On X - Hadamard and \mathcal{B} - derivations ${ }^{1}$

A. P. Madrid, C. C. Peña

Abstract

Let F be an infinite dimensional complex Banach space endowed with a bounded shrinking basis X. We seek conditions to relate X - Hadamard derivations and \mathcal{B}-derivations supported on multiplier operators of F relative to X. It is seeing that in general the former class is larger than the first and some facts on basis problems are also considered.

2000 Mathematics Subject Classification: 47B39
Key words: Bounded shrinking, sequence and unconditional basis, Associated sequence of coefficient functionals (or a.s.c.f.) of a basis, Bounded and Hadamard derivations.

1 Introduction

Throughout this article by F we will denote a complex infinite dimensional Banach space endowed with a bounded shrinking basis $X=\left\{x_{n}\right\}_{n=1}^{\infty}$. Let $F \widehat{\otimes} F^{*}$ be the tensor product Banach space of F and F^{*}, i.e. the completion of the usual algebraic tensor product with respect to the following cross norm defined for $u \in F \widehat{\otimes} F^{*}$ as

$$
\|u\|_{n}=\inf \left\{\sum _ { j = 1 } ^ { n } \left\|x_{j}\left|\left\|\mid x_{j}^{*}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes x_{j}^{*}\right\} .\right.\right.
$$

[^0]The space $F \widehat{\otimes} F^{*}$ is indeed a Banach algebra under the product so that

$$
\left(x \otimes x^{*}\right)\left(y \otimes y^{*}\right)=\left\langle y, x^{*}\right\rangle\left(x \otimes x^{*}\right)
$$

if $x, y \in F, x^{*}, y^{*} \in F^{*}$. Then $F \widehat{\otimes} F^{*}$ is isometric isomorphic to the Banach algebra $\mathcal{N}_{F^{*}}(F)$ of nuclear operators on F (cf. [5], Th. C.1.5, p. 256). This fact allows the transference of the investigation of properties and structure of bounded derivations to a more tractable frame which has essentially the same profile. For previous researches on this matter in a purely algebraic setting, in the frame of Hilbert spaces or on certain Banach algebras of operators the reader can see [1], [2], [3].

The class of bounded derivations on $F \widehat{\otimes} F^{*}$ denoted as $\mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ becomes a closed subspace of $\mathcal{B}\left(F \widehat{\otimes} F^{*}\right)$.
Example 1. If $a d_{v}(u)=u \cdot v-v \cdot u$ for $u, v \in F \widehat{\otimes} F^{*}$ then $a d_{v} \in \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$. As usual, $\left\{a d_{v}\right\}_{v \in F \widehat{\otimes} F^{*}}$ is the set of inner derivations on $F \widehat{\otimes} F^{*}$.

Example 2. Let $\delta_{F}: \mathcal{B}(F) \rightarrow \mathcal{B}\left(F \widehat{\otimes} F^{*}\right), \delta_{F}(T) \triangleq \delta_{T}$ where δ_{T} is the unique linear bounded operator on $F \widehat{\otimes} F^{*}$ so that

$$
\delta_{T}\left(x \otimes x^{*}\right)=T(x) \otimes x^{*}-x \otimes T^{*}\left(x^{*}\right)
$$

for all basic tensor $x \otimes x^{*} \in F \widehat{\otimes} F^{*}$. By the universal property on tensor products δ_{F} is well defined. Indeed, $\mathcal{R}\left(\delta_{F}\right) \subseteq \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ and $\delta_{F} \in$ $\mathcal{B}\left(\mathcal{B}(F), \mathcal{B}\left(F \widehat{\otimes} F^{*}\right)\right)$.

Example 3. $a d_{x \otimes x^{*}}=\delta_{x \odot x^{*}}$, where as usual $x \odot x^{*} \in \mathcal{B}(F)$ denotes the finite rank operator $\left(x \odot x^{*}\right)(y)=\left\langle y, x^{*}\right\rangle \cdot x$, with $x, y \in F$ and $x^{*} \in F^{*}$.

Proposition 1. (cf. [6], [7]) Let F be a Banach space, $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a shrinking basis of F and let $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ be its a.s.c.f. The system of all basic tensor products $x_{\otimes x_{m}^{*}}$ is basis of $F \otimes F^{*}$, arranged into a single sequence as follows: If $m \in \mathbb{N}$ let $n \in \mathbb{N}$ so that $(n-1)^{2}<m \leq n^{2}$ and then let's write $x_{m}=x_{\sigma_{1}(m)} \otimes x_{\sigma_{2}(m)}^{*}$, with

$$
\sigma(m)=\left\{\begin{array}{l}
\left(m-(n-1)^{2}, n\right) \quad \text { if } \quad\left(n-1^{2}\right)+1 \leq m \leq(n-1)^{2}+n \\
\left(n, n^{2}-m+1\right) \quad \text { if } \quad(n-1)^{2}+n \leq m \leq n^{2}
\end{array}\right.
$$

Remark 1. In particular, $\sigma: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ becomes a bijective function. Since $F^{*} \widehat{\otimes} F \hookrightarrow\left(F \widehat{\otimes} F^{*}\right)^{*}$ we will also write $z_{m}^{*}=x_{\sigma_{1}(m)}^{*} \otimes x_{\sigma_{2}(m)}, \quad m \in \mathbb{N}$. Thus $\left\{z_{m}^{*}\right\}_{n=1}^{\infty}$ becomes the a.sc.f. of $\left\{z_{m}\right\}_{n=1}^{\infty}$.

Theorem 1. (cf. [4]) Let F be an infinite dimensional Banach space with a shrinking basis $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$. Given $\delta \in \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ there are unique sequences $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{g_{u}^{v}\right\}_{u, v \in \mathbb{N}}$ so that if $u, v \in \mathbb{N}$ then

$$
\delta\left(z_{\sigma^{-1}(u, v)}\right)=\left(h_{u}-h_{v}\right) z_{\sigma^{-1}(u, v)}+\sum_{n=1}^{\infty}\left(g_{u}^{n} \cdot z_{\sigma^{-1}(u, v)}-g_{n}^{v} \cdot z_{\sigma^{-1}(u, n)}\right) .
$$

Indeed, $h=h[\delta]=\left(\left\langle\delta\left(z_{n^{2}}\right), z_{n^{2}}^{*}\right\rangle\right)_{n \in \mathbb{N}}$ and $\eta=\eta[\delta]=\left(\eta_{n}^{m}\right)_{n, m=1}^{\infty}$, with

$$
\eta_{n}^{m}=h_{n, 1}^{\sigma^{-1}(m, 1)}=h_{\sigma\left(n^{2}\right)}^{m^{2}}=\left\{\begin{array}{l}
\left\langle\delta\left(z_{n^{2}}\right), z_{m^{2}}^{*}\right\rangle \quad \text { if } n \neq m \\
0, \quad \text { if } n=m .
\end{array}\right.
$$

In the sequel we will say that they are the h and g sequences of δ.
Example 4. Let $\left\{v_{n}\right\}_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}}$ so that $v=\sum_{n=1}^{\infty} v_{n} \cdot z_{n}$ is a well defined element of $F \widehat{\otimes} F^{*}$. Then $h_{\left[a d_{v}\right]}=\left\{v_{n^{2}-n+1}-v_{1}\right\}_{n=1}^{\infty}, \eta_{m}\left[a d_{v}\right]=v_{m^{2}-n+1}$ if $1 \leq n<m$ and $\eta_{n}^{m}=v_{(n-1)^{2}+m}$ if $n>m$.

Definition 1. A derivation $\delta \in \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ is said to be an X-Hadamard derivation if its g-sequence is null.

We will denote the set of all those derivations as $\mathcal{D}_{x}\left(F \widehat{\otimes} F^{*}\right)$. In [4] it is proved that the former is a complementary Banach subspace of $\mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$.

Definition 2. An operator $\delta \in \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ will be called a \mathcal{B}-derivation if there exists $T \in \mathcal{B}(F)$ so that $\delta=\delta_{T}$ according to the notation of Example 2. We will denote the class of such derivations as $\mathcal{D}_{\mathcal{B}}\left(F \widehat{\otimes} F^{*}\right)$.

Remark 2. Any \mathcal{B}-derivations is infinitely supported because $\delta_{T}=\delta_{T+\lambda I d_{F}}$ if $T \in \mathcal{F}$ and $\lambda \in \mathbb{C}$. More precisely, $\operatorname{ker}\left(\delta_{F}=\mathbb{C} \cdot I d_{F}\right)($ see Lema 1 below).

In Th. 2 will prove that any X-Hadamard derivation is a \mathcal{B}-derivation. In Proposition 2 and Proposition 3 we will analize necessary and sufficient conditions under which certain natural series of Hadamard derivations are realized as \mathcal{B} derivations. It'll then be clear how h-sequences determine their structures since the corresponding supports become multiplier operators included by them.

2 X-Hadamard and \mathcal{B}-derivations

Lemma 1. $\operatorname{ker}\left(\delta_{F}\right)=\mathbb{C} \cdot I d_{F}$.
Proof. The inclusion \supseteq is evident. Let $T \in \mathcal{B}(F)$ so that $\delta_{T}=0$ and let $\lambda \in \sigma T$. If λ belongs to the compression spectrum of T let $x^{*} \in F^{*}-\{0\}$ so that $\left.x^{*}\right|_{R\left(T-\lambda I d_{F}\right)} \equiv 0$. For all $x \in F$ we have

$$
\left\langle x, T^{*}\left(x^{*}\right)\right\rangle=\left\langle T(x), x^{*}\right\rangle=\left\langle\lambda x, x^{*}\right\rangle=\left\langle x, \lambda x^{*}\right\rangle
$$

i.e. $\left(t^{*}-\lambda I d_{F^{*}}\right)\left(x^{*}\right)=0$. Moreover, since

$$
(T(F)-\lambda x) \otimes x^{*}=x \otimes\left(T^{*}\left(x^{*}\right)-\lambda x^{*}\right)=0,
$$

the projective norm is a cross-norm and $x^{*} \neq 0$ then $T=\lambda I d_{F}$. If $\lambda \in$ $\sigma_{a p}(T)$ we choose a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ of unit vectors of F so that $T\left(y_{n}\right)-$ $\lambda y_{n} \rightarrow 0$. If $y^{*} \in F^{*}$ then

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\|\left(T\left(y_{n}\right)-\lambda y_{n}\right) \otimes y^{*}\right\|_{\pi} \\
& =\lim _{n \rightarrow \infty}\left\|y_{n} \otimes\left(T^{*}\left(y^{*}\right)-\lambda y^{*}\right)\right\|_{\pi}=\left\|T^{*}\left(y^{*}\right)-\lambda y^{*}\right\|
\end{aligned}
$$

Reasoning as above we conclude that $T=\lambda I d_{F}$.
Lemma 2. (i) If $r, s \in \mathbb{N}$ then

$$
h\left[\delta_{x_{r} \odot x_{s}^{*}}\right]=\left\{\begin{array}{l}
\{0,-1,-1, \ldots\} \quad \text { if } r=s=1 \tag{1}\\
\{0,0, \ldots\} \quad \text { if } \quad r \neq s \\
e_{r} \text { if } \quad r=s>1
\end{array}\right.
$$

(ii) If $r \neq s$ then $\eta\left[\delta_{x_{r} \odot x_{s}^{*}}\right]=e_{s}^{r}$ is the zero matrix elsewhere and has a one in the (s, r) entry. All derivations $\delta_{x_{n} \odot x_{n}^{*}}$ with $n \in \mathbb{N}$ are of Hadamard type.

Proof. (i) If $r, s, n \in \mathbb{N}$ we get

$$
\begin{align*}
\delta x_{r} \odot x_{s}^{*}\left(x_{n} \otimes x_{m}^{*}\right)= & \left(x_{r} \odot x_{s}^{*}\right)\left(x_{n}\right) \otimes x_{m}^{*}-x_{n} \otimes\left(x_{r} \odot x_{s}^{*}\right)^{*}\left(x_{m}^{*}\right) \\
& =\left[\left\langle x_{n}, x_{s}^{*}\right\rangle x_{r}\right] \otimes x_{m}^{*}-x_{n} \otimes\left[\left\langle x_{r}, x_{m}^{*}\right\rangle \cdot x_{s}^{*}\right] \tag{2}\\
& =\delta_{s}^{n} \cdot\left(x_{r} \otimes x_{m}^{*}\right)-\delta_{r}^{m} \cdot\left(x_{n} \otimes x_{s}^{*}\right) .
\end{align*}
$$

Letting $m=1$ in (2) then

$$
\begin{align*}
\delta_{x_{r} \odot x_{s}^{*}}\left(x_{n} \otimes x_{1}^{*}\right)= & \sum_{p=1}^{\infty} h_{n, 1}^{p} \cdot z_{p} \tag{3}\\
& =\delta_{s}^{n} \cdot\left(x_{r} \otimes x_{1}^{*}\right)-\delta_{r}^{1} \cdot\left(x_{n} \otimes x_{s}^{*}\right) \\
& =\delta_{s}^{n} \cdot z_{r^{2}}-\delta_{r}^{1} \cdot z_{\sigma^{-1}(n, s)} .
\end{align*}
$$

If $r=s=1$ by (3) is and the first assertion follows. If $r=s>1$ by (3) is $\delta_{x_{r} \odot x_{r}^{*}}\left(x_{n} \otimes x_{1}^{*}\right)=\delta_{r}^{n} \cdot z_{r^{2}}$ and our thirth claim follows. Finally, if $r \neq s=n$ then (3) becomes

$$
\delta_{x_{r} \odot x_{s}^{*}}\left(x_{s} \otimes x_{1}^{*}\right)=z_{r^{2}}-\delta_{1}^{r} \cdot z_{s^{2}-s+1}
$$

and clearly $h_{s}\left[\delta_{x_{r} \odot x_{s}^{*}}\right]=0$. If $s \notin\{r, n\}$ then

$$
\delta_{x_{r} \odot x_{s}^{*}}\left(x_{n} \otimes x_{1}^{*}\right)=-\delta_{1}^{r} \cdot z_{\sigma^{-1}(n, s)} .
$$

But $\sigma^{-1}(n, s)=n^{2}$ if and only if $s=1$ and as $r \neq s$ then $h_{n}\left[\delta_{x_{r} \odot x_{s}^{*}}\right]=0$.
(ii) If $r, s, n, m \in \mathbb{N}$ and $n \neq m$ then

$$
\begin{align*}
\eta_{n}^{m}\left[\delta_{x_{r} \odot x_{s}^{*}}\right]= & \left\langle\delta_{X}\left(x_{r} \odot x_{s}^{*}\right)\left(z_{n^{2}}\right), z_{m 2^{2}}^{*}\right\rangle \\
& \left.=\left\langle\delta_{X} x_{r} \odot x_{s}^{*}\right)\left(x_{n} \otimes x_{1}^{*}\right), x_{m}^{*} \otimes x_{1}\right\rangle \tag{4}\\
& =\left\langle\delta_{s}^{n} \cdot\left(x_{r} \otimes x_{1}^{*}\right)-\left(x_{n}\right) \otimes\left(x_{r} \otimes x_{s}^{*}\right)^{*}\left(x_{1}^{*}\right), x_{m}^{*} \otimes x_{1}\right\rangle \\
& =\delta_{s}^{n} \cdot \delta_{r}{ }^{m} .
\end{align*}
$$

The conclusion is now clear.
Remark 3. Given an elementary tensor $x \otimes x^{*} \in X \widehat{\otimes} X^{*}$ and $m \in \mathbb{N}$ we have

$$
\begin{aligned}
\left(\sum_{n=1}^{m} \delta_{x_{n} \odot x_{n}^{*}}\right)\left(x \otimes x^{*}\right)= & \sum_{n=1}^{m}\left[\left\langle x, x_{n}^{*}\right\rangle\left(x_{n} \otimes x^{*}\right)-\left\langle x_{n}, x^{*}\right\rangle\left(x \otimes x_{n}^{*}\right)\right] \\
& =\left(\sum_{n=1}^{m}\left\langle x, x_{n^{*}}\right\rangle x_{n}\right) \otimes x^{*}-x \otimes\left(\sum_{n=1}^{m}\left\langle x_{n}, x^{*}\right\rangle x_{n}^{*}\right)
\end{aligned}
$$

and so $\lim _{m \rightarrow 0}\left(\sum_{n=1}^{m} \delta_{x_{n} \odot x_{n}^{*}}\right)\left(x \otimes x^{*}\right) \equiv 0$. Since the basis X is assumed to be bounded then $\rho=\inf _{n, p \in \mathbb{N}}\left\|x_{n}\right\|\left\|x_{p}^{*}\right\|$ is positive (cf. [7], Corollary 3.1, p.20). Consequently, if $n, m, p \in \mathbb{N}$ and $n \neq p$ then

$$
\begin{align*}
\left\|\delta_{x_{n} \odot x_{m}^{*}}\right\| \geq & \left\|\delta_{x_{n} \odot x_{m}^{*}}\left(\frac{x_{m}}{\left\|x_{m}\right\|} \otimes \frac{x_{p}^{*}}{\left\|x_{p}^{*}\right\|}\right)\right\|_{\pi} \tag{5}\\
& =\frac{\left\|x_{n}\right\|}{\left\|x_{m}\right\|} \geq \inf _{n \in \mathbb{N}}\left\|x_{n}\right\| / \sup _{m \in \mathbb{N}}\left\|x_{m}\right\|>0
\end{align*}
$$

i.e. the series $\sum_{n=1}^{\infty} \delta_{x_{n} \odot x_{n}^{*}}$ is not convergent.

Remark 4. The set $\left\{\delta_{x_{n} \odot x_{n}^{*}}\right\}_{n=1}^{\infty}$ is linearly dependent. For, let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence of scalars so that $\sum_{n=1}^{\infty} c_{n} \cdot \delta_{x_{n} \odot x_{n}^{*}} \equiv 0$. In particular, by (4) is $\left\{c_{n}\right\}_{n=1}^{\infty} \in c_{0}$. If r,s are two positive integers then

$$
\left[\sum_{n=1}^{\infty} c_{n} \cdot \delta_{x_{n} \odot x_{n}^{*}}\right]\left(x_{r} \odot x_{s}^{*}\right)=\left(c_{r}-c_{s}\right)\left(x_{r} \odot x_{s}^{*}\right)=0,
$$

i.e. $c_{r}=c_{s}$. Hence $\left\{c_{n}\right\}_{n=1}^{\infty}$ becomes the constant zero sequence and the assertion follows.

Theorem 2. Every X-Hadamard derivation is a \mathcal{B}-derivation.
Proof. If $\delta \in \mathcal{D}\left(F \widehat{\otimes} F^{*}\right)$ and $x \in F$ the series $\sum_{n=1}^{\infty}\left\langle x, x_{n}^{*}\right\rangle \cdot h_{n}[\delta] \cdot x_{n}$ converges. For, if $p, q \in \mathbb{N}$ then

$$
\begin{aligned}
\left\|\sum_{n=p}^{p+q}\left\langle x, x_{n}^{*}\right\rangle \cdot h_{n}[\delta] \cdot x_{n}\right\|= & \left\|\delta\left[\left(\sum_{n=p}^{p+q}\left\langle x, x_{n}^{*}\right\rangle \cdot x_{n}\right) \otimes \frac{x_{1}^{*}}{\left\|x_{1}^{*}\right\|}\right]\right\|_{\pi} \\
& \leq\|\delta\|\left\|\sum_{n=p}^{p+q}\left\langle x, x_{n}^{*}\right\rangle \cdot x_{n}\right\|
\end{aligned}
$$

i.e. the sequence of corresponding partial sums is a Cauchy sequence. So, it is defined a linear operator $M_{h[\delta]}: x \rightarrow \sum_{n=1}^{\infty}\left\langle x, x_{n}^{*}\right\rangle \cdot h_{n}[\delta] \cdot x_{n}$ that
is bounded as a consequence of the Banach-Steinhauss theorem. Hence $h[\delta] \in M\left(f^{*}, X\right)$, i.e. $h[\delta]$ is a multiplier of F relative to the basis X. Analogously, if $x^{*} \in F^{*}$ the series $\sum_{n=1}^{\infty}\left\langle x_{m}, x^{*}\right\rangle \cdot h_{m}[\delta] \cdot x_{m}^{*}$ also converges because if $p, q \in \mathbb{N}$ we get

$$
\begin{aligned}
\left\|\sum_{m=p}^{p+q}\left\langle x_{m}, x^{*}\right\rangle \cdot h_{m}[\delta] \cdot x_{m}^{*}\right\|= & \left\|\frac{x_{1}}{\left\|x_{1}\right\|} \otimes \sum_{m=p}^{p+q}\left\langle x_{m}, x^{*}\right\rangle \cdot h_{m}[\delta] \cdot x_{m}^{*}\right\|_{\pi} \\
& =\left\|\delta\left(\frac{x_{1}}{\left\|x_{1}\right\|} \otimes \sum_{m=p}^{p+q}\left\langle x_{m}, x^{*}\right\rangle \cdot x_{m}^{*}\right)\right\|_{\pi} \\
& \leq\|\delta\|\left\|\sum_{n=p}^{p+q}\left\langle x_{m}, x^{*}\right\rangle \cdot x_{m}^{*}\right\|
\end{aligned}
$$

It is immediate that $M_{h[\delta]}^{*}\left(x^{*}\right)=\sum_{n=1}^{\infty}\left\langle x_{m}, x^{*}\right\rangle \cdot h_{m}[\delta] \cdot x_{m}^{*}$ for all $x^{*} \in F^{*}$ and $h[\delta]$ is also realizes as a multiplier of F^{*} relative to the basis X^{*}. Now, if $x \otimes x *$ is a fixed basic tensor in $F \widehat{\otimes} F^{*}$ we can write

$$
\begin{aligned}
\delta\left(x \otimes x^{*}\right)= & \sum_{n=1}^{\infty}\left\langle x, x_{n}^{*}\right\rangle \sum_{n=1}^{\infty}\left\langle x_{m}, x^{*}\right\rangle\left(h_{n}[\delta]-h_{m}[\delta]\right)\left(x_{n} \otimes x_{m^{*}}\right) \\
& =M_{h[\delta]}(x) \otimes x^{*}-x \otimes M_{h[\delta]}^{*}\left(x^{*}\right)
\end{aligned}
$$

and definitely $\delta=\delta_{M_{h[\delta]}}$.
Proposition 2. Let $\{\zeta\}_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}}$ so that $\delta=\sum_{n=1}^{\infty} \zeta_{n} \cdot \delta_{x_{n} \odot x_{n}^{*}}$ is a well defined Hadamard derivation.
(i) $h[\delta] \in c,\{\zeta\}_{n=1}^{\infty} \in c_{0}$ and $\zeta_{m}=h_{m}[\delta]-\lim _{n \rightarrow \infty} h_{n}[\delta]$ if $m \in \mathbb{N}$.
(ii) $\delta=\delta_{S}$ where $S \in \mathcal{B}(F)$ is defined for $x \in F$ as

$$
S(x)=\sum_{n=1}^{\infty} h_{n}[\delta] \cdot\left\langle x, x_{n}^{*}\right\rangle \cdot x_{n}-x \cdot \lim _{n \rightarrow \infty} h_{n}[\delta] .
$$

Proof.

(i) If $m \in \mathbb{N}$ it is readily seeing that $\delta\left(x_{m} \otimes x_{1}^{*}\right)=\left(\zeta_{m}-\zeta_{1}\right) \cdot z_{m^{2}}$. Thus $h_{1}[\delta]=0$ and $h_{m}[\delta]=\zeta_{m}-\zeta_{1}$ if $m>1$. By (4) we have that $\{\zeta\}_{n=1}^{\infty} \in c_{0}$ and we get (ii).
(ii) Let $S_{n}=\sum_{k=1}^{n}\left(h_{k}[\delta]-\lim _{n \rightarrow \infty} x_{k} \odot x_{k}^{*}\right), n \in \mathbb{N}$. By the uniform boundedness principle and (ii) the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $\mathcal{B}(F)$. Whence, since $S_{n}(x) \rightarrow S(x)$ if $x \in F$ then $S \in \mathcal{B}(F)$. Indeed, if $n, m \in \mathbb{N}$ we get $\delta_{S}\left(x_{n} \oplus x_{m}^{*}\right)=$
$=\left(\left(h_{n}[\delta]-\lim _{k \rightarrow \infty} h_{k}[\delta]\right) x_{n}\right) \otimes x_{m}^{*}-x_{n} \otimes\left(\left(h_{m}[\delta]-\lim _{k \rightarrow \infty} h_{k}[\delta]\right) x_{m}^{*}\right)$
$=\left(h_{n}[\delta]-h_{m}[\delta]\right) \cdot\left(x_{n} \otimes x_{m}^{*}\right)$
$=\delta\left(x_{n} \otimes x_{m}^{*}\right)$,
i.e. $\delta=\delta_{S}$

Proposition 3. Let $\left\{h_{n}\right\}_{n=1}^{\infty} \in M\left(F,\left\{x_{n}\right\}_{n=1}^{\infty}\right) \cap M\left(F^{*},\left\{x_{n}^{*}\right\}_{n=1}^{\infty}\right) \cap c$ such that $h_{1}=0$. On writing $h_{0} \triangleq \lim _{n \rightarrow \infty} h_{n}$ the series $\sum_{n=1}^{\infty}\left(h_{n}-h_{0}\right) \cdot \delta_{x_{n} \odot x_{n}^{*}}$ converges to a Hadamard derivation δ on $\hat{\otimes} F^{*}$ so that $h[\delta]=\left\{h_{n}\right\}_{n=1}^{\infty}$.

Proof. If $S=\sum_{k=1}^{\infty}\left(h_{k}-h_{0}\right) \cdot x_{k} \odot x_{k}^{*}$ then $S \in \mathcal{B}(F)$ and

$$
\|S\| \leq\left\|\left\{h_{n}\right\}_{n=1}^{\infty}\right\|_{M\left(F,\left\{x_{n}\right\}_{n=1}^{\infty}\right)}+\left|h_{0}\right| .
$$

Let $S_{n}=\sum_{k=1}^{n}\left(h_{k}-h_{0}\right) \cdot x_{k} \oplus x_{k} 6 *, n \mathbb{N}$. Given $x \in F$ the sequence $\left\{S_{n}(x)\right\}_{n=1}^{\infty}$ converges because $\left\{h_{n}\right\}_{n=1}^{\infty}$ is a multiplier of F and $\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$ is an F-complete biorthogonal system. Therefore $\left\{\left\|S_{n}\right\|\right\}_{n=1}^{\infty}$ becomes bounded. Now if we fix an elementary tensor $y \otimes y^{*} \in F \hat{\otimes} F^{*}$ and $n \in \mathbb{N}$ then

$$
\begin{align*}
\left\|\left(\delta_{S_{n}}-\delta_{S}\right)\left(y \otimes y^{*}\right)\right\|_{\pi} & =\| \sum_{k>n}\left(h_{k}-h_{0}\right) \cdot\left\langle y, x_{k}^{*}\right\rangle \cdot x_{k} \otimes y^{*} \tag{6}\\
& -y \otimes \sum_{k>n}\left(h_{k}-h_{0}\right) \cdot\left\langle x_{k}, y^{*}\right\rangle \cdot x_{k}^{*} \|_{\pi} \\
& \leq\left\|\sum_{k>n}\left(h_{k}-h_{0}\right) \cdot\left\langle y, x_{k}^{*}\right\rangle \cdot x_{k}\right\|\left\|y^{*}\right\| \\
& +\|y\|\left\|\sum_{k>n}\left(h_{k}-h_{0}\right) \cdot\left\langle x_{k}, y^{*}\right\rangle \cdot x_{k}^{*}\right\| .
\end{align*}
$$

Since $\left\{h_{n}\right\}_{n=1}^{\infty} \in M\left(F,\left\{x_{n}\right\}_{n=1}^{\infty}\right) \cap M\left(F^{*},\left\{x_{n}^{*}\right\}_{n=1}^{\infty}\right)$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a shrinking basis by (5) we see that $\lim _{n \rightarrow \infty}\left(\delta_{S_{n}}-\delta_{S}\right)\left(y \otimes y^{*}\right)=0$. Indeed, as $F \otimes F^{*}$ is dense in $F \hat{\times} F^{*},\left\{S_{n}\right\}_{n=1}^{\infty}$ is bounded and $\left\|\delta_{T}\right\| \leq 2\|T\|$ for all $T \in \mathcal{B}(F)$ then $\delta_{S}=\sum_{n=1}^{\infty}\left(h_{n}-h_{0}\right) \cdot \delta_{x_{n} \odot x_{n}^{*}}$.

Problem 1 Giving $T \in \mathcal{B}(F)$ then $\eta[T]=\left\{\left\langle T\left(x_{n}\right), x_{m}^{*}\right\rangle\right\}_{n, m=1}^{\infty}$. So it is obvious that $\mathcal{D}_{X}\left(F \hat{\otimes} F^{*}\right)$. It would be desirable to decide if $\mathcal{D}_{\mathcal{B}}\left(F \hat{\otimes} F^{*}\right)$ is a Banach space.

Remark 5. Is $\left\{\delta_{x_{n} \otimes x_{n}^{*}}\right\}_{n=1}^{*}$ a basis of $\mathcal{D}_{X}\left(F \hat{\otimes} F^{*}\right)$?- In general this is not the case. For instance, let $F=l^{p}(\mathbb{N})$ with $1<p<\infty$ and let $X=\left\{e_{n}\right\}_{n=1}^{\infty}$, where $e_{n}=\left\{\delta_{n, m}\right\}_{m=1}^{\infty}$ and $\delta_{n, m}$ the current Kronecker symbol if $n, m \in \mathbb{N}$. Then X is not only a shrinking basis, it is further an unconditional basis of F. Consequently, if $T(x)=\sum_{n=1}^{\infty}\left\langle x, e_{2 n}^{*}\right\rangle$ for $x \in F$ then $T \in \mathcal{B}(F)$. It is readily seeing that δ_{T} is an X-Hadamard derivation. Since $h\left[\delta_{T}\right]=$ $\{0,1,0,1, \ldots\}$ by Prop. $2\left\{\delta_{e_{n} \odot e_{n}^{*}}\right\}_{n=1}^{\infty}$ can not be a basis of $\mathcal{D}_{X}\left(F \hat{\otimes} F^{*}\right)$.

Problem 2 Is $\left\{\delta_{x_{n} \odot x_{n}^{*}}\right\}_{n=1}^{\infty}$ a sequence basis?- Can be be constructed a basis of $\mathcal{D}_{X}\left(\left(F \hat{\otimes} F^{*}\right)\right.$?-

References

[1] A.L. Barrenechea and C.C. Peña, On derivation over rings of triangular matrices, Bulletin CXXXI de l'Académie Serbe des Sciences Mathematiques, 30, 77-84,(2005).
[2] A.L. Barrenechea and C.C. Peña, Some remarks about bounded derivations on the Hilbert algebra of square summable matrices, Matematicki Vesinik, 57, No.4,78-95,(2005).
[3] A.L. Barrenechea and C.C. Peña, On innerness of derivations on $S(H)$, Lobachevskii L. of Math., Vol.18,21-32,(2005).
[4] A.L. Barrenechea and C.C. Peña, On the structure of derivations on certain non-amenable nuclear Banach algebras, Preprint, (2007).
[5] V. Runde, Lectures on amenability, Springer-Verlag,Berlin, Heidelberg, N.Y.,(2002).
[6] R. Schatten, A theory of cross spaces, Ann. of Math. Studies 26, Princeton university Press, (1950).
[7] I. Singer, Bases in Banach spaces, I. Springer-Verlag, Berlin-HeidelbergN.Y.,(1970).
A.P.Madrid Comisión de Investivaciones Científicas de la Pcia. de Buenos Aires (CIC) - UNCPBA,
Departamento de Matemáticas-NUCOMPA,
E-mail: apmadrid8@hotmail.com
C. C. Peña

UNCPBA,
Departamento de Matemáticas-NUCOMPA,
E-mail: ccpenia@gmail.com

[^0]: ${ }^{1}$ Received 3 August 2007
 Accepted for publication (in revised form) 10 December 2007

