

tion to F .

Lemma 3.3. Let (X, ||·, ·||) be a linear 2-normed space and let K be a

convex subset of X and F ⊂ X. If k1, k2 ∈ K are two best simultaneous

approximations to F by elements of K. Then k = λk1 +(1−λ)k2, (0 ≤ λ ≤

1) is also a best simultaneous approximation to F .
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Proof. For z ∈ X \ V (f, k),

(1)

sup
f∈F

||f − k, z|| = sup
f∈F

||f − (λk1 + (1 − λ)k2), z||

= sup
f∈F

||λ(f − k1) + (1 − λ)(f − k2), z||

≤ sup
f∈F

(λ||(f − k1, z|| + (1 − λ)||f − k2, z||)

≤ λ sup
f∈F

||f − k1, z|| + (1 − λ) sup
f∈F

||f − k2, z||

= λd(F,K)z + (1 − λ)d(F,K)z

= d(F,K)z.

(2)

d(F,K)z = inf
k∈K

sup
f∈F

||f − k, z||

≤ sup
f∈F

||f − k, z||

(3) d(F,K)z = sup
f∈F

||f − k, z||

Which proves the result.

Theorem 3.1. Let (X, ||·, ·||) be a strictly convex linear 2-normed space.

Let K be a finite dimensional subspace of X. Then there exists one and

only one best simultaneous approximation from the elements of K to any

given compact subset F ⊂ X.

Proof. The existence of a best simultaneous approximation follows from

the Lemma 3.2.

Suppose k1 and k2(k1 6= k2) are best simultaneous approximations to F .

Then for z ∈ X \ U(f, k1, k2),

(4)

inf
k∈K

sup
f∈F

||f − k, z|| = sup
f∈F

||f − k1, z||

= sup
f∈F

||f − k2, z||

= d.



78 S. Elumalai and R. Vijayaragavan

Then by Lemma 3.3, k1+k2

2
is also the best simultaneous approxima-

tion,i.e,

(5) sup
f∈F

||f −
k1 + k2

2
, z|| = d.

Since F is compact there exists an f0 such that

(6) sup
f∈F

||f −
k1 + k2

2
, z|| = ||f0 −

k1 + k2

2
, z|| = d.

From (4), ||f0 − k1, z|| ≤ d and ||f0 − k2, z|| ≤ d

Then by strict convexity, we have

||f0 − k1 + f0 − k2, z|| < 2d.

That is

||f0 −
k1 + k2

2
, z|| < d.

which is a contradiction to (6).

Theorem 3.2. Let K be a closed and convex subset of a uniformly convex

2-Banach space X. Then for any compact subset F ⊂ X, there exists a

unique best approximation to F form the elements of K.

Proof. Let

(7) d = inf
k∈F

sup
f∈F

||f − k, z||, z ∈ X\V (f, k)

and {kn} be any sequence of elements in K such that

lim
n→∞

sup
f∈F

||f − kn, z|| = d.

Also, let

dm = sup
f∈F

||f − km, z||,m ≥ 1, and z ∈ X\V (f, km).
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Then dm ≥ d, which implies that

(8)
||f − km, z||

dm

≤ 1, for f ∈ F.

Now, we consider

(9)
1

2

[

km

dm

+
kn

dn

]

=
(dnkm + kndm)(dm + dn)

(dm + dn)2dmdn

and let ym,n =
dnkm + dmkn

dm + dn

. Then since K is a convex, ym,n ∈ K. Hence

sup
f∈F

||f − ym,n, z|| ≥ d

and

sup
f∈F

= ||
dm + dn

2dmdn

· f −
1

2

{

km

dm

+
kn

dn

}

, z||

= sup
f∈F

||f − ym,n, z|| ·

(

dm + dn

2dmdn

)

≥ d ·

(

dm + dn

2dmdn

)

.

Since F is a compact subset of X, there exists an f ∈ F such that
∣

∣

∣

∣

∣

∣

∣

∣

f − km

dm

+
f − kn

dn

, z

∣

∣

∣

∣

∣

∣

∣

∣

≥ d ·
(dm + dn)

dmdn

.

By (8) and the uniform convexity of the 2-norm it follows that for a

given ǫ > 0, there exists an N such that
∣

∣

∣

∣

∣

∣

∣

∣

f − km

dm

−
f − kn

dn

, z

∣

∣

∣

∣

∣

∣

∣

∣

< ǫ

for m,n > N and z ∈ X\V (f, kn).

Since dm → d as m → ∞ we can easily see that the sequence {kn} is a

Cauchy sequence, hence if converges to some k ∈ K ⊂ X as K is closed.

This provides that K is a best simultaneous approximation.

Assume that there exists two best simultaneous approximations k1 and

k2. Then there exists sequences {kn} and {km} such that kn → k1 as n → ∞

and km → k2 as m → ∞.
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Again,

lim
n→∞

sup
f∈F

||f − kn, z|| = d = lim
n→∞

sup
f∈F

||f − km, z||.

This implies that

sup
f∈F

||f − k1, z|| = sup
f∈F

||f − k2, z||

k1 = k2.

References

[1] Diaz,J. B. and H. W. McLaughlin, Simultaneous approximation of a

set of bounded function, Math. Comp. 23, 1969, 583-594.

[2] Diaz,J. B. and H. W. McLaughlin, On simultaneous chebyshev approx-

imation and chebyshev approximation with additive weight function ,

J. App. Theory, 6, 1972, 68-71.

[3] Dunford, N. and J. Schwartz, Linear operators. Interscience publishers,

New York, 1960.

[4] Dunham, C. B., Simultaneous chebyshev approximations of functions

on an interval, Proc. Amer. Math. Soc., 18, 1967, 472-477.

[5] Elumalai, S., Best approximation sets in linear 2-normed spaces,

Commu. Korean. Math. Soc., 12, 1997, 619-629.



Best simultaneous approximation in linear 2-normed spaces 81

[6] Elumalai, S. and Mercy Souruparani, On best approximation in linear

2-normed spaces in the sense of Lumer, Proceedings of the national

Conference on optimization techniques in industrial mathematics, 2000,

73-82.

[7] Elumalai, S. and Mercy Souruparani, A characterization of best ap-

proximation and operators in linear 2-normed spaces, Cal. Math. Soc.

92(4)(2000), 235-248.

[8] Goel, D. S., A. S. B. Holland, C. Nasim and B. N. Sahney, On best

simultaneous approximation in normed linear spaces , Canadian math-

ematical Bulletin, 17, 4, 1974, 523-527.

[9] Goel, D. S., A. S. B. Holland, C. Nasim and B. N. Sahney, Char-

acterization of an element of best lp simultaneous approximation, S.

Ramanujan Memorial Volume Madras, 1974, 10-14.

S.ELUMALAI

Ramanujan Institute for Advanced Study in Mathematics,

University of Madras,

Chennai - 600 005,

Tamilnadu,

India.

R. VIJAYARAGAVAN

School of Science and Humanities,

Vellore Institute of Technology University,

Vellore - 632 014,

Tamilnadu,

India.


