
General Mathematics Vol. 16, No. 1 (2008), 41-50

On X - Hadamard and B- derivations1

A. P. Madrid, C. C. Peña

Abstract

Let F be an infinite dimensional complex Banach space endowed

with a bounded shrinking basis X. We seek conditions to relate

X- Hadamard derivations and B-derivations supported on multiplier

operators of F relative to X. It is seeing that in general the former

class is larger than the first and some facts on basis problems are

also considered.
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1 Introduction

Throughout this article by F we will denote a complex infinite dimensional

Banach space endowed with a bounded shrinking basis X = {xn}
∞
n=1. Let

F ⊗̂F ∗ be the tensor product Banach space of F and F ∗, i.e. the completion

of the usual algebraic tensor product with respect to the following cross

norm defined for u ∈ F ⊗̂F ∗ as

||u||n = inf

{
n∑

j=1

||xj||||x
∗
j || : u =

n∑

j=1

xj ⊗ x∗
j

}
.
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The space F ⊗̂F ∗ is indeed a Banach algebra under the product so that

(x ⊗ x∗)(y ⊗ y∗) = 〈y, x∗〉(x ⊗ x∗)

if x, y ∈ F, x∗, y∗ ∈ F ∗. Then F ⊗̂F ∗ is isometric isomorphic to the Banach

algebra NF ∗(F ) of nuclear operators on F (cf. [5], Th. C.1.5, p. 256). This

fact allows the transference of the investigation of properties and structure

of bounded derivations to a more tractable frame which has essentially the

same profile. For previous researches on this matter in a purely algebraic

setting, in the frame of Hilbert spaces or on certain Banach algebras of

operators the reader can see [1], [2], [3].

The class of bounded derivations on F ⊗̂F ∗ denoted as D(F ⊗̂F ∗) be-

comes a closed subspace of B(F ⊗̂F ∗).

Example 1. If adv(u) = u ·v−v ·u for u, v ∈ F ⊗̂F ∗ then adv ∈ D(F ⊗̂F ∗).

As usual, {adv}v∈F b⊗F ∗ is the set of inner derivations on F ⊗̂F ∗.

Example 2. Let δF : B(F ) → B(F ⊗̂F ∗), δF (T ) , δT where δT is the unique

linear bounded operator on F ⊗̂F ∗ so that

δT (x ⊗ x∗) = T (x) ⊗ x∗ − x ⊗ T ∗(x∗)

for all basic tensor x ⊗ x∗ ∈ F ⊗̂F ∗. By the universal property on ten-

sor products δF is well defined. Indeed, R(δF ) ⊆ D(F ⊗̂F ∗) and δF ∈

B(B(F ),B(F ⊗̂F ∗)).

Example 3. adx⊗x∗ = δx⊙x∗, where as usual x ⊙ x∗ ∈ B(F ) denotes the

finite rank operator (x ⊙ x∗)(y) = 〈y, x∗〉 · x, with x, y ∈ F and x∗ ∈ F ∗.

Proposition 1. (cf. [6], [7]) Let F be a Banach space, {xn}
∞
n=1 be a shrink-

ing basis of F and let {x∗
n}

∞
n=1 be its a.s.c.f.. The system of all basic tensor

products x⊗x∗

m
is basis of F ⊗ F ∗, arranged into a single sequence as fol-

lows: If m ∈ N let n ∈ N so that (n − 1)2 < m ≤ n2 and then let’s write

xm = xσ1(m) ⊗ x∗
σ2(m), with

σ(m) =

{
(m − (n − 1)2, n) if (n − 12) + 1 ≤ m ≤ (n − 1)2 + n,

(n, n2 − m + 1) if (n − 1)2 + n ≤ m ≤ n2.
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Remark 1. In particular, σ : N → N × N becomes a bijective function.

Since F ∗⊗̂F →֒ (F ⊗̂F ∗)∗ we will also write z∗m = x∗
σ1(m) ⊗ xσ2(m), m ∈ N.

Thus {z∗m}
∞
n=1 becomes the a.sc.f. of {zm}

∞
n=1.

Theorem 1. (cf. [4]) Let F be an infinite dimensional Banach space with

a shrinking basis {x∗
n}

∞
n=1. Given δ ∈ D(F ⊗̂F ∗) there are unique sequences

{hn}n∈N and {gv
u}u,v∈N so that if u, v ∈ N then

δ(zσ−1(u,v)) = (hu − hv)zσ−1(u,v) +
∞∑

n=1

(gn
u · zσ−1(u,v) − gv

n · zσ−1(u,n)).

Indeed, h = h[δ] = (〈δ(zn2), z∗
n2〉)n∈N and η = η[δ] = (ηm

n )∞n,m=1, with

ηm
n = h

σ−1(m,1)
n,1 = hm2

σ(n2) =

{
〈δ(zn2), z∗

m2〉 if n 6= m

0, if n = m.

In the sequel we will say that they are the h and g sequences of δ.

Example 4. Let {vn}
∞
n=1 ∈ C

N so that v =
∞∑

n=1

vn · zn is a well defined

element of F ⊗̂F ∗. Then h[adv ] = {vn2−n+1 − v1}
∞
n=1, ηm[adv] = vm2−n+1 if

1 ≤ n < m and ηm
n = v(n−1)2+m if n > m.

Definition 1. A derivation δ ∈ D(F ⊗̂F ∗) is said to be an X-Hadamard

derivation if its g- sequence is null.

We will denote the set of all those derivations as DX(F ⊗̂F ∗). In [4] it is

proved that the former is a complementary Banach subspace of D(F ⊗̂F ∗).

Definition 2. An operator δ ∈ D(F ⊗̂F ∗) will be called a B-derivation if

there exists T ∈ B(F ) so that δ = δT according to the notation of Example

2. We will denote the class of such derivations as DB(F ⊗̂F ∗).

Remark 2. Any B-derivations is infinitely supported because δT = δT+λIdF

if T ∈ F and λ ∈ C. More precisely, ker(δF = C ·IdF )( see Lema 1 below ).
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In Th. 2 will prove that any X-Hadamard derivation is a B-derivation.

In Proposition 2 and Proposition 3 we will analize necessary and sufficient

conditions under which certain natural series of Hadamard derivations are

realized as B derivations. It’ll then be clear how h-sequences determine their

structures since the corresponding supports become multiplier operators

included by them.

2 X-Hadamard and B-derivations

Lemma 1. ker(δF ) = C · IdF .

Proof. The inclusion ⊇ is evident. Let T ∈ B(F ) so that δT = 0 and let

λ ∈ σT . If λ belongs to the compression spectrum of T let x∗ ∈ F ∗ − {0}

so that x∗
∣∣
R(T−λIdF )

≡ 0. For all x ∈ F we have

〈x, T ∗(x∗)〉 = 〈T (x), x∗〉 = 〈λx, x∗〉 = 〈x, λx∗〉,

i.e. (t∗ − λIdF ∗)(x∗) = 0. Moreover, since

(T (F ) − λx) ⊗ x∗ = x ⊗ (T ∗(x∗) − λx∗) = 0,

the projective norm is a cross-norm and x∗ 6= 0 then T = λIdF . If λ ∈

σap(T ) we choose a sequence {yn}
∞
n=1 of unit vectors of F so that T (yn) −

λyn → 0. If y∗ ∈ F ∗ then

0 = lim
n→∞

||(T (yn) − λyn) ⊗ y∗||π

= lim
n→∞

||yn ⊗ (T ∗(y∗) − λy∗)||π = ||T ∗(y∗) − λy∗||.

Reasoning as above we conclude that T = λIdF .

Lemma 2. (i) If r, s ∈ N then

(1) h[δxr⊙x∗

s
] =






{0,−1,−1, . . .} if r = s = 1,

{0, 0, ...} if r 6= s,

er if r = s > 1.

(ii) If r 6= s then η[δxr⊙x∗

s
] = er

s is the zero matrix elsewhere and has a one

in the (s, r) entry. All derivations δxn⊙x∗

n
with n ∈ N are of Hadamard type.
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Proof. (i) If r, s, n ∈ N we get

(2)

δxr ⊙ x∗
s(xn ⊗ x∗

m) = (xr ⊙ x∗
s)(xn) ⊗ x∗

m − xn ⊗ (xr ⊙ x∗
s)

∗(x∗
m)

= [〈xn, x
∗
s〉xr] ⊗ x∗

m − xn ⊗ [〈xr, x
∗
m〉 · x

∗
s]

= δn
s · (xr ⊗ x∗

m) − δm
r · (xn ⊗ x∗

s).

Letting m = 1 in (2) then

(3)

δxr⊙x∗

s
(xn ⊗ x∗

1) =
∞∑

p=1

hp
n,1 · zp

= δn
s · (xr ⊗ x∗

1) − δ1
r · (xn ⊗ x∗

s)

= δn
s · zr2 − δ1

r · zσ−1(n,s).

If r = s = 1 by (3) is and the first assertion follows. If r = s > 1 by

(3) is δxr⊙x∗

r
(xn ⊗ x∗

1) = δn
r · zr2 and our thirth claim follows. Finally, if

r 6= s = n then (3) becomes

δxr⊙x∗

s
(xs ⊗ x∗

1) = zr2 − δr
1 · zs2−s+1

and clearly hs[δxr⊙x∗

s
] = 0. If s 6∈ {r, n} then

δxr⊙x∗

s
(xn ⊗ x∗

1) = −δr
1 · zσ−1(n,s).

But σ−1(n, s) = n2 if and only if s = 1 and as r 6= s then hn[δxr⊙x∗

s
] = 0.

(ii) If r, s, n,m ∈ N and n 6= m then

(4)

ηm
n [δxr⊙x∗

s
] = 〈δX(xr ⊙ x∗

s)(zn2), z∗
m2〉

= 〈δXxr ⊙ x∗
s)(xn ⊗ x∗

1), x
∗
m ⊗ x1〉

= 〈δn
s · (xr ⊗ x∗

1) − (xn) ⊗ (xr ⊗ x∗
s)

∗(x∗
1), x

∗
m ⊗ x1〉

= δn
s · δr

m.

The conclusion is now clear.

Remark 3. Given an elementary tensor x ⊗ x∗ ∈ X⊗̂X∗ and m ∈ N we

have
(

m∑

n=1

δxn⊙x∗

n

)
(x ⊗ x∗) =

m∑

n=1

[〈x, x∗
n〉(xn ⊗ x∗) − 〈xn, x

∗〉(x ⊗ x∗
n)]

=

(
m∑

n=1

〈x, xn∗〉xn

)
⊗ x∗ − x ⊗

(
m∑

n=1

〈xn, x
∗〉x∗

n

)
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and so lim
m→0

(
m∑

n=1

δxn⊙x∗

n

)
(x ⊗ x∗) ≡ 0. Since the basis X is assumed to be

bounded then ρ = inf
n,p∈N

||xn||||x
∗
p|| is positive (cf. [7], Corollary 3.1, p.20).

Consequently, if n,m, p ∈ N and n 6= p then

(5)

∣∣∣∣

∣∣∣∣δxn⊙x∗

m

∣∣∣∣

∣∣∣∣ ≥
∣∣∣∣

∣∣∣∣δxn⊙x∗

m

(
xm

||xm||
⊗

x∗
p

||x∗
p||

) ∣∣∣∣

∣∣∣∣
π

=
||xn||

||xm||
≥ inf

n∈N

||xn||/ sup
m∈N

||xm|| > 0,

i.e. the series
∑∞

n=1 δxn⊙x∗

n
is not convergent.

Remark 4. The set {δxn⊙x∗

n
}∞n=1 is linearly dependent. For, let {cn}

∞
n=1 be

a sequence of scalars so that
∞∑

n=1

cn · δxn⊙x∗

n
≡ 0. In particular, by (4) is

{cn}
∞
n=1 ∈ c0. If r, s are two positive integers then

[
∞∑

n=1

cn · δxn⊙x∗

n

]
(xr ⊙ x∗

s) = (cr − cs)(xr ⊙ x∗
s) = 0,

i.e. cr = cs. Hence {cn}
∞
n=1 becomes the constant zero sequence and the

assertion follows.

Theorem 2. Every X-Hadamard derivation is a B-derivation.

Proof. If δ ∈ D(F ⊗̂F ∗) and x ∈ F the series
∞∑

n=1

〈x, x∗
n〉·hn[δ]·xn converges.

For, if p, q ∈ N then

∣∣∣∣

∣∣∣∣
p+q∑

n=p

〈x, x∗
n〉 · hn[δ] · xn

∣∣∣∣

∣∣∣∣ =

∣∣∣∣

∣∣∣∣δ
[(

p+q∑

n=p

〈x, x∗
n〉 · xn

)
⊗

x∗
1

||x∗
1||

] ∣∣∣∣

∣∣∣∣
π

≤ ||δ||

∣∣∣∣

∣∣∣∣
p+q∑

n=p

〈x, x∗
n〉 · xn

∣∣∣∣

∣∣∣∣,

i.e. the sequence of corresponding partial sums is a Cauchy sequence.

So, it is defined a linear operator Mh[δ] : x →

∞∑

n=1

〈x, x∗
n〉 · hn[δ] · xn that
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is bounded as a consequence of the Banach-Steinhauss theorem. Hence

h[δ] ∈ M(f ∗, X), i.e. h[δ] is a multiplier of F relative to the basis X.

Analogously, if x∗ ∈ F ∗ the series
∞∑

n=1

〈xm, x∗〉 · hm[δ] · x∗
m also converges

because if p, q ∈ N we get

∣∣∣∣

∣∣∣∣
p+q∑

m=p

〈xm, x∗〉 · hm[δ] · x∗
m

∣∣∣∣

∣∣∣∣ =

∣∣∣∣

∣∣∣∣
x1

||x1||
⊗

p+q∑

m=p

〈xm, x∗〉 · hm[δ] · x∗
m

∣∣∣∣

∣∣∣∣
π

=

∣∣∣∣

∣∣∣∣δ
(

x1

||x1||
⊗

p+q∑

m=p

〈xm, x∗〉 · x∗
m

)∣∣∣∣

∣∣∣∣
π

≤ ||δ||

∣∣∣∣

∣∣∣∣
p+q∑

n=p

〈xm, x∗〉 · x∗
m

∣∣∣∣

∣∣∣∣.

It is immediate that M∗
h[δ](x

∗) =
∞∑

n=1

〈xm, x∗〉 · hm[δ] · x∗
m for all x∗ ∈ F ∗ and

h[δ] is also realizes as a multiplier of F ∗ relative to the basis X∗. Now, if

x ⊗ x∗ is a fixed basic tensor in F ⊗̂F ∗ we can write

δ(x ⊗ x∗) =
∑∞

n=1〈x, x∗
n〉
∑∞

n=1〈xm, x∗〉(hn[δ] − hm[δ])(xn ⊗ xm∗)

= Mh[δ](x) ⊗ x∗ − x ⊗ M∗
h[δ](x

∗)

and definitely δ = δMh[δ]
.

Proposition 2. Let {ζ}∞n=1 ∈ C
N so that δ =

∞∑

n=1

ζn ·δxn⊙x∗

n
is a well defined

Hadamard derivation.

(i) h[δ] ∈ c, {ζ}∞n=1 ∈ c0 and ζm = hm[δ] − lim
n→∞

hn[δ] if m ∈ N.

(ii) δ = δS where S ∈ B(F ) is defined for x ∈ F as

S(x) =
∞∑

n=1

hn[δ] · 〈x, x∗
n〉 · xn − x · lim

n→∞
hn[δ].

Proof.

(i) If m ∈ N it is readily seeing that δ(xm ⊗ x∗
1) = (ζm − ζ1) · zm2 . Thus

h1[δ] = 0 and hm[δ] = ζm − ζ1 if m > 1. By (4) we have that {ζ}∞n=1 ∈ c0

and we get (ii).
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(ii) Let Sn =
n∑

k=1

(hk[δ]− lim
n→∞

xk ⊙ x∗
k), n ∈ N. By the uniform bounded-

ness principle and (ii) the sequence {Sn}n∈N is bounded in B(F ). Whence,

since Sn(x) → S(x) if x ∈ F then S ∈ B(F ). Indeed, if n,m ∈ N we get

δS(xn ⊕ x∗
m)=

= ((hn[δ] − limk→∞ hk[δ])xn) ⊗ x∗
m − xn ⊗ ((hm[δ] − limk→∞ hk[δ])x

∗
m)

= (hn[δ] − hm[δ]) · (xn ⊗ x∗
m)

= δ(xn ⊗ x∗
m),

i.e. δ = δS

Proposition 3. Let {hn}
∞
n=1 ∈ M(F, {xn}

∞
n=1) ∩ M(F ∗, {x∗

n}
∞
n=1) ∩ c such

that h1 = 0. On writing h0 , limn→∞ hn the series
∑∞

n=1(hn − h0) · δxn⊙x∗

n

converges to a Hadamard derivation δ on ⊗̂F ∗ so that h[δ] = {hn}
∞
n=1.

Proof. If S =
∞∑

k=1

(hk − h0) · xk ⊙ x∗
k then S ∈ B(F ) and

‖S‖ ≤ ‖{hn}
∞
n=1‖M(F,{xn}∞n=1) + |h0|.

Let Sn =
n∑

k=1

(hk−h0) ·xk⊕xk6∗, nN. Given x ∈ F the sequence {Sn(x)}∞n=1

converges because {hn}
∞
n=1 is a multiplier of F and ({xn}

∞
n=1) is an F−complete

biorthogonal system. Therefore {‖Sn‖}
∞
n=1 becomes bounded. Now if we

fix an elementary tensor y ⊗ y∗ ∈ F ⊗̂F ∗ and n ∈ N then

(6) ‖(δSn
− δS)(y ⊗ y∗)‖π =

∥∥∥∥∥
∑

k>n

(hk − h0) · 〈y, x∗
k〉 · xk ⊗ y∗

−y ⊗
∑

k>n

(hk − h0) · 〈xk, y
∗〉 · x∗

k

∥∥∥∥∥
π

≤

∥∥∥∥∥
∑

k>n

(hk − h0) · 〈y, x∗
k〉 · xk

∥∥∥∥∥ ‖y
∗‖

+‖y‖

∥∥∥∥∥
∑

k>n

(hk − h0) · 〈xk, y
∗〉 · x∗

k

∥∥∥∥∥.
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Since {hn}n=1∞ ∈ M(F, {xn}
∞
n=1) ∩ M(F ∗, {x∗

n}
∞
n=1) and {xn}

∞
n=1 is a

shrinking basis by (5) we see that limn→∞(δSn
− δS)(y ⊗ y∗) = 0. Indeed,

as F ⊗ F ∗ is dense in F ×̂F ∗, {Sn}
∞
n=1 is bounded and ‖δT‖ ≤ 2‖T‖ for all

T ∈ B(F ) then δS =
∑∞

n=1(hn − h0) · δxn⊙x∗

n
.

Problem 1 Giving T ∈ B(F ) then η[T ] = {〈T (xn), x∗
m〉}

∞
n,m=1. So it is

obvious that DX(F ⊗̂F ∗). It would be desirable to decide if DB(F ⊗̂F ∗) is a

Banach space.

Remark 5. Is {δxn⊗x∗

n
}∗n=1 a basis of DX(F ⊗̂F ∗)?- In general this is not

the case. For instance, let F = lp(N) with 1 < p < ∞ and let X = {en}
∞
n=1,

where en = {δn,m}
∞
m=1 and δn,m the current Kronecker symbol if n,m ∈ N.

Then X is not only a shrinking basis, it is further an unconditional basis

of F. Consequently, if T (x) =
∑∞

n=1〈x, e∗2n〉 for x ∈ F then T ∈ B(F ).

It is readily seeing that δT is an X-Hadamard derivation. Since h[δT ] =

{0, 1, 0, 1, ...} by Prop. 2 {δen⊙e∗n
}∞n=1 can not be a basis of DX(F ⊗̂F ∗).

Problem 2 Is {δxn⊙x∗

n
}∞n=1 a sequence basis?- Can be be constructed a

basis of DX((F ⊗̂F ∗)?-
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