Steepest descent approximations in Banach space ${ }^{1}$

Arif Rafiq, Ana Maria Acu, Mugur Acu

Abstract

Let E be a real Banach space and let $A: E \rightarrow E$ be a Lipschitzian generalized strongly accretive operator. Let $z \in E$ and x_{0} be an arbitrary initial value in E for which the steepest descent approximation scheme is defined by $$
\begin{aligned} x_{n+1} & =x_{n}-\alpha_{n}\left(A y_{n}-z\right), \\ y_{n} & =x_{n}-\beta_{n}\left(A x_{n}-z\right), \quad n=0,1,2 \ldots, \end{aligned}
$$ where the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions: (i) $0 \leq \alpha_{n}, \beta_{n} \leq 1$, (ii) $\sum_{n=0}^{\infty} \alpha_{n}=+\infty$, (iii) $\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}$, converges strongly to the unique solution of the equation $A x=z$.

2000 Mathematics Subject Classification: 47H10, 47H17, 54H25 Key words and phrases: Ishikawa iterative scheme, Lipschitzian mapping, Generalized strongly accretive operator, Banach space

^[${ }^{1}$ Received 15 February, 2008 Accepted for publication (in revised form) 9 June, 2008]

1 Introduction

Let E be a real Banach space and let E^{*} be its dual space. The normalized duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined by

$$
J x=\left\{u \in E^{*}:\langle x, u\rangle=\|x\|\|u\|,\|u\|=\|x\|\right\}
$$

where $\langle.,$.$\rangle denotes the generalized duality pairing.$
A mapping A with domain $D(A)$ and range $R(A)$ in E is said to be strongly accretive if there exist a constant $k \in(0,1)$ such that for all $x, y \in$ $D(A)$, there exists $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq k\|x-y\|^{2},
$$

and is called ϕ-strongly accretive if there is a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that for any $x, y \in D(A)$ there exist $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq \phi(\|x-y\|)\|x-y\|
$$

The mapping A is called generalized Φ-accretive if there exist a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ such that for all $x, y \in D(A)$ there exist $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq \Phi(\|x-y\|) .
$$

It is well known that the class of generalized Φ-accretive mappings includes the class of ϕ-strongly accretive operators as a special case (one set $\Phi(s)=s \phi(s)$ for all $s \in[0, \infty))$.

Let $N(A):=\{x \in D(A): A x=0\} \neq \varnothing$.
The mapping A is called strongly quasi-accretive if there exist $k \in(0,1)$ such that for all $x \in D(A), p \in N(A)$ there exist $j(x-p) \in J(x-p)$ such that

$$
\langle A x-A p, j(x-p)\rangle \geq k\|x-p\|^{2}
$$

A is called ϕ-strongly quasi-accretive if there exist a strictly increasing function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(0)=0$ such that for all $x \in D(A)$, $p \in N(A)$ there exist $j(x-p) \in J(x-p)$ such that

$$
\langle A x-A p, j(x-p)\rangle \geq \phi(\|x-p\|)\|x-p\| .
$$

Finally, A is called generalized Φ-quasi-accretive if there exist a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ such that for all $x \in D(A), p \in N(A)$ there exist $j(x-p) \in J(x-p)$ such that

$$
\begin{equation*}
\langle A x-A p, j(x-p)\rangle \geq \Phi(\|x-p\|) \tag{1}
\end{equation*}
$$

A mapping $G: E \rightarrow E$ is called Lipschitz if there exists a constants $L>0$ such that $\|G x-G y\| \leq L\|x-y\|$ for all $x, y \in D(G)$.

Closely related to the class of accretive-type mappings are those of pseudo-contractive types.

A mapping $T: E \rightarrow E$ is called strongly pseudo-contractive if and only if $I-T$ is strongly accretive, and is called strongly ϕ-pseudo-contractive if and only if $(I-T)$ is ϕ-strongly accretive. The mapping T is called generalized Φ-pseudo-contractive if and only if $(I-T)$ is generalized Φ-accretive.

In [5, page 9], Ciric et al. showed by taking an example that a generalized Φ-strongly quasi-accretive operator is not necessarily a ϕ-strongly quasiaccretive operator.

If $F(T):=\{x \in E: T x=x\} \neq \varnothing$, the mapping T is called strongly hemi-contractive if and only if $(I-T)$ is strongly quasi-accretive; it is called ϕ-hemi-contractive if and only if ($I-T$) is ϕ-strongly quasi-accretive; and T is called generalized Φ-hemi-contractive if and only if $(I-T)$ is generalized Φ-quasi-accretive.

The class of generalized Φ-hemi-contractive mappings is the most general (among those defined above) for which T has a unique fixed point. The relation between the zeros of accretive-type operators and the fixed points of pseudo-contractive-type mappings is well known $[1,8,11]$.

The steepest descent approximation process for monotone operators was introduced independently by Vainberg [13] and Zarantonello [15]. Mann [9] introduced an iteration process which, under suitable conditions, converges to a zero in Hilbert space. The Mann iteration scheme was further developed by Ishikawa [6]. Recently, Ciric et al. [5], Zhou and Guo [16], Morales and Chidume [12], Chidume [3], Xu and Roach [14] and many others have studied the characteristic conditions for the convergence of the steepeast descent approximations.

Morales and Chidume proved the following theorem:

Theorem 1.. Let X be a uniformly smooth Banach space and let $T: X \rightarrow X$ be a ϕ-strongly accretive operator, which is bounded and demicontinous. Let $z \in X$ and let x_{0} be an arbitrary initial value in X for which $\lim _{t \rightarrow \infty} \inf \phi(t)>$ $\left\|T x_{0}\right\|$. Then the steepest descent approximation scheme

$$
x_{n+1}=x_{n}-\left(T x_{n}-z\right), n=0,1,2 \ldots,
$$

converges strongly to the unique solution of the equation $T x=z$ provided that the sequence $\left\{\alpha_{n}\right\}$ of positive real numbers satisfies the following:
(i) $\left\{\alpha_{n}\right\}$ is bounded above by some fixed constant,
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=+\infty$,
(iii) $\sum_{n=0}^{\infty} \alpha_{n} b\left(\alpha_{n}\right)<+\infty$,
where $b:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing continuous function.
In [5], Ciric et al. proved the following theorem:
Theorem 2.. Let X be a uniformly smooth Banach space and let $T: X \rightarrow X$ be a bounded and demicontinous generalized strongly accretive operator. Let $z \in X$ and let x_{0} be an arbitrary initial value in X for which $\left\|T x_{0}\right\|<$
$\sup \{\Phi(t) / t: t>0\}$. Then a steepest descent approximation scheme defined by

$$
\begin{aligned}
x_{n+1} & =x_{n}-\alpha_{n}\left(T y_{n}-z\right), n=0,1,2 \ldots \\
y_{n} & =x_{n}-\beta_{n}\left(T x_{n}-z\right), n=0,1,2, \ldots
\end{aligned}
$$

where the sequence $\left\{\alpha_{n}\right\}$ of positive real numbers satisfies the following conditions:
(i) $\quad \alpha_{n} \leq \lambda, \quad$ where λ is some fixed constant,
(ii) $\sum_{n=0}^{\infty} \alpha_{n}=+\infty$,
(iii) $\quad \alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, converges strongly to the unique solution of the equation $T x=z$.

The purpose of this paper is to continue a study of sufficient conditions for the convergence of the steepest descent approximation process to the zero of a generalized strongly accretive operator. We also extend and improve the results which include the steepest descend method considered by Ciric et al. [5], Morales and Chidume [12], Chidume [3] and Xu and Roach [14] for a bounded ϕ-strongly quasi-accretive operator and also the generalized steepest descend method considered by Zhou and Guo [16] for a bounded ϕ-strongly quasi-accretive operator.

2 Main results

The following lemmas are now well known.
Lemma 1. [2] Let $J: E \rightarrow 2^{E}$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \text { for all } \quad j(x+y) \in J(x+y)
$$

Suppose there exist a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$.

Lemma 2. [10] Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function with $\Phi(0)=0$ and $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be nonnegative real sequences such that

$$
\lim _{n \rightarrow \infty} b_{n}=0, \quad c_{n}=o\left(b_{n}\right), \quad \sum_{n=0}^{\infty} b_{n}=\infty
$$

Suppose that for all $n \geq 0$,

$$
a_{n+1}^{2} \leq a_{n}^{2}-\Phi\left(a_{n+1}\right) b_{n}+c_{n}
$$

then $\lim _{n \rightarrow \infty} a_{n}=0$.
Theorem 3.. Let E be a real Banach space and let $A: E \rightarrow E$ be a Lipschitzian generalized strongly accretive operator. Let $z \in E$ and x_{0} be an arbitrary initial value in E for which the steepest descent approximation scheme is defined by

$$
\begin{align*}
x_{n+1} & =x_{n}-\alpha_{n}\left(A y_{n}-z\right) \\
y_{n} & =x_{n}-\beta_{n}\left(A x_{n}-z\right), \quad n=0,1,2 \ldots \tag{2}
\end{align*}
$$

where the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions:

$$
\begin{aligned}
& \text { (i) } 0 \leq \alpha_{n}, \beta_{n} \leq 1 \\
& \text { (ii) } \sum_{n=0}^{\infty} \alpha_{n}=+\infty \\
& \text { (iii) } \lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}
\end{aligned}
$$

converges strongly to the unique solution of the equation $A x=z$.
Proof. Following the tehnique of Chidume and Chidume [4], without loss of generality we may assume that $z=0$. Define by p the unique zero of A.

By $\lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}$, imply there exist $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}, \alpha_{n} \leq \delta$ and $\beta_{n} \leq \delta^{\prime}$;

$$
\begin{aligned}
& 0<\delta=\min \left\{\frac{1}{3 L}, \frac{\Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right)}{36 L^{2}\left[\Phi^{-1}\left(a_{0}\right)\right]^{2}}\right\} \\
& 0<\delta^{\prime}=\min \left\{\frac{1}{2 L}, \frac{\Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right)}{24 L^{2}\left[\Phi^{-1}\left(a_{0}\right)\right]^{2}}\right\} .
\end{aligned}
$$

Define $a_{0}:=\left\|A x_{n_{0}}\right\|\left\|x_{n_{0}}-p\right\|$. Then from (1), we obtain that $\left\|x_{n_{0}}-p\right\| \leq$ $\Phi^{-1}\left(a_{0}\right)$.

By induction, we shall prove that $\left\|x_{n}-p\right\| \leq 2 \Phi^{-1}\left(a_{0}\right)$ for all $n \geq n_{0}$. Clearly, the inequality holds for $n=n_{0}$. Suppose it holds for some $n \geq n_{0}$, i.e., $\left\|x_{n}-p\right\| \leq 2 \Phi^{-1}\left(a_{0}\right)$. We prove that $\left\|x_{n+1}-p\right\| \leq$ $2 \Phi^{-1}\left(a_{0}\right)$. Suppose that this is not true. Then $\left\|x_{n+1}-p\right\|>2 \Phi^{-1}\left(a_{0}\right)$, so that $\Phi\left(\left\|x_{n+1}-p\right\|\right)>\Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right)$. Using the recursion formula (2), we have the following estimates

$$
\begin{aligned}
\left\|A x_{n}\right\| & =\left\|A x_{n}-A p\right\| \leq L\left\|x_{n}-p\right\| \leq 2 L \Phi^{-1}\left(a_{0}\right) \\
\left\|y_{n}-p\right\| & =\left\|x_{n}-p-\beta_{n} A x_{n}\right\| \leq\left\|x_{n}-p\right\|+\beta_{n}\left\|A x_{n}\right\| \\
& \leq 2 \Phi^{-1}\left(a_{0}\right)+2 L \Phi^{-1}\left(a_{0}\right) \beta_{n} \leq 3 \Phi^{-1}\left(a_{0}\right) \\
\left\|x_{n+1}-p\right\| & =\left\|x_{n}-p-\alpha_{n} A y_{n}\right\| \leq\left\|x_{n}-p\right\|+\alpha_{n}\left\|A y_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+L \alpha_{n}\left\|y_{n}-p\right\| \\
& \leq 2 \Phi^{-1}\left(a_{0}\right)+3 L \Phi^{-1}\left(a_{0}\right) \alpha_{n} \leq 3 \Phi^{-1}\left(a_{0}\right) .
\end{aligned}
$$

With these estimates and again using the recursion formula (2), we obtain by Lemma 1 that

$$
\begin{align*}
&\left\|x_{n+1}-p\right\|^{2}=\left\|x_{n}-p-\alpha_{n} A y_{n}\right\|^{2} \tag{3}\\
& \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n}\left\langle A y_{n}, j\left(x_{n+1}-p\right)\right\rangle \\
&=\left\|x_{n}-p\right\|^{2}-2 \alpha_{n}\left\langle A x_{n+1}, j\left(x_{n+1}-p\right)\right\rangle \\
&+2 \alpha_{n}\left\langle A x_{n+1}-A y_{n}, j\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(\left\|x_{n+1}-p\right\|\right) \\
&+ 2 \alpha_{n}\left\|A x_{n+1}-A y_{n}\right\|\left\|x_{n+1}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(\left\|x_{n+1}-p\right\|\right) \\
&+ 2 \alpha_{n} L\left\|x_{n+1}-y_{n}\right\|\left\|x_{n+1}-p\right\|,
\end{align*}
$$

where

$$
\begin{aligned}
\left\|x_{n+1}-y_{n}\right\| & \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|=\alpha_{n}\left\|A y_{n}\right\|+\beta_{n}\left\|A x_{n}\right\| \\
& \leq L \alpha_{n}\left\|y_{n}-p\right\|+L \beta_{n}\left\|x_{n}-p\right\| \leq L \Phi^{-1}\left(a_{0}\right)\left(3 \alpha_{n}+2 \beta_{n}\right)
\end{aligned}
$$

and consequently from (3), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(\left\|x_{n+1}-p\right\|\right) \tag{4}\\
& +2 L^{2} \Phi^{-1}\left(a_{0}\right)\left(3 \alpha_{n}^{2}+2 \alpha_{n} \beta_{n}\right)\left\|x_{n+1}-p\right\| \\
& \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) \\
& +6 L^{2}\left[\Phi^{-1}\left(a_{0}\right)\right]^{2}\left(3 \alpha_{n}^{2}+2 \alpha_{n} \beta_{n}\right) \\
& \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right)+\alpha_{n} \Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) \\
& =\left\|x_{n}-p\right\|^{2}-\alpha_{n} \Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) .
\end{align*}
$$

Thus

$$
\alpha_{n} \Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2},
$$

implies

$$
\Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) \sum_{n=n_{0}}^{j} \alpha_{n} \leq \sum_{n=n_{0}}^{j}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right)=\left\|x_{n_{0}}-p\right\|^{2},
$$

so that as $j \rightarrow \infty$ we have

$$
\Phi\left(2 \Phi^{-1}\left(a_{0}\right)\right) \sum_{n=n_{0}}^{\infty} \alpha_{n} \leq\left\|x_{n_{0}}-p\right\|^{2}<\infty
$$

which implies that $\sum_{n=0}^{\infty} \alpha_{n}<\infty$, a contradiction. Hence, $\left\|x_{n+1}-p\right\| \leq$ $2 \Phi^{-1}\left(a_{0}\right)$; thus $\left\{x_{n}\right\}$ is bounded. Consider

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & =\left\|x_{n}-\beta_{n} A x_{n}-x_{n}\right\|=\beta_{n}\left\|A x_{n}\right\| \leq L \beta_{n}\left\|x_{n}-p\right\| \\
& \leq 2 L \Phi^{-1}\left(a_{0}\right) \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

implies the sequence $\left\{y_{n}-x_{n}\right\}$ is bounded. Since $\left\|y_{n}-p\right\| \leq\left\|y_{n}-x_{n}\right\|+$ $\left\|x_{n}-p\right\|$, further implies the sequence $\left\{y_{n}\right\}$ is bounded.

Now from (4), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} \Phi\left(\left\|x_{n+1}-p\right\|\right) \tag{5}\\
& +4 L^{2}\left[\Phi^{-1}\left(a_{0}\right)\right]^{2}\left(3 \alpha_{n}^{2}+2 \alpha_{n} \beta_{n}\right) .
\end{align*}
$$

Denote

$$
\begin{aligned}
& a_{n}=\left\|x_{n}-p\right\| \\
& b_{n}=2 \alpha_{n} \\
& c_{n}=4 L^{2}\left[\Phi^{-1}\left(a_{0}\right)\right]^{2}\left(3 \alpha_{n}^{2}+2 \alpha_{n} \beta_{n}\right) .
\end{aligned}
$$

Condition $\lim _{n \rightarrow \infty} \alpha_{n}=0$ ensures the existence of a rank $n_{0} \in \mathbb{N}$ such that $b_{n}=2 \alpha_{n} \leq 1$, for all $n \geq n_{0}$. Now with the help of $\sum_{n=0}^{\infty} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=$ $0=\lim _{n \rightarrow \infty} \beta_{n}$ and Lemma 2, we obtain from (5) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0
$$

completing the proof.
Theorem 4.. Let E be a real Banach space and let $A: E \rightarrow E$ be a Lipschitzian generalized strongly quasi-accretive operator such that $N(A) \neq$ Ø. Let $z \in E$ and x_{0} be an arbitrary initial value in E for which the steepest descent approximation scheme is defined by

$$
\begin{aligned}
x_{n+1} & =x_{n}-\alpha_{n}\left(A y_{n}-z\right), \\
y_{n} & =x_{n}-\beta_{n}\left(A x_{n}-z\right), \quad n=0,1,2 \ldots,
\end{aligned}
$$

where the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy the following conditions:

$$
\begin{aligned}
& \text { (i) } 0 \leq \alpha_{n}, \beta_{n} \leq 1 \\
& \text { (ii) } \sum_{n=0}^{\infty} \alpha_{n}=+\infty \\
& \text { (iii) } \lim _{n \rightarrow \infty} \alpha_{n}=0=\lim _{n \rightarrow \infty} \beta_{n}
\end{aligned}
$$

converges strongly to the unique solution of the equation $A x=z$.
Remark 1. One can easily see that if we take $\alpha_{n}=\frac{1}{n^{\sigma}} ; 0<\sigma<\frac{1}{2}$, then $\sum \alpha_{n}=\infty$, but also $\sum \alpha^{2} \nless \infty$. Hence the results of Chidume and Chidume in [4] are not true in general and consequently the results presented in this manuscript are independent of interest.

References

[1] F. E. Browder, Nonlinear mappings of non-expansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
[2] S.S. Chang, On Chidume's open questions and aproximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94-111.
[3] C. E. Chidume, Steepest descent approximations for accretive operator equations, Nonlinear Anal. 26 (1996), 299-311.
[4] C. E. Chidume, C. O. Chidume, Convergence theorems for fixed point of uniformly continous generalized Φ-hemi-contractive mappings, J. Math. Anal. Appl. 303 (2005), 545-554.
[5] Lj. B. Ciric et al., On the steepest descent approximation method for the zeros of generalized accretive operators, Nonlinear Analysis Series A: Theory, Methods \& Applications, in press.
[6] S. Ishikawa, Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 73 (1976), 65-71.
[7] A. G. Kartsatos, Zeros of demicontinous accretive operators in Banach space, J. Integral Eqns. 8 (1985), 175-184.
[8] T. Kato, Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan 18/19 (1967), 508-520.
[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953). 506-510.
[10] C. Moore and B.V.C. Nnoli, Iterative solution of nonlinear equations involving setvalued uniformly accretive operators, Comput. Math. Appl. 42 (2001), 131-140.
[11] C. H. Morales, Surjectivity theorems for multi-valued mappings of accretive types, Comment. Math. Univ. Carol. 26 No. 2 (1985), 397-413.
[12] C. H. Morales, C. E. Chidume, Convergence of the steepest descent method for accretive operators, Proc. Amer. Math. Soc. 127(12) (1999), 3677-3683.
[13] M. M. Vainberg, On the convergence of the method of steepest descent for nonlinear equations, Sibirsk Math. Zb. (1961), 201-220.
[14] Z.B. Xu, G. F. Roach, Characteristic inequalities in uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189-210.
[15] E. H. Zarantonello, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. 70 (1964), 781-783.
[16] H. Y. Zhou, J. Guo, A characteristic condition for convergence of generalized steepest descent approximation to accretive equations, Indian J. Pure Appl. Math. 32 (2) (2001), 277-284.

Arif Rafiq
COMSATS Institute of
Information Technology
Department of Mathematics
Islamabad, Pakistan
E-mail: arafiq@comsats.edu.pk

Ana Maria Acu \& Mugur Acu
"Lucian Blaga" University
Department of Mathematics
Sibiu, Romania
E-mail: acuana77@yahoo.com
acu_mugur@yahoo.com

