Weyl's type theorems for algebraically Class A operators ${ }^{1}$

M. H. Rashid, M. S. M. Noorani, A. S. Saari

Abstract

Let T be a bounded linear operator acting on a Hilbert space \mathcal{H}. The semi-B-Fredholm spectrum is the set $\sigma_{S B F_{+}^{-}}(T)$ of all $\lambda \in \mathbb{C}$ such that $T-\lambda=T-\lambda I$ is not a semi-B-Fredholm. Let $E^{a}(T)$ be the set of all isolated eigenvalues in $\sigma_{a}(T)$. The aim of this paper is to show if T is algebraically class A, then T satisfies generalized a-Weyl's theorem $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T)-E^{a}(T)$, and the semi-Fredholm spectrum of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized a-Weyl's theorem.

2000 Mathematics Subject Classification: 47A55,47A53, 47B20
Key Words: single valued Extension property, Semi-B-Fredholm, B-Fredholm theory, Browder's theory,spectrum , class A.

1 Introduction

Throughout this note let $\mathbf{B}(\mathcal{H}), \mathbf{F}(\mathcal{H}), \mathbf{K}(\mathcal{H})$, denote, respectively, the algebra of bounded linear operators, the ideal of finite rank operators and

[^0]the ideal of compact operators acting on an infinite dimensional separable Hilbert space \mathcal{H}. If $T \in \mathbf{B}(\mathcal{H})$ we shall write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null space and range of T, respectively. Also, let $\alpha(T):=\operatorname{dim} \mathcal{N}(T)$, $\beta(T):=\operatorname{dim} \mathcal{R}(T)$, and let $\sigma(T), \sigma_{a}(T), \sigma_{p}(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in \mathbf{B}(\mathcal{H})$ is called Fredholm if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by
$$
i(T):=\alpha(T)-\beta(T)
$$
T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm "of finite ascent and descent". The essential spectrum $\sigma_{F}(T)$, the Weyl spectrum $\sigma_{W}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined by
\[

$$
\begin{gathered}
\sigma_{F}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\} \\
\sigma_{W}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\}
\end{gathered}
$$
\]

and

$$
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\}
$$

respectively. Evidently

$$
\sigma_{F}(T) \subseteq \sigma_{W}(T) \subseteq \sigma_{b}(T) \subseteq \sigma_{F}(T) \cup \operatorname{acc\sigma }(T)
$$

where we write $a c c K$ for the accumulation points of $K \subseteq \mathbb{C}$. If we write $E(K)=K-\operatorname{acc} K$ then we let

$$
\begin{equation*}
E_{0}(T):=\{\lambda \in E(T): 0<\alpha(T-\lambda)<\infty\} \tag{1}
\end{equation*}
$$

for the isolated eigenvalues of finite multiplicity and

$$
\begin{equation*}
\Pi_{0}(T):=\sigma(T)-\sigma_{b}(T) \tag{2}
\end{equation*}
$$

for the set of poles of finite rank.
Following [3], We say that Weyl's theorem holds for T if

$$
\sigma(T)-\sigma_{W}(T)=E_{0}(T)
$$

and Browder's theorem holds for T if

$$
\sigma(T)-\sigma_{W}(T)=\Pi_{0}(T)
$$

We consider the sets

$$
\left.\begin{array}{rl}
S F_{+}(\mathcal{H}) & =\{T \in \mathbf{B}(\mathcal{H}): \mathcal{R}(T) \text { is closed and }
\end{array} \quad \alpha(T)<\infty\right\}, ~ \begin{array}{ll}
S F_{-}(\mathcal{H}) & =\{T \in \mathbf{B}(\mathcal{H}): \mathcal{R}(T) \text { is closed and } \\
\beta(T)<\infty\}
\end{array}
$$

and

$$
S F_{+}^{-}(\mathcal{H})=\left\{T \in \mathbf{B}(\mathcal{H}): T \in S F_{+}(\mathcal{H}) \text { and } \quad i(T) \leq 0\right\}
$$

For any $T \in \mathbf{B}(\mathcal{H})$ let

$$
\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(\mathcal{H})\right\} .
$$

Let E_{0}^{a} be the set of all eigenvalues of T of finite multiplicity which are isolated in the approximate point spectrum. According to [17], we say that T satisfies a-Weyl's theorem if $\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T)-E_{0}^{a}(T)$. It follows from [24, corollary 2.5] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem.
In [9] Berkani define the class of B-Fredholm operators as follows. For each integer n, define T_{n} to be the restriction of T to $\mathcal{R}\left(T^{n}\right)$ viewed as a map from $\mathcal{R}\left(T^{n}\right)$ into $\mathcal{R}\left(T^{n}\right)$ (in particular $T_{0}=T$). If for some n the range $\mathcal{R}\left(T^{n}\right)$ is closed and T_{n} is Fredholm (resp. Semi- B-Fredholm) operator, then T is called a B-Fredholm (resp. Semi- B-Fredholm) operator. In this case and from [8] T_{m} is a Fredholm operator and $i\left(T_{m}\right)=i\left(T_{n}\right)$ for each $m \geq n$.
According to Berkani [9] the index of a B-Fredholm operator T is defined as the index of the Fredholm operator T_{n}, where n is any integer such that the range $\mathcal{R}\left(T^{n}\right)$ is closed and T_{n} is Fredholm operator.
Let $B F(\mathcal{H})$ be the class of all B-Fredholm operators. In [8] Berkani has studied this class of operators and has proved that an operator $T \in \mathbf{B}(\mathcal{H})$ is a B-Fredholm if and only if $T=T_{0} \oplus T_{1}$, where T_{0} is a Fredholm and T_{1}
is a nilpotent operator.
Let $S B F_{+}(\mathcal{H})$ be the class of all upper semi-B-Fredholm operators, and $S B F_{+}^{-}(\mathcal{H})$ the class of all $T \in S B F_{+}(\mathcal{H})$ such that $i(T) \leq 0$, and

$$
\sigma_{S B F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S B F_{+}^{-}(\mathcal{H})\right\}
$$

2 Preliminaries

Definition 2.1. ([9]) Let $T \in \mathbf{B}(\mathcal{H})$. Then T is called a B-Weyl's operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(T)$ is given by

$$
\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda \quad \text { is not } B \text {-Weyl }\}
$$

Berkani [9, Theorem 4.3] proved that if $T \in \mathbf{B}(\mathcal{H})$ such that T is a normal, then

$$
\sigma_{B W}(T)=\sigma(T)-E(T)
$$

where $E(T)$ is the set of isolated eigenvalues of T, which gives a generalization of a classical Weyl Theorem.

Definition 2.2. ([10])For any $T \in \mathbf{B}(\mathcal{H})$ we define the sequence $\left(c_{n}(T)\right)$ and $\left(b_{n}(T)\right)$ as follows:

1. $c_{n}(T)=\operatorname{dim}\left(\mathcal{R}\left(T^{n}\right) / \mathcal{R}\left(T^{n+1}\right)\right)$.
2. $\left.b_{n}(T)\right)=\operatorname{dim}\left(\mathcal{N}\left(T^{n+1}\right) / \mathcal{N}\left(T^{n+1}\right)\right)$.

The descent $d(T)$ and ascent $a(T)$ are defined by

$$
\begin{aligned}
& d(T)=\inf \left\{n: c_{n}(T)=0\right\}=\inf \left\{n: \mathcal{R}\left(T^{n}\right)=\mathcal{R}\left(T^{n+1}\right)\right\} \\
& a(T)=\inf \left\{n: b_{n}(T)=0\right\}=\inf \left\{n: \mathcal{N}\left(T^{n}\right)=\mathcal{N}\left(T^{n+1}\right)\right\}
\end{aligned}
$$

Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [16] We say that $T \in \mathbf{B}(\mathcal{H})$ has the
single-valued extension property (SVEP) if for every open set $U \subseteq \mathbb{C}$ the only analytic function $f: U \longrightarrow \mathcal{H}$ which satisfies the equation $(T-$ ג) $f(\lambda)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C}-\sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [20, proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is Drazin invertible if it has a finite ascent and descent. The Drazin spectrum is given by

$$
\sigma_{D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Drazin invertible }\}
$$

We observe that $\sigma_{D}(T)=\sigma(T)-\Pi(T)$, where $\Pi(T)$ is the set of all poles, while $\Pi_{0}(T)$ will denote the set of all poles of T of finite rank.

Definition 2.3. ([4, definition 2.4]) An operator $T \in \mathbf{B}(\mathcal{H})$ is called left Drazin invertible if $a(T)<\infty$ and $\mathcal{R}\left(T^{a(T)+1}\right)$ is closed. The left Drazin spectrum is given by

$$
\sigma_{L D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not left Drazin invertible }\} .
$$

Definition 2.4. ([4, definition 2.5]) We say that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I$ is left Drazin invertible and $\lambda \in \sigma_{a}(T)$ is a left pole of finite rank if λ is a left pole of T and $\alpha(T-\lambda)<\infty$.

We will denote $\Pi^{a}(T)$ the set of all left pole of T, and by $\Pi_{0}^{a}(T)$ the set of all left pole of T of finite rank. We have $\sigma_{L D}(T)=\sigma_{a}(T)-\Pi^{a}(T)$. It is shown in [7] that Drazin invertibility is a good tool for the investigation of the class of B-Fredholm and of the induced B-Weyl spectrum. Following [18] We say that $T \in \mathbf{B}(\mathcal{H})$ is Drazin invertible (with finite index) if there exists $B, U \in \mathbf{B}(\mathcal{H})$ such that U is nilpotent and

$$
T B=B T, B T B=B, T B T=T+U
$$

It is well known that T is a Drazin invertible if and only if it has a finite ascent and descent, which is also equivalent to the fact that $T=T_{0} \oplus T_{1}$, where T_{0} is nilpotent and T_{1} is invertible (see [18, Proposition A]).

Definition 2.5. ([10])Let $T \in \mathbf{B}(\mathcal{H})$ and let $s \in \mathbb{N}$. Then T has a uniform descent for $n \geq s$ if $\mathcal{R}(T)+\mathcal{N}\left(T^{n}\right)=\mathcal{R}(T)+\mathcal{N}\left(T^{s}\right)$ for all $n \geq s$. If in addition $\mathcal{R}(T)+\mathcal{N}\left(T^{s}\right)$ is closed, then T is said to have a topological uniform descent for $n \geq s$.

Note that if $\lambda \in \Pi^{a}(T)$, then it is easily seen that $T-\lambda$ is an operator of topological uniform descent. Therefore it follows from ($[10$, Theorem 2.5]) that λ is isolated in $\sigma_{a}(T)$. Following [4] if $T \in \mathbf{B}(\mathcal{H})$ and $\lambda \in \mathbb{C}$ is an isolated in $\sigma_{a}(T)$, then $\lambda \in \Pi^{a}(T)$ if and only if $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ and $\lambda \in \Pi_{0}^{a}(T)$ if and only if $\lambda \notin \sigma_{S F_{+}^{-}}(T)$.

Definition 2.6. ([10])Let $T \in \mathbf{B}(\mathcal{H})$. We will say that

1. T satisfies generalized Browder's theorem if $\sigma_{W}(T)=\sigma(T)-\Pi(T)$.
2. T satisfies a-Browder's theorem if $\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T)-\Pi_{0}^{a}(T)$.
3. T satisfies generalized a-Browder's theorem if $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T)-$ $\Pi^{a}(T)$
4. T satisfies generalized a-Weyl's theorem if $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T)-E^{a}(T)$.

Definition 2.7. ([4])An operator $T \in \mathbf{B}(\mathcal{H})$ is called polaroid (resp. apolaroid) if all isolated points of the spectrum (resp. of the approximate point spectrum) of T are poles (resp. left poles) of the resolvent of T.

Definition 2.8. ([15]) Let $T \in \mathbf{B}(\mathcal{H})$ and F be closed subset of \mathbb{C}.
a) The glocal spectral is

$$
\begin{aligned}
\chi_{T}(F): & =\{x \in \mathcal{H}: \exists \text { analytic functionf }: \mathbb{C}-F \longrightarrow \mathcal{H} \text { such that } \\
(\lambda-T) f(\lambda) & =x, \forall x \in \mathbb{C}-F\} .
\end{aligned}
$$

b) The quasinilpotent part $H_{0}(T-\lambda)$ is

$$
H_{0}(T-\lambda):=\left\{x \in \mathcal{H}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

c) The analytic core $K(T-\lambda)$ of $T-\lambda$ are

$$
K(T-\lambda)=\left\{x \in \mathcal{H}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathcal{H} \text { and } \delta>0\right.
$$

$$
\text { for which } \quad x=x_{0},(T-\lambda) x_{n+1}=x_{n} \text { and } \quad\left\|x_{n}\right\| \leq \delta^{n}\|x\|
$$

$$
\text { for all } n=1,2, \cdots\}
$$

Note that $H_{0}(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyperinvariant subspaces of $T-\lambda$ such that $(T-\lambda)^{-p}(0) \subseteq H_{0}(T-\lambda)$ for all $p=0,1, \cdots$ and $(T-\lambda) K(T-\lambda)=K(T-\lambda)$.
Recall that an operator T has a generalized Kato decomposition abbreviate GKD, if there exists a pair of T-invariant closed subspace (M, N) such that $\mathcal{H}=M \oplus N$, the restriction $\left.T\right|_{M}$ is quasinilpotent and $\left.T\right|_{N}$ is semi-regular. Note that, an operator $T \in \mathbf{B}(\mathcal{H})$ has a GKD at every $\lambda \in E(T)$, namely $\mathcal{H}=H_{0}(T-\lambda) \oplus K(T-\lambda)$. We say that T is of Kato type at a point λ if $\left.(T-\lambda)\right|_{M}$ is nilpotent in the GKD for $T-\lambda$.

Definition 2.9. ([11])

1. An operator $X \in \mathbf{B}(\mathcal{H})$ is said to be a quasiaffinity if it is an injective and has dense range.
2. An operator $S \in \mathbf{B}(\mathcal{H})$ is said to be quasiaffine transform of T (abbreviate $S \prec T$) if there is a quasiaffinity X such that $X S=T X$.
3. Two operators $T, S \in \mathbf{B}(\mathcal{H})$ are said to be quasisimilar if there are a quasiaffinities $X, Y \in \mathbf{B}(\mathcal{H})$ such that $X S=T X$ and $S Y=Y T$.

3 Properties of algebraically Class A

An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be class A if $|A|^{2} \leq\left|A^{2}\right|$. We say that T is algebraically class A if there exists a non-constant complex polynomial \mathcal{P} such that $\mathcal{P}(T)$ is class A.
In general,
hyponormal $\Rightarrow p$-hyponormal $\Rightarrow \omega$-hyponormal \Rightarrow class $A \Rightarrow$ algebraically class A.
Algebraically class A is preserved under translation by scalar and restriction to invariant subspaces. Moreover, if T is class A and invertible then T^{-1} is class A. Indeed,

$$
T^{*} T=|T|^{2} \leq\left|T^{2}\right|=\left(T^{* 2} T^{2}\right)^{\frac{1}{2}}=T^{* 2}\left(T^{2} T^{* 2}\right)^{\frac{-1}{2}} T^{2}
$$

if and only if

$$
T^{*-1} T^{-1} \leq\left(T^{2} T^{* 2}\right)^{\frac{-1}{2}}=\left(T^{-2 *} T^{-2}\right)^{\frac{1}{2}}
$$

if and only if

$$
\left|T^{-1}\right|^{2} \leq\left|T^{-2}\right|
$$

We write $r(T)$ and $W(T)$ for the spectral radius and numerical range, respectively. It is well-known that $r(T) \leq\|T\|$ and that $W(T)$ is convex with convex hull $\operatorname{conv} \sigma(T) \subseteq \overline{W(T)}$. T is called convexoid if $\operatorname{conv} \sigma(T)=\overline{W(T)}$, and normaloid if $r(T)=\|T\|$.

Lemma 3.1. ([2]) If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically class A, then T is polaroid (resp.a-polaroid).

Definition 3.2. ([14]) An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be totally hereditarily normaloid,T $\in T H N$ if every part of T (i.e., its restriction to an invariant subspace), and T_{p}^{-1} for every invertible part T_{p} of T, is normaloid.

Lemma 3.3. Let $T \in T H N$. Let $\lambda \in \mathbb{C}$. Assume that $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$

Proof. We consider two cases:
case I. $(\lambda=0)$: Since T is normaloid. Therefore $T=0$.
case II. $(\lambda \neq 0)$: Here T is invertible, and since $T \in T H N$, we see that T, T^{-1} are normaloid. On the other hand $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}\right\}$, so $\|T\|\left\|T^{-1}\right\|=$ $|\lambda|\left|\frac{1}{\lambda}\right|=1$. This implies that $\frac{1}{\lambda} T$ is unitary with its spectrum $\sigma\left(\frac{1}{\lambda} T\right)=1$. It follows that T is convexoid, so $W(T)=\{\lambda\}$. Therefore $T=\lambda I$.

In [11], Curto and Han proved that quasinilpotent algebraically paranormal operators are nilpotent. We now establish a similar result for algebraically class A operators.

Lemma 3.4. Let T be a quasinilpotent algebraically class A operator. Then T is nilpotent.

Proof. Suppose $\mathcal{P}(T)$ is class A for some non-constant polynomial \mathcal{P}. Since $\sigma(\mathcal{P}(T))=\mathcal{P}(\sigma(T))$, the operator $\mathcal{P}(T)-\mathcal{P}(0)$ is quasinilpotent. Since $\mathcal{P}(T) \in T H N$, it follows from lemma 3.3 that $c T^{m}\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots(T-$ $\left.\lambda_{n}\right) \equiv \mathcal{P}(T)-\mathcal{P}(0)$, where $(m \geq 1)$. Since $T-\lambda_{j}$ is invertible for every $\lambda_{j} \neq 0, j=1, \cdots n$, we must have $T^{m}=0$.

It is well-known that every class A operator is isoloid (see [22]). We extend this result to algebraically class A operators.

Theorem 3.5. Let $T \in \mathbf{B}(\mathcal{H})$ be algebraically class A operator. Then T is isoloid.

Proof. Let $\lambda \in \operatorname{iso\sigma }(T)$ and let $P:=\frac{1}{2 \pi i} \int_{\partial D}(\lambda-T)^{-1} d \lambda$ be the associated Riesz idempotent, where D is a closed disc centered at λ which contains no other points of $\sigma(T)$. We can represent T as the direct sum $T=T_{1} \oplus T_{2}$, where $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\lambda\}$. Since T is algebraically class $A, \mathcal{P}(T)$ is class A for some non-constant polynomial \mathcal{P}. Since $\sigma\left(T_{1}\right)=\{\lambda\}$, we must have $\sigma\left(\mathcal{P}\left(T_{1}\right)\right)=\mathcal{P}\left(\sigma\left(T_{1}\right)\right)=\mathcal{P}(\{\lambda\})=\{\mathcal{P}(\lambda)\}$. Since $\mathcal{P}\left(T_{1}\right)$ is class A, it follows from lemma 3.4 that $\mathcal{P}\left(T_{1}\right)-\mathcal{P}(\lambda)=0$. Put $Q(z):=$ $\mathcal{P}(z)-\mathcal{P}(\lambda)$. Then $Q\left(T_{1}\right)=0$, and hence T_{1} is algebraically class A operator. Since $T_{1}-\lambda$ is quasinilpotent and class A operator, it follows from lemma
3.4 that $T_{1}-\lambda$ is nilpotent, therefore $\lambda \in \sigma_{p}\left(T_{1}\right)$, and hence $\lambda \in \sigma_{p}(T)$. This shows that T is an isoloid.

Lemma 3.6. Let $T \in \mathbf{B}(\mathcal{H})$ be a class A operator, then T is of finite ascent.
Proof.Let $x \in \mathcal{N}\left(T^{2}\right)$, then $\|T x\|^{2} \leq\left\|T^{2} x\right\|=0$, and so $x \in \mathcal{N}(T)$. Since the non-zero eigenvalues of a a class A operators are normal eigenvalues of T, (see [23, lemma 8]), if $0 \neq \lambda \in \sigma_{p}(T)$ and $(T-\lambda)^{2}=0$, then $(T-\lambda)(T-$ $\lambda) x=0=(T-\lambda)^{*}(T-\lambda) x$ and $\|(T-\lambda) x\|=\left\langle(T-\lambda)^{*}(T-\lambda) x, x\right\rangle=0$. Hence, if T is class A, then $a(T-\lambda)=1$.

Lemma 3.7. Let $T \in \mathbf{B}(\mathcal{H})$ be algebraically class A operator. Let $\lambda \in \mathbb{C}$ be an isolated point in $\sigma(T)$, then λ is a simple pole of the resolvent $R_{z}(T)=$ $(z I-T)^{-1}$.

Proof.If $\lambda \in \operatorname{iso\sigma }(T)$, then T has a direct sum decomposition $T=T_{1} \oplus T_{2}$ on $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ such that $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\lambda\}$. Let \mathcal{P} be a nonconstant polynomial such that $\mathcal{P}(T)$ is class A operator. Then \mathcal{H}_{1} is a $\mathcal{P}(T)$-invariant subspace, and hence $\mathcal{P}\left(T_{1}\right.$ is class A operator such that $\sigma\left(\mathcal{P}\left(T_{1}\right)=\mathcal{P}\left(\sigma\left(T_{1}\right)=\{\mathcal{P}(\lambda)\}\right.\right.$. But then $\mathcal{P}(\lambda) \in \Pi_{0}\left(T_{1}\right)$ and $\lambda \in \Pi_{0}\left(T_{1}\right)$. Hence, since $\lambda \notin \sigma\left(T_{2}\right), \lambda \in \Pi_{0}(T)$.

The following result is a consequence of lemma3.7 and $[12$, theorem 1.52].

Corollary 3.8. Let T be a an algebraically class A operator and $\lambda_{0} \in$ $\operatorname{iso\sigma }(T)$. Let $\tau=\sigma(T)-\left\{\lambda_{0}\right\}$. Then λ_{0} is an eigenvalue of T. The ascent and descent of $T-\lambda_{0}$ are both equal to 1. Also

$$
\begin{aligned}
\mathcal{R}\left(P\left(\lambda_{0}\right)\right) & =\mathcal{N}\left(\left(T-\lambda_{0}\right)\right) \\
\mathcal{R}(P(\tau)) & =\mathcal{R}\left(\left(T-\lambda_{0}\right)\right)
\end{aligned}
$$

Lemma 3.9. Let $T \in \mathbf{B}(\mathcal{H})$ be an algebraically class A. Then $\mathcal{H}=\mathcal{R}(T) \oplus$ $\mathcal{N}(T)$. Moreover T_{1}, the restriction of T to $\mathcal{R}(T)$ is one-one and onto.

Proof. Suppose that $y \in \mathcal{R}(T) \cap \mathcal{N}(T)$ then $y=T x$ for some $x \in \mathcal{H}$ and $T y=0$. It follows that $T^{2} x=0$. However, $d(T)=1$ and so $x \in$ $\mathcal{N}\left(T^{2}\right)=\mathcal{N}(T)$. Hence $y=T x=0$ and so $\mathcal{R}(T) \cap \mathcal{N}(T)=\{0\}$. Also, $T \mathcal{R}(T)=\mathcal{R}(T)$.
If $x \in \mathcal{H}$ there is $u \in \mathcal{R}(T)$ such that $T u=T x$. Now if $z=x-u$ then $T z=0$. Hence

$$
\mathcal{H}=\mathcal{R}(T) \oplus \mathcal{N}(T)
$$

Since $d(T)=1, T$ maps $\mathcal{R}(T)$ onto itself. If $y \in \mathcal{R}(T)$ and $T y=0$ then $y \in \mathcal{R}(T) \cap \mathcal{N}(T)=\{0\}$. Hence T_{1} is one-one and onto.

Theorem 3.10. Let $T \in \mathbf{B}(\mathcal{H})$ be algebraically class A operator. Then T is of Kato type at each $\lambda \in E(T)$.

Proof.Let T be algebraically class A and $\lambda \in E(T)$. Then $\mathcal{H}=H_{0}(T-$ $\lambda) \oplus K(T-\lambda)$, where $\left.T\right|_{H_{0}(T-\lambda)}=T_{1}$ satisfies $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\left.T\right|_{K(T-\lambda)}$ is semi-regular. Since T is algebraically class A, then there exists a nonconstant polynomial \mathcal{P} such that $\mathcal{P}\left(T_{1}\right)$ is class A. Clearly, $\sigma\left(\mathcal{P}\left(T_{1}\right)=\right.$ $\mathcal{P}\left(\sigma\left(T_{1}\right)\right)=\{\mathcal{P}(\lambda)\}$. Applying lemma 3.3 it follows that $H_{0}(\mathcal{P}(T)-\mathcal{P}(\lambda))=$ $\left(\mathcal{P}\left(T_{1}\right)-\mathcal{P}(\lambda)\right)^{-1}(0)$.

$$
0=\mathcal{P}\left(T_{1}\right)-\mathcal{P}(\lambda)=c\left(T_{1}-\lambda\right)^{m} \prod_{j=1}^{n}\left(T_{1}-\lambda_{j}\right)
$$

for some complex numbers $c, \lambda_{1}, \cdots, \lambda_{n}$, then for each $j=1, \cdots, n, T-\lambda_{j}$ is invertible, which implies $T_{1}-\lambda$ is nilpotent. Hence $T-\lambda$ is of Kato type.
Lemma 3.11. If T is class A operator and $S \prec T$. Then S has $S V E P$.
Proof. Since T is class A operator, then it has a SVEP, then the result follows from [11, lemma 3.1].

4 Weyl's Type Theorems

Theorem 4.1. If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically class A operator. Then T and T^{*} satisfy Weyl's theorem.

Proof. Since T is algebraically class A, then T has SVEP. Then T satisfies Browder's theorem if and only if T^{*} satisfies Browder's theorem if and only if $\Pi_{0}(T)=\sigma(T)-\sigma_{W}(T) \subseteq E_{0}(T)$ and $\Pi_{0}\left(T^{*}\right)=\sigma\left(T^{*}\right)-\sigma_{W}\left(T^{*}\right) \subseteq E_{0}\left(T^{*}\right)$. If $\lambda \in E_{0}\left(T^{*}\right)$, then both T and T^{*} has SVEP at λ and $0<a\left((T-\lambda)^{*}\right)=$ $b(T-\lambda)<\infty$. Thus the ascent and descent of $T-\lambda$ are finite and hence equal(see [12, prop.1.49]). Then $T-\lambda$ is a Fredholm of index zero and also $(T-\lambda)^{*}$ is a Fredholm of index zero, then $E_{0}(T) \subseteq \sigma(T)-\sigma_{W}(T)$ and $E_{0}\left(T^{*}\right) \subseteq \sigma\left(T^{*}\right)-\sigma_{W}\left(T^{*}\right)$. This implies that both T and T^{*} satisfy Weyl's theorem.

For $T \in \mathbf{B}(\mathcal{H})$, it is known that the inclusion $\sigma_{S F_{+}^{-}}(f(T)) \subseteq f\left(\sigma_{S F_{+}^{-}}(T)\right)$ holds for every $f \in \operatorname{Hol}(\sigma(T))$, with no restriction on T.
The next theorem shows that for algebraically class A operators the spectral mapping theorem holds for the semi-Fredholm spectrum.

Theorem 4.2. If T or T^{*} is an algebraically class A operator. Then $\sigma_{S F_{+}^{-}}(f(T))=f\left(\sigma_{S F_{+}^{-}}(T)\right)$ for all $f \in \operatorname{Hol}(\sigma(T))$.
Proof. Let $f \in \operatorname{Hol}(\sigma(T))$. It suffices to show that $f\left(\sigma_{S F_{+}^{-}}(T)\right) \subseteq \sigma_{S F_{+}^{-}}(f(T))$. Suppose that $\lambda \notin \sigma_{S F_{+}^{-}}(f(T))$ then $f(T)-\lambda \in S F_{+}^{-}(\mathcal{H})$ and $i(f(T)-\lambda) \leq 0$ and

$$
\begin{equation*}
f(T)-\lambda=c\left(T-\alpha_{1}\right) \cdots\left(T-\alpha_{n}\right) g(T) \tag{3}
\end{equation*}
$$

where $c, \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ and $g(T)$ is invertible. If T is algebraically class A, then $0 \leq \sum_{j=1}^{n} i\left(T-\alpha_{j}\right) \leq 0$, then $i\left(T-\alpha_{j}\right) \leq 0$ for each $j=1,2, \cdots, n$, therefore $\lambda \notin f\left(\sigma_{S F_{+}^{-}}(T)\right)$.
Suppose now that T^{*} is algebraically class A, then T^{*} has SVEP, and so $i\left(T-\alpha_{j}\right) \geq 0$ for each $j=1,2, \cdots, n$. since $0 \leq \sum_{j=1}^{n} i\left(T-\alpha_{j}\right) \leq 0$. Then $T-\alpha_{j}$ is Weyl for each $j=1,2, \cdots, n$. Hence $\lambda \notin f\left(\sigma_{S F_{+}^{-}}(T)\right)$. This completes the proof.
as a consequence of [11, theorem 3.4] we have
Corollary 4.3. Let $T \in \mathbf{B}(\mathcal{H})$ be a class A operator, then $\sigma_{B W}(f(T))=$ $f\left(\sigma_{B W}(T)\right)$ for each $f \in \operatorname{Hol}(\sigma(T))$.

Lemma 4.4. If T or T^{*} is a class A operator. Then $f\left(\sigma_{S B F_{+}^{-}}(T)\right)=$ $\sigma_{S B F_{+}^{-}}(f(T))$ for all $f \in \operatorname{Hol}(\sigma(T))$.

Proof. This follows at once from [26, theorem 2.3].
Theorem 4.5. If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically class A operator. Then $\sigma(f(T))-E(f(T))=f(\sigma(T)-E(T))$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof.It is suffices to show $f(\sigma(T)-E(T)) \subseteq \sigma(f(T))-E(f(T))$, since the other inclusion holds with no restriction on T ([5, lemma 2.7]). If $\lambda \notin$ $\sigma(f(T))-E\left(f(T)\right.$, then $f(T)-\lambda=\prod_{j=1}^{n}\left(T-\alpha_{j}\right)^{m_{j}}$, where m_{1}, \cdots, m_{n} are integers and $\alpha_{1}, \cdots, \alpha_{n}$ are complex numbers, $g(T)$ is invertible operator, and $\alpha_{i} \neq \alpha_{j}$ when $i \neq j$. Since $f(T)-\lambda$ is not invertible, there exists $\alpha \in\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ such that $\alpha \in \sigma(T)$. Since λ is isolated in $\sigma(f(T)), \alpha$ is isolated in $\sigma(T)$. Hence $\lambda=f(\alpha) \notin f(\sigma(T)-E(T))$. This completes the proof.

Lemma 4.6. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator, then T satisfies the generalized Weyl's theorem.

Proof. We shall show $\sigma(T)-\sigma_{B W}(T)=E(T)$. Let $\lambda \in \sigma(T)-\sigma_{B W}(T)$, then $T-\lambda$ is B-Weyl's. Then by [8, theoren 2.7] there exists two closed subspaces N and M of \mathcal{H} such that $\mathcal{H}=M \oplus N, T_{1}=\left.(T-\lambda)\right|_{M}$ is Weyl's operator, $T_{2}=\left.(T-\lambda)\right|_{N}$ is nilpotent and $T-\lambda=T_{1} \oplus T_{2}$.
we have two possibilities: either $\lambda \in \sigma\left(\left.T\right|_{M}\right)$ or $\lambda \notin \sigma\left(\left.T\right|_{M}\right)$.
case I: $\lambda \in \sigma\left(\left.T\right|_{M}\right)$, since $\left.T\right|_{M}$ is class A, then Weyl's theorem holds for $\left.T\right|_{M}$, and so if $\lambda \in \sigma\left(\left.T\right|_{M}\right)$, then $\lambda \in \Pi_{0}\left(\left.T\right|_{M}\right) \subset i \operatorname{so\sigma }\left(\left.T\right|_{M}\right)$. Since $T-\lambda=$ $\left(\left.T\right|_{M}-\left.\lambda I\right|_{M}\right) \oplus T_{2}$ and T_{2} is nilpotent, $\sigma\left(T_{1}-\lambda\right)-\{0\}=\sigma(T-\lambda)-\{0\}$ and $\lambda \in \operatorname{iso\sigma }(T)$. this implies that $\lambda \in \Pi_{0}(T) \subset E(T)$.
case II: $\lambda \notin \sigma\left(\left.T\right|_{M}\right)$, then λ is a pole of T which implies that $\lambda \in E(T)$.
Conversely, let $\lambda \in E(T)$. Let P be the spectral projection associated with λ, then $\mathcal{R}(P)=H_{0}(T-\lambda), \mathcal{N}(P)=K(T-\lambda), H_{0}(T-\lambda) \neq\{0\}$, $\mathcal{H}=H_{0}(T-\lambda) \oplus K(T-\lambda), K(T-\lambda)$ is closed subspace(see [18, theorem 3], [21, lemma 1]). Since $0 \neq \mathcal{N}(T-\lambda) \subset H_{0}(T-\lambda), \lambda$ is a pole of the
resolvent $R_{\lambda}(T)=(T-\lambda)^{-1}$, then by [18, theorem 3.4] there is some $q>0$ such that the space $(T-\lambda)^{-q}(0)$ is non-zero and complemented by a closed T-invariant subspace $\mathcal{R}\left((T-\lambda)^{q}\right) \subset \mathcal{R}(T-\lambda)$. Hence $T-\lambda$ is B-Weyl's, i.e., $\lambda \notin \sigma_{B W}(T)$.

The following result is a consequence of theorem 4.5 and theorem 4.6.
Corollary 4.7. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator. Then $f(T)$ satisfies generalized Weyl's theorem for every $f \in \operatorname{Hol}(\sigma(T))$.

Theorem 4.8. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator, then generalized a-Weyl's theorem holds for T.

Proof. We will show $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T)-E^{a}(T)$. In view of [10, theorem 3.1] it suffices to show $E^{a}(T)=\Pi^{a}(T)$ and $\sigma_{S B F_{+}^{-}}(T)=\sigma_{L D}(T)$.

If $\lambda \in \sigma_{a}(T)-E^{a}(T)$, then λ is an isolated in $\sigma_{a}(T)$, then it follows from [10, lemma 2.12] that $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. Hence $T-\lambda \in S B F_{+}^{-}$, then by [10, theorem 2.8] λ is a left pole of T, and so $\lambda \in \Pi^{a}(T)$. As we have always true $\Pi^{a}(T) \subset E^{a}(T)$, then $E^{a}(T)=\Pi^{a}(T)$.
Now, assume $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. Then $T-\lambda \in S B F_{+}^{-}$. Hence $T-\lambda$ is a left Drazin invertible and $\sigma_{L D}(T) \subset \sigma_{S B F_{+}^{-}}(T)$. As it always true that $\sigma_{S B F_{+}^{-}}(T) \subset \sigma_{L D}(T)$, then $\sigma_{S B F_{+}^{-}}(T)=\sigma_{L D}(T)$.

A bounded linear operator T is called a-isoloid if every isolated point of $\sigma_{a}(T)$ is an eigenvalue of T. Note that every a-isoloid operator is isoloid and the converse is not true in general(see [1]).

Theorem 4.9. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator. Then $E(f(T))=$ $\Pi(f(T))$, for every $f \in \operatorname{Hol}(\sigma(T))$

Proof. Since T is isoloid operator, then from theorem 4.5, we have $\sigma(f(T))-$ $E(f(T))=f(\sigma(T)-E(T))$. Since T satisfies generalized Weyl's theorem then $\sigma(T)=\Pi(T)$,so $\sigma(f(T))-E(f(T))=f\left(\sigma_{D}(T)\right)$. From [7, corollary 2.4] we have $f\left(\sigma_{D}(T)\right)=\sigma_{D}(f(T))$. Hence $\sigma(f(T))-E(f(T))=\sigma_{D}(f(T))$.

Theorem 4.10. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator, then $E^{a}(f(T))=$ $\Pi^{a}(f(T))$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. It is suffices to show $f\left(\sigma_{a}(T)-E^{a}(T)\right) \subset \sigma_{a}(f(T))-E^{a}(f(T))$, since the other inclusion holds for T with no restriction on T (see [4, theorem 3.5]). If $\lambda \in f\left(\sigma_{a}(T)-E^{a}(T)\right)$, then $\lambda \in \sigma_{a}(f(T))=f\left(\sigma_{a}(T)\right)$. Suppose $\lambda \in E^{a}(f(T))$, then λ is isolated in $\sigma_{a}(f(T))$.
Let $f(T)-\lambda=\prod_{j=1}^{n}\left(T-\mu_{j}\right)^{m_{j}} g(T)$, where μ_{1}, \cdots, μ_{n} are complex numbers and $g(T)$ is invertible. If $\mu_{j} \in \sigma_{a}(T)$, then μ_{j} is an isolated in $\sigma_{a}(T)$. Since T is a-isoloid, μ_{j} is an eigenvalue of T. Therefore we have $\mu_{j} \in E^{a}(T)$. So $\lambda=f\left(\mu_{j}\right)$ and this contradicts to the fact that $\lambda \in f\left(\sigma_{a}(T)-E^{a}(T)\right)$.

Theorem 4.11. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator and $F \in \mathbf{F}(\mathcal{H})$ such that $F T=T F$, then $T+F$ satisfy generalized a-Weyl's theorem.

Proof. Since T satisfies generalized a-Weyl's theorem, then $\sigma_{S B F_{+}^{-}}(T)=$ $\sigma_{L D}(T)$. Since F is a finite rank operator, then it follows from [10, theorem 4.1] that $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+F)$. Since $T F=F T$, then by [10, theorem 4.2] we have $\sigma_{L D}(T+F)=\sigma_{L D}(T)$. But $\Pi^{a}(T+F)=\Pi^{a}(T)$ (see [19]). Hence $\Pi^{a}(T)=E^{a}(T)=E^{a}(T+F)$. Then by $[10$, corollary 3.2$] T+F$ satisfies generalized a-Weyl's theorem.

As a consequence of theorem 4.11 and [4, theorem 3.8], we have
Corollary 4.12. Let $T \in \mathbf{B}(\mathcal{H})$ be class A operator and $F \in \mathbf{F}(\mathcal{H})$ such that $F T=T F$, then $T+F$ is polaroid.

Lemma 4.13. Let $T \in \mathbf{B}(\mathcal{H})$ be algebraically class A operator and $S \prec T$. Then g-Browder's theorem holds for $f(S)$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Since T is algebraically class A operator then T has SVEP, and so is S, consequently $f(S)$, because SVEP is stable under the functional calculus. (i.e., if T has SVEP, then so does $f(T)$ for each $f \in \operatorname{Hol}(\sigma(T))$). Observe that if $\lambda \in \Pi(T)$, then $T-\lambda$ is Drazin invertible and hence B Weyl's. Thus $\Pi(T) \subseteq \sigma(T)-\sigma_{B W}(T)$.

Conversely, assume that $\lambda \in \sigma(T)-\sigma_{B W}(T)$. Then $T-\lambda$ is B-Fredholm, and hence of uniform topological descent (see [9]). We claim that $\lambda \in i \operatorname{so\sigma }(T)$. If $\lambda \notin \operatorname{iso\sigma }(T)$, there exists a sequence $\left\{\mu_{n}\right\} \subset \sigma(T)$ such that $\mu_{n} \longrightarrow \lambda$. But then $\operatorname{dim}\left(T-\mu_{n}\right)^{-1}(0)=\operatorname{dim}(T-\lambda)^{-1}(0)>0$ and finite. So that $\lambda \in \operatorname{acc} \sigma_{p}(T)$. Which is a contradiction to the fact that T has SVEP. Therefore $\lambda \in \operatorname{iso\sigma }(T)$ which implies that λ is a pole of the resolvent of T. Thus $\lambda \in \Pi(T)$ and S satisfies g-Browder's theorem.

Theorem 2.4 of [26] affirms that if T^{*} or T has the SVEP and if T is a-isoloid and generalized a-Weyl's holds for T then generalized a-Weyl's theorem holds for $f(T)$, for every $f \in \operatorname{Hol}(\sigma(T))$. If T^{*} is algebraically class A, then we have:

Theorem 4.14. Let T^{*} be an algebraically class A operator. Then generalized a-Weyl's holds for T.

Proof. Since T^{*} has SVEP then $\sigma(T)=\sigma_{a}(T)$ and consequently $E(T)=$ $E^{a}(T)$.
Let $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ be given, then $T-\lambda$ is semi- B-Fredholm and $i(T-\lambda) \leq 0$. Then [19, proposition 1.2] implies that $i(T-\lambda)=0$ and consequently $T-\lambda$ is B-Weyl's. Hence $\lambda \notin \sigma_{B W}(T)$. Hence it follows from [26, theorem 3.1] that $\lambda \in E(T)=E^{a}(T)$.
For the converse, let $\lambda \in E^{a}(T)$. Then $\lambda \in i \operatorname{so\sigma _{a}}(T)$. Since T^{*}, we have $\sigma(T)=\sigma_{a}(T)$. Hence $\bar{\lambda} \in \sigma\left(T^{*}\right)$. Now we represent T^{*} as the direct sum $T^{*}=T_{1} \oplus T_{2}$, where $\sigma\left(T_{1}\right)=\{\bar{\lambda}\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\bar{\lambda}\}$. Since T is algebraically class A then so does T_{1}, and so we have two cases:
Case I: $(\bar{\lambda}=0)$: then T_{1} is quasinilpotent. Hence it follows from lemma 3.4 that T_{1} is nilpotent. Since T_{2} is invertible, Then T^{*} is a B-Weyl's.
Case II: $(\bar{\lambda} \neq 0)$: Since $\sigma\left(T_{1}\right)=\{\bar{\lambda}\}$, then $T_{1}-\bar{\lambda}$ is nilpotent and $T_{2}-\bar{\lambda}$ is invertible, it follows from [26, theorem 3.1] that $T^{*}-\bar{\lambda}$ is B-Weyl's. Thus in any case $\lambda \in \sigma_{a}(T)-\sigma_{S B F_{+}^{-}}(T)$

Theorem 4.15. Let $T \in \mathbf{B}(\mathcal{H})$. If T^{*} is a class A operator. Then generalized a-Browder's theorem holds for $f(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Let $\lambda \in \Pi^{a}(T)$ be given. then $\lambda \in i \operatorname{so\sigma _{a}}(T)$ and it follows by $\left[19\right.$, theorem 1.5] that $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ which shows that $\Pi^{a}(T) \subseteq \sigma_{a}(T)-$ $\sigma_{S B F_{+}^{-}}(T)$.
Conversely if $\lambda \in \sigma_{a}(T)-\sigma_{S B F_{+}^{-}}(T)$, then $T-\lambda$ is semi- B-Fredholm and $i(T-\lambda) \leq 0$. Thus, since T^{*} has SVEP, then by [19, proposition 1.2] that $i(T-\lambda)=0$. Therefore, $T-\lambda$ is Weyl's and $\lambda \notin \sigma_{W}(T)=\sigma_{b}(T)$ which shows that $\lambda \in \Pi(T)$. Consequently $\lambda \in i s o \sigma_{a}(T)$ and hence $\lambda \in \Pi^{a}(T)$. Thus generalized a-Browder's theorem holds for T.

References

[1] P. Aiena, C. Carpintero, Weyl's Theorem, a-Weyl's Theorem and Single-Valued Extension Property, Extracta Math., 20(2005), no.1, 2541.
[2] P. Aiena, J. R. Guillen, Weyl's theorem for perturbations of paranormal operators Proc. Amer. Math. Soc. 135 (2007), 2443-2451.
[3] S. K. Berberian, An Extension of Weyl's Theorem to A class of not Necessarily normal Operators, Michigan Math., 17(1969), 273-279.
[4] M. Berkani, On the Equivalence of Weyl Theorem and Generalized Weyl Theorem, Acta Math. Sinica23(2007), no.1, 103-110.
[5] M.Berkani, A. Arroud, Generalized Weyl's Theorem and Hyponormal Operators, J. Aust. Math. Soc. 76(2004), 1-12.
[6] M.Berkani, B-Weyl Spectrum and Poles of the Resolvent, J. Math. Anal. Appl. 272(2002), 596-603.
[7] M. Berkani, M. Sarih, An Atkinson-Type Theorem for B-Fredholm Operators, Studia Math. 148(2001), no.3, 251-257.
[8] M. Berkani, On A class of Quasi-Fredholm Operators, Integ. Equat. Oper. Th., 34(1999), 244-249.
[9] M. Berkani, Index of B-Fredholm Operators and Gereralization of A Weyl Theorem, Proc. Amer. Math. Soc., 130(2001), no.130, 1717-1723.
[10] M. Berkani, J. Koliha, Weyl Type Theorems For Bounded Linear Operators, Acta Sci. Math. 69(2003), no. 1-2, 359-376.
[11] R. E. Curto, Y. M. Han, Weyl's Theorem for Algebraically Paranormal Operators, Integ. Equat. Oper. Th., 47(2003), 307-314.
[12] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1973.
[13] B. P. Duggal, S. V. Djordjevic, Generalized Weyl's Theorem for A class of Operators Satisfying A norm Condition, Math. Proc. Royal Irish Acad., 104A(2004), no.1, 75-81.
[14] B. P. Duggal, S. V. Djordjevic, Generalized Weyl's Theorem for A class of Operators Satisfying A norm Condition II, Math. Proc. Royal Irish Acad., 104A(2006), no.1, 1-9.
[15] B. P. Duggal, Weyl's Theorem for Algebraically Totally Hereditarily Normaloid Operators, J. Math. Anal. Appl., 308(2005), 578-587.
[16] J. K. Finch, The Single Valued Extension Property on a Banach Space, Pacific J. Math., 58(1975), no.1, 61-69.
[17] R. E. Harte,Invertibility and Singularity for Bounded Linear Operators, Wiley, New York, 1988.
[18] J. J. Koliha, Isolated Spectral Points, Proc. Amer. Math. Soc., 124(1996), no.11, 3417-3424.
[19] M. Lahrouz, M. Zohry, Weyl Type Theorems and the Approximate point Spectrum, Irish Math. Soc. Bulletin, 55(2005), 41-51.
[20] K. B. Laursen, Operators with Finite Ascent, Pacific J. Math., 152(1992), no.2, 323-336.
[21] K. B. Laursen, Essential Spectra Through Local Spectral Theory, Proc. Amer. Math. Soc., 125(1997), no.5, 1425-1434.
[22] M. Ito, Several Properties of Class A Including p-hyponormal and loghyponormal Operators, Math. Ineq. Appl.2(1999), no.4, 569-578.
[23] A. Uchiyama, K. Tanahashi, On the Riesz Idempotent of Class A Operators, Math. Ineq. Appl.5(2002), no.2, 291-298.
[24] V. Rakoc̆evic, Operators Obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10(1986), 915-919.
[25] V. Rakočevic, Semi-Browder Operators and Perturbations, Studia Math., 122(1996), 131-137.
[26] H. Zguitti, A note on Generlized Weyl's Theorem, J. Math. Anal. Appl., 316(2006), 373-381.

School of Mathematical Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM, Selangor, Malaysia.
E-mail:malik_okasha@yahoo.com
E-mail:msn@pkrisc.cc.ukm.my
E-mail shabir@pkrisc.cc.ukm.my

[^0]: ${ }^{1}$ Received 3 July, 2007
 Accepted for publication (in revised form) 4 December, 2007

