Starlike image of a class of analytic functions¹ Szász Róbert

Abstract

It is proved that a subclass of the class of close-to-convex functions it is mapped by the Alexander Operator to the class of starlike functions.

2000 Mathematics Subject Clasification: 30C45

Key words: the operator of Alexander, starlike functions, convolution.

1 Introduction

We introduce the notation $U = \{z \in \mathbb{C} : |z| < 1\}.$

Let \mathcal{A} be the class of analytic functions defined on the unit disc U with normalization of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$.

The subclass of \mathcal{A} consisting of functions, for which the domain f(U) is starlike with respect to 0, is denoted by S^* . An analytic description of S^* is given by

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}.$$

The subset of \mathcal{A} defined by

$$C = \left\{ f \in \mathcal{A} \mid \exists \ g \in S^* : \operatorname{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U \right\},\,$$

Accepted for publication (in revised form) 4 December, 2007

This work was supported by the Research Foundation Sapientia

¹Received 13 July, 2007

is called the class of close – to – convex functions.

We mention that C and S^* contain univalent functions.

The Alexander integral operator is defined by the equality:

$$A(f)(z) = \int_0^z \frac{f(t)}{t} dt.$$

Recall that if f and g are analytic in U and g is univalent, then the function f is said to be subordinate to g, written $f \prec g$ if f(0) = g(0) and $f(U) \subset g(U)$.

In [2] the authors proved the following result:

Theorem 1. Let A be the operator of Alexander and let $g \in A$ satisfy

(1)
$$\operatorname{Re} \frac{zg'(z)}{g(z)} \ge \left| \operatorname{Im} \frac{z(zg'(z))'}{g(z)} \right|, \ z \in U.$$

If $f \in \mathcal{A}$ satisfies

$$\operatorname{Re} \frac{zf'(z)}{g(z)} > 0, \ z \in U$$

then $F = A(f) \in S^*$.

This Theorem says that a subclass of C is mapped by the Alexander Operator to S^* . This result naturally rises the question whether the Alexander Operator can map the whole class of close-to convex functions in S^* . In [4] the author proved that this did not happen. In the followings we are going to determine another subclass of C which is mapped by the Alexander Operator in S^* .

2 Preliminaries

We need the following definitions and lemmas in our study.

Definition 1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be two analytic functions in U. The convolution of the functions f and g is defined by the equality

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

Definition 2. Let A_0 be the class of analytic functions in U which satisfy f(0) = 1. If $V \subset A_0$, then the dual of V denoted by V^d consists of functions g which satisfy $g \in A_0$ and $(f * g)(z) \neq 0$ for every $f \in V$ and every $z \in U$.

Let h_T be the function defined by the equality

$$h_T(z) = \frac{1}{1+iT} \left[iT \frac{z}{1-z} + \frac{z}{(1-z)^2} \right], \quad T \in \mathbb{R}.$$

It is simple to observe that h_T is an element of class \mathcal{A} . The class \mathcal{P} is the subset of A_0 defined by

$$\mathcal{P} = \{ f \in A_0 : Re(f(z)) > 0, z \in U \}.$$

Lemma 1. ([3],p.23) (duality theorem) The dual of \mathcal{P} is

$$\mathcal{P}^d = \{ f \in A_0 | Re(f(z)) > \frac{1}{2}, z \in U \}.$$

Lemma 2. ([3],p.94) The function $f \in \mathcal{A}$ belongs to the class of the starlike functions (denoted by S^*) if and only if $\frac{f(z)}{z} * \frac{h_T(z)}{z} \neq 0$ for all $T \in \mathbb{R}$ and for all $z \in U$.

Lemma 3. [1](The Herglotz formula) For all $f \in \mathcal{P}$ there exists a probability measure μ on the interval $[0, 2\pi]$ so that

$$f(z) = \int_{0}^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t)$$

or in developed form

$$f(z) = 1 + 2 \int_0^{2\pi} \left(\sum_{n=1}^{\infty} z^n e^{-int} \right) d\mu(t)$$

The converse of the theorem is also valid.

Lemma 4. ([1] p. 54) Let $\alpha, \beta \in (0, \infty)$ be arbitrary numbers. Let

$$G_{\alpha} = \{ f \in A_0 : f(z) = \int_0^{2\pi} \frac{1}{(1 - ze^{-it})^{\alpha}} d\mu(t), \mu \text{ is a probability measure.} \}.$$

If $f \in G_{\alpha}$ and $g \in G_{\beta}$, then $fg \in G_{\alpha\beta}$.

Lemma 5. ([1] p. 51) Let $\alpha \in (0, \infty)$, $c \in \mathbb{C}$, $|c| \leq 1$, $c \neq -1$, $F_{\alpha} = \left(\frac{1+cz}{1-z}\right)^{\alpha}$. If $f \prec F_{\alpha}$, then there is a probability measure μ , so that

$$f(z) = \int_0^{2\pi} \left(\frac{1 + cze^{-it}}{1 - ze^{-it}}\right)^{\alpha} d\mu(t).$$

Lemma 6. ([2] p. 22) Let $p(z) = a + \sum_{k=n}^{\infty} a_k z^k$ be analytic in U with $p(z) \not\equiv a$, $n \geq 1$ and let $q: U(0,1) \to \mathbb{C}$ be a univalent function with q(0) = a. If $p \not\prec q$ then there are two points $z_0 \in U(0,1)$, $\zeta_0 \in \partial U(0,1)$ and a real number $m \in [n, +\infty)$ so that q is defined in ζ_0 , $p(z_0) = q(\zeta_0)$, $p(U(0, r_0)) \subset q(U)$, $r_0 = |z_0|$, and

(i)
$$z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$$

(ii) Re
$$\left(1 + \frac{z_0 p''(z_0)}{p'(z_0)}\right) \ge m \operatorname{Re} \left(1 + \frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)}\right)$$
.

We mention that $z_0p'(z_0)$ is the outward normal to the curve $p(\partial U(0, r_0))$ at the point $p(z_0)$, $(\partial U(0, r_0))$ denotes the border of the disc $U(0, r_0)$)

3 The Main Result

Theorem 2. Let A be the operator of Alexander and let $g \in A$ satisfy

(2)
$$\frac{zg'(z)}{g(z)} \prec \frac{2-z}{2(1-z)}, \ z \in U.$$

If $f \in \mathcal{A}$ satisfies

(3)
$$\frac{zf'(z)}{g(z)} \prec \frac{1}{\sqrt{1-z}}, \ z \in U,$$

then $F = A(f) \in S^*$.

Proof. The first step is to show that the condition (2) implies the subordination

$$\frac{g(z)}{z} \prec \frac{1}{\sqrt{1-z}}.$$

Using the notation $p(z) = \frac{g(z)}{z}$, condition (2) becomes

(5)
$$\frac{zp'(z)}{p(z)} \prec \frac{z}{2(1-z)} = h(z).$$

If the subordination $p(z) \prec \frac{1}{\sqrt{1-z}}$ does not hold true then according to Lemma 6 there are two points $z_0 \in U$ and $\zeta_0 \in \partial U$ and a real number $m \in [1, \infty)$, so that

$$p(z_0) = \frac{1}{\sqrt{1-\zeta_0}}$$
 and $z_0 p'(z_0) = \frac{m}{2}\zeta_0 (1-\zeta_0)^{-\frac{3}{2}}$.

This implies that

$$\frac{z_0 p'(z_0)}{p(z_0)} = mh(\zeta_0).$$

Since h is a starlike function with respect to 0, $m \ge 1$ and $h(\zeta_0)$ is on the border of h(U), we obtain that

$$mh(\zeta_0) \notin h(U)$$
 and so $\frac{z_0 p'(z_0)}{p(z_0)} \notin h(U)$.

This contradicts (5) and consequently (4) holds true.

Lemma 5 implies that there are two probability measures μ and ν so that

$$\frac{g(z)}{z} = \int_0^{2\pi} \frac{1}{\sqrt{1 - ze^{-it}}} d\mu(t)$$

and

$$\frac{zf'(z)}{g(z)} = \int_0^{2\pi} \frac{1}{\sqrt{1 - ze^{-is}}} d\nu(s).$$

A simple computation leads to

$$f'(z) = \int_0^{2\pi} \frac{1}{\sqrt{1 - ze^{-it}}} d\mu(t) \int_0^{2\pi} \frac{1}{\sqrt{1 - ze^{-is}}} d\nu(s) = \int_0^{2\pi} \int_0^{2\pi} \frac{1}{\sqrt{1 - ze^{-it}}} \frac{1}{\sqrt{1 - ze^{-is}}} d\mu(t) d\nu(s).$$

According to Lemma 4 there is a probability measure λ so that

(6)
$$f'(z) = \int_0^{2\pi} \frac{1}{1 - ze^{-it}} d\lambda(t).$$

We get after integrating the equality (6) that

$$f(z) = \int_0^{2\pi} e^{-it} \log\left(\frac{1}{1 - ze^{-it}}\right) d\lambda(t) =$$
$$\sum_{n=1}^{\infty} \frac{z^n}{n} \int_0^{2\pi} e^{-it(n-1)} d\lambda(t)$$

and

$$F(z) = A(f)(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2} \int_0^{2\pi} e^{-it(n-1)} d\lambda(t).$$

We obtain after a simple calculation that

$$h_T(z) = z + \sum_{n=1}^{\infty} \frac{n+1+iT}{1+iT} z^{n+1}, \ z \in U.$$

Lemma 2 says that the function F is starlike if and only if

(7)
$$\frac{F(z)}{z} * \frac{h_T(z)}{z} \neq 0 \text{ for all } T \in \mathbb{R} \text{ and for all } z \in U.$$

We have:

$$\frac{F(z)}{z} * \frac{h_T(z)}{z} = 1 + \sum_{n=1}^{\infty} \frac{z^n (n+1+iT)}{(n+1)^2 (1+iT)} \int_0^{2\pi} e^{-itn} d\lambda(t) = \left(1 + 2\sum_{n=1}^{\infty} z^n \int_0^{2\pi} e^{-itn} d\lambda(t)\right) * \left(1 + \sum_{n=1}^{\infty} \frac{z^n (n+1+iT)}{2(n+1)^2 (1+iT)}\right).$$

According to the Lemma 1, to prove (4) we have to show that

Re
$$\left(1 + \sum_{n=1}^{\infty} \frac{z^n(n+1+iT)}{2(n+1)^2(1+iT)}\right) > \frac{1}{2}, \ z \in U, \ T \in \mathbb{R}$$

or equivalently

(8)
$$\operatorname{Re}\left(1 + \sum_{n=1}^{\infty} \frac{z^n(n+1+iT)}{(n+1)^2(1+iT)}\right) > 0, \ z \in U, \ T \in \mathbb{R}.$$

A simple calculation leads to

$$\operatorname{Re}\left(1 + \sum_{n=1}^{\infty} \frac{z^{n}(n+1+iT)}{(n+1)^{2}(1+iT)}\right)$$

$$= \operatorname{Re}\left(1 + \frac{1}{1+iT} \sum_{n=1}^{\infty} \frac{z^{n}}{1+n} + \frac{iT}{1+iT} \sum_{n=1}^{\infty} \frac{z^{n}}{(1+n)^{2}}\right).$$

Because of the minimum principle to prove (8) it is enough to show that

(9)
$$\operatorname{Re}\left(1 + \frac{1}{1+iT} \sum_{n=1}^{\infty} \frac{e^{in\theta}}{1+n} + \frac{iT}{1+iT} \sum_{n=1}^{\infty} \frac{e^{in\theta}}{(1+n)^2}\right) > 0,$$

 $\theta \in (0, 2\pi), T \in \mathbb{R}.$

We consider the function $f(z) = \frac{e^{i\theta z}}{(\beta + z)(e^{2\pi iz} - 1)}, \beta > 0$, where $\theta \in (0, 2\pi)$ is a fixed number.

Let $\Gamma(r,n)$ be the contour constructed in the following way: $\Gamma(r,n) = \gamma_1 \cup \gamma_3 \cup \gamma_2 \cup \gamma_4$, where $\gamma_1(t) = R_n e^{i(\pi t - \frac{\pi}{2})}, \gamma_2(t) = r e^{i(-\pi t + \frac{\pi}{2})}, t \in [0,1]$, $\gamma_3(t) = iR_n + t(ir - iR_n), \gamma_4(t) = -ir + t(ir - iR_n), t \in [0,1], r \in (0,1)$ and $R_n = n + \frac{1}{2}$, where n belongs the set of natural numbers. We obtain from the residue theorem that

$$\int_{\Gamma(r,n)} f(z)dz = 2\pi i \sum_{0 < k < n + \frac{1}{2}} Res(f,k).$$

A straightforward computation yields

$$\lim_{r \to 0} \int_{\gamma_2} f(z) dz = -i\pi \cdot \text{Res}(f, 0)$$
$$\text{Res}(f, z_k) = \text{Res}(f, k) = \frac{e^{i\theta k}}{2\pi i (k + \beta)}, \quad k \in \mathbb{N}.$$

We finally get that if $\theta \in (0, 2\pi)$ and $\beta > 0$, then the following identity holds true:

$$\int_{0}^{\infty} \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(\beta^{2} + x^{2})(e^{2\pi x} - 1)} dx + i\beta \int_{0}^{\infty} \frac{e^{(2\pi - \theta)x} - e^{\theta x}}{(\beta^{2} + x^{2})(e^{2\pi x} - 1)} dx = \frac{1}{2\beta} + \sum_{k=1}^{\infty} \frac{e^{i\theta k}}{k + \beta}.$$

If we differentiate this equality with respect to β it results that

$$2\beta \int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(\beta^2 + x^2)^2 (e^{2\pi x} - 1)} dx + i \int_0^\infty \frac{(\beta^2 - x^2)(e^{(2\pi - \theta)x} - e^{\theta x})}{(\beta^2 + x^2)^2 (e^{2\pi x} - 1)} dx = \frac{1}{2\beta^2} + \sum_{k=1}^\infty \frac{e^{i\theta k}}{(k+\beta)^2}.$$

Using (10) and (11) the expression from (9) becomes

$$(13) \frac{1}{1+T^2} \left(\frac{1}{2} + \int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(1+x^2)(e^{2\pi x} - 1)} dx + 2T \int_0^\infty \frac{x^2(e^{(2\pi - \theta)x} - e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx + T^2 \left(\frac{1}{2} + 2 \int_0^\infty \frac{x(e^{(2\pi - \theta)x} + e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx \right) \right) \ge 0,$$

for all $\theta \in (0, 2\pi)$, $T \in \mathbb{R}$.

If we prove that

(14)
$$\int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(1+x^2)(e^{2\pi x} - 1)} dx + 2T \int_0^\infty \frac{x^2(e^{(2\pi - \theta)x} - e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx$$
$$+2T^2 \int_0^\infty \frac{x(e^{(2\pi - \theta)x} + e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx \ge 0, \text{ for all } \theta \in (0, 2\pi), \ T \in \mathbb{R}.$$

then (12) results. The expression in (13) is a polynomial of degree two with respect to T. The discriminant of the polynomial is

$$\Delta_T = 4\left(\int_0^\infty \frac{x^2(e^{(2\pi-\theta)x} - e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx\right)^2 - 8\int_0^\infty \frac{x(e^{(2\pi-\theta)x} + e^{\theta x})}{(1+x^2)^2(e^{2\pi x} - 1)} dx \int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi-\theta)x})}{(1+x^2)(e^{2\pi x} - 1)} dx.$$

The condition (14) holds true if $\Delta_T \leq 0$, $\theta \in (0, 2\pi)$, $T \in \mathbb{R}$. This inequality is a simple consequence of the Cauchy-Schwarz inequality.

References

- [1] D.J. Hallenbeck, T.H. Mac Gregor, *Linear problems and convexity techniques in geometric function theory*, Pitman Advanced Publishing Program (1984).
- [2] S.S. Miller, P.T. Mocanu, Differential subordinations Theory and Applications, Marcel Dekker 2000.
- [3] Stephan Rouchwey, Convolution in Geometric Function Theory Les Presses de Université de Montréal, Montréal 1982.
- [4] Róbert Szász, *A Counter-Example Concerning Starlike Func*tions, Studia Univ. "Babeş-Bolyai" Mathematica Vol.LII, Number 3(2007)pp.167-170

Universitatea Sapientia Facultatea de Științe Tehnice și Umaniste Șoseaua Sighișoarei, 1C 540485, Tg. Mureș, Romania

E-mail: szasz_robert2001@yahoo.com