On the Fekete-Szegö inequality for a class of analytic functions defined by using the generalized Sălăgean operator ${ }^{1}$

Dorina Răducanu

Abstract

In this paper we obtain the Fekete-Szegö inequality for a class of analytic functions $f(z)$ defined in the open unit disk for which $\left(\frac{D_{\lambda}^{n+1} f}{D_{\lambda}^{n} f}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} f}{D_{\lambda}^{n+1} f}\right)^{\beta}(\alpha, \beta, \lambda \geq 0)$ lies in a region starlike with respect to 1 and which is symmetric with respect to the real axis.

2000 Mathematics Subject Classification: 30C45 Key words:Analytic functions,generalized Sălăgean operator, Fekete-Szegö inequality

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and let S be the subclass of \mathcal{A} consisting of univalent functions.

[^0]The generalized Sălăgean differential operator is defined in [2] by

$$
\begin{gathered}
D_{\lambda}^{0} f(z)=f(z), \quad D_{\lambda}^{1} f(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z) \\
D_{\lambda}^{n} f(z)=D_{\lambda}^{1}\left(D_{\lambda}^{n-1} f(z)\right), \lambda \geq 0 .
\end{gathered}
$$

If f is given by (1) we see that

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \lambda]^{n} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

When $\lambda=1$ we get the classic Sălăgean differential operator [6].
Let $\Phi(z)$ be an analytic function with positive real part on U with $\Phi(0)=$ $1, \Phi^{\prime}(0)>0$ which maps the unit disk U onto a region starlike with respect to 1 which is symmetric with respect to the real axis.

Denote by $S^{*}(\Phi)$ the class of functions $f \in S$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \Phi(z), z \in U
$$

and denote by $C(\Phi)$ the class of functions $f \in S$ for which

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \Phi(z), z \in U
$$

where " \prec " stands for the usual subordination. The classes $S^{*}(\Phi)$ and $C(\Phi)$ where defined and studied by Ma and Minda [1]. They obtained the FeketeSzegö inequality for functions in the class $S^{*}(\Phi)$ and also for functions in the class $C(\Phi)$.

By using the generalized Sălăgean differential operator we define the following class of functions:

Definition 1.1. Let $\Phi(z)$ be a univalent stralike function with respect to 1 which maps the unit disk onto a region in the right halfplane symmetric with respect to the real axis, $\Phi(0)=1$ and $\Phi^{\prime}(0)>0$. A function $f \in \mathcal{A}$ is in the class $M_{\alpha, \beta}^{n, \lambda}(\Phi)$ if

$$
\begin{equation*}
\left(\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}\right)^{\beta} \prec \Phi(z) \tag{1.3}
\end{equation*}
$$

$0 \leq \alpha \leq 1,0 \leq \beta \leq 1, \lambda>0$.

It follows that

$$
M_{0,1}^{0,1}(\Phi) \equiv C(\Phi) \text { and } M_{1,0}^{0,1}(\Phi) \equiv S^{*}(\Phi)
$$

When $n=0$ and $\lambda=1$ we obtain the class $M_{\alpha, \beta}(\Phi)$ studied by Ravichadran et.al. [3].

In this paper we obtain the Fekete-Szegö inequality for functions in the class $M_{\alpha, \beta}^{n, \lambda}(\Phi)$.

To prove oue results we shall need the following lemmas.
Lemma 1.1. [1] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in U, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2, & \text { if } v \leq 0 \\ 2, & \text { if } 0 \leq v \leq 1 \\ 4 v-2, & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then the equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1+a}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-a}{2}\right) \frac{1-z}{1+z}, 0 \leq a \leq 1
$$

or one of its rotations. If $v=1$, the equality holds if and only if p_{1} is the reciprocal of one of the functions such that the equality holds in the case of $v=0$.

Also the above upper bound is sharp and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}^{2}\right| \leq 2, \quad 0<v \leq \frac{1}{2}
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}^{2}\right| \leq 2, \frac{1}{2}<v \leq 1
$$

Lemma 1.2. [4] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in U, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq 2 \max \{1 ;|2 v-1|\} .
$$

The result is sharp for the function

$$
p_{1}(z)=\frac{1+z^{2}}{1-z^{2}} \text { or } p_{1}(z)=\frac{1+z}{1-z} .
$$

2 Fekete-Szegö problem

We prove our main result by making use of Lemma 1.1.
Theorem 2.1. Let $\Phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$..If $f(z)$ given by (1.1) is in the class $M_{\alpha, \beta}^{n, \lambda}(\Phi)$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \\
\leq \begin{cases}\frac{1}{4 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]}\left[2 B_{2}-\frac{B_{1}}{\lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}} \gamma\right], & \text { if } \mu \leq \sigma_{1} \\
\frac{B_{1}}{2 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]},\left[-2 B_{2}+\frac{B_{1}^{2}}{\lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}} \gamma\right], & \text { if } \mu \geq \sigma_{2} \leq \sigma_{2} \\
\frac{1}{4 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]}[-2\end{cases}
\end{gathered}
$$

Further, if $\sigma_{1}<\mu \leq \sigma_{3}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+ \\
+\frac{\lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}{2(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}}\left[1-\frac{B_{2}}{B_{1}}+\frac{\gamma B_{1}}{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}\right]\left|a_{2}\right|^{2} \\
\leq \frac{B_{1}}{2 \lambda(1+2 \lambda)^{2 n}[\alpha+\beta(1+2 \lambda)]}
\end{gathered}
$$

If $\sigma_{3}<\mu \leq \sigma_{2}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+ \\
+\frac{\lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}{2(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}}\left[1+\frac{B_{2}}{B_{1}}-\frac{\gamma B_{1}}{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}\right]\left|a_{2}\right|^{2}
\end{gathered}
$$

$$
\leq \frac{B_{1}}{2 \lambda(1+2 \lambda)^{2 n}[\alpha+\beta(1+2 \lambda)]}
$$

where

$$
\begin{gathered}
\sigma_{1}:=\frac{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}\left(B_{2}-B_{1}\right)}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}}- \\
-\frac{B_{1}^{2}(1+\lambda)^{2 n}\left[\lambda[\alpha+\beta(1+\lambda)]^{2}-(\lambda+2)\left[\alpha+\beta(1+\lambda)^{2}\right]\right]}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}} \\
\sigma_{2}:=\frac{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}\left(B_{2}+B_{1}\right)}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}}- \\
-\frac{B_{1}^{2}(1+\lambda)^{2 n}\left[\lambda[\alpha+\beta(1+\lambda)]^{2}-(\lambda+2)\left[\alpha+\beta(1+\lambda)^{2}\right]\right]}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}} \\
\sigma_{3}:=\frac{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2} B_{2}}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}}- \\
-\frac{B_{1}^{2}(1+\lambda)^{2 n}\left[\lambda[\alpha+\beta(1+\lambda)]^{2}-(\lambda+2)\left[\alpha+\beta(1+\lambda)^{2}\right]\right]}{4(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] B_{1}^{2}}
\end{gathered}
$$

and

$$
\begin{gathered}
\gamma:=\lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}- \\
-(\lambda+2)(1+\lambda)^{2 n}\left[\alpha+\beta(1+\lambda)^{2}\right]+4 \mu(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]
\end{gathered}
$$

These results are sharp.
Proof. Let $f \in M_{\alpha, \beta}^{n, \lambda}(\Phi)$ and let

$$
\begin{equation*}
p(z):=\left(\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}\right)^{\beta}=1+b_{1} z+b_{2} z^{2}+\ldots \tag{2.1}
\end{equation*}
$$

Since the function $\Phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$ is univalent and $p \prec \Phi$ then the function

$$
p_{1}(z)=\frac{1+\Phi^{-1}(p(z))}{1-\Phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2} \ldots
$$

is ananlytic and has positive real part in U. We also have

$$
p(z)=\Phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)=1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\ldots
$$

From (2.1) we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1} \text { and } b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

By making use of (1.1) and (1.2) we obtain

$$
\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}=1+\lambda(1+\lambda)^{n} a_{2} z+\left[2 \lambda(1+2 \lambda)^{n} a_{3}-\lambda(1+\lambda)^{2 n} a_{2}^{2}\right] z^{2}+\ldots
$$

and therefore we have

$$
\begin{gathered}
\left(\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)^{\alpha}= \\
=1+\alpha \lambda(1+\lambda)^{n} a_{2} z+\lambda\left[2 \alpha(1+2 \lambda)^{n} a_{3}+\frac{\lambda \alpha^{2}-\alpha(\lambda+2)}{2}(1+\lambda)^{2 n} a_{2}^{2}\right] z^{2}+\ldots
\end{gathered}
$$

Similarly we obtain

$$
\begin{gathered}
\left(\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}\right)^{\beta}=1+\beta \lambda(1+\lambda)^{n+1} a_{2} z+ \\
+\lambda\left[2 \beta(1+2 \lambda)^{n+1} a_{3}+\frac{\lambda \beta^{2}-\beta(\lambda+2)}{2}(1+\lambda)^{2 n+2} a_{2}^{2}\right] z^{2}+\ldots
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
& \left(\frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} f(z)}{D_{\lambda}^{n+1} f(z)}\right)^{\beta}=1+\lambda(1+\lambda)^{n}[\alpha+\beta(1+\lambda)] a_{2} z+ \\
& +\lambda\left\{2(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] a_{3}+\right. \\
& \left.+\frac{\lambda[\alpha+\beta(1+\lambda)]^{2}-(\lambda+2)\left[\alpha+\beta(1+\lambda)^{2}\right]}{2}(1+\lambda)^{2 n} a_{2}^{2}\right\} z^{2}+\ldots
\end{aligned}
$$

In view of (2.1) it results

$$
\begin{equation*}
b_{1}=\lambda(1+\lambda)^{n}[\alpha+\beta(1+\lambda)] a_{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{array}{r}
b_{2}=2 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)] a_{3}+ \\
+\frac{\lambda^{2}[\alpha+\beta(1+\lambda)]^{2}-\lambda(\lambda+2)\left[\alpha+\beta(1+\lambda)^{2}\right]}{2}(1+\lambda)^{2 n} a_{2}^{2} \tag{2.3}
\end{array}
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{4 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]}\left[c_{2}-v c_{1}^{2}\right] \tag{2.4}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{\gamma B_{1}}{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}\right] .
$$

Our result follows now by an application of Lemma 1.1. To show that the bounds are sharp, we consider the functions $K_{\Phi, m}(m=2,3, \ldots)$ defined by

$$
\begin{gathered}
\left(\frac{D_{\lambda}^{n+1} K_{\Phi, m}(z)}{D_{\lambda}^{n} K_{\Phi, m}(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} K_{\Phi, m}(z)}{D_{\lambda}^{n+1} K_{\Phi, m}(z)}\right)^{\beta}=\Phi\left(z^{m-1}\right) \\
K_{\Phi, m}(0)=\left[K_{\Phi, m}\right]^{\prime}(0)-1=0
\end{gathered}
$$

and the functions $F_{\delta}, G_{\delta}(0 \leq \delta \leq 1)$ defined by

$$
\left(\frac{D_{\lambda}^{n+1} F_{\delta}(z)}{D_{\lambda}^{n} F_{\delta}(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} F_{\delta}(z)}{D_{\lambda}^{n+1} F_{\delta}(z)}\right)^{\beta}=\Phi\left(\frac{z(z+\delta)}{1+\delta z}\right), F_{\delta}(0)=F_{\delta}^{\prime}(0)-1=0
$$

and

$$
\left(\frac{D_{\lambda}^{n+1} G_{\delta}(z)}{D_{\lambda}^{n} G_{\delta}(z)}\right)^{\alpha}\left(\frac{D_{\lambda}^{n+2} G_{\delta}(z)}{D_{\lambda}^{n+1} G_{\delta}(z)}\right)^{\beta}=\Phi\left(-\frac{z(z+\delta)}{1+\delta z}\right), G_{\delta}(0)=G_{\delta}^{\prime}(0)-1=0
$$

It is clear that the functions $K_{\Phi, m}, F_{\delta}$ and G_{δ} belong to the class $M_{\alpha, \beta}^{n, \lambda}(\Phi)$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is $K_{\Phi, 2}$ or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality holds if and only if f is $K_{\Phi, 3}$ or one of its rotations.If $\mu=\sigma_{1}$, then the equality holds if and only if f is F_{δ} or one of its rotations.If $\mu=\sigma_{2}$, then the equality holds if and only if f is G_{δ} or one of its rotations.

By making use of Lemma 1.2. we easely obtain the next theorem.
Theorem 2.2. Let $\Phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$ and let $f(z)$ be in the class $M_{\alpha, \beta}^{n, \lambda}(\Phi)$. For a complex number μ we have:

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq
$$

$\leq \frac{B_{1}}{2 \lambda(1+2 \lambda)^{n}[\alpha+\beta(1+2 \lambda)]} \max \left\{1,\left|-\frac{B_{2}}{B_{1}}+\frac{\gamma B_{1}}{2 \lambda(1+\lambda)^{2 n}[\alpha+\beta(1+\lambda)]^{2}}\right|\right\}$.
The result is sharp.

References

[1] W.Ma,D.Minda, A unified treatment of some special classes of univalent functions,Proceedings of the Conference on Complex Analysis,Z.Li,F.Ren,L.Yang and S.Zhang(Eds.),Int.Press(1994),157-169.
[2] F.M.Al-Oboudi,On univalent functions defined by a generalized Sălăgean operator,Internat.J.Math.Math.Sci.,27(2004),1429-1436.
[3] V.Ravichandran,M.Darus, M.Hussain Khan,K.G.Subramanian, Fekete-Szegö inequality for certain class of analytic functions, Aust.J.Math.Anal.Appl.,1,2(2004)art.4.
[4] V.Ravichadran,Y.Polotoglu,M.Bolcal,A.Sen, Certain subclasses of starlike and convex functions of complex order,preprint
[5] H.M.Srivastava,A.K.Mishra,M.K.Das, The Fekete-Szegö problem for a subclass of close-to-convex functions,Complex Variables,Theory Appl.,44,(2001),145-163.
[6] G.S.Sălăgean,Subclasses of univalent functions,Lect.Notes in Math.,1013,(1983),362-372.
[7] D.Răducanu, The Fekete-Szegö problem for a class of multivalent functions,(to appear).

Department of Mathematics and Computer Science
"Transilvania" University of Braşov
50091,Iuliu Maniu, 50,Braşov
Romania
E-mail: dorinaraducanu@yahoo.com

[^0]: ${ }^{1}$ Received 28 December, 2007
 Accepted for publication (in revised form) 3 January, 2008

