
General Mathematics Vol. 16, No. 4 (2008), 35–40

Remarks on some parallel computation for

spline recurrence formulas

Ioana Chiorean

Abstract

It is known that many problems may be solved more accurate

by using spline functions instead of finite differences methods. In

this way, the computational effort is, also, reduced, even if serial

algorithms are used, due to the tridiagonal matrices involved. But

this effort can be even more improved by parallel calculus. The

purpose of this paper is to give some parallel computation approaches

for the recurrence formulas which appear in generating the cubic

spline functions.

2000 Mathematical Subject Classification: 65D05, 65D07, 37B20,

65Y05.

1 Statement of the problem

Let us have given the monotone spline knotset

x = {xi ∈ [a, b] | i = 0, N + 1}

35



Remarks on some parallel computation for spline recurrence formulas 36

for [a, b] ⊂ R, where

a = x0 < x1 < x2 < · · · < xN < xN+1 = b,

the stepsize hi = xi − xi−1 > 0, i = 1, N + 1 and the data

F = {fi | i = 0, N + 1}.

In this paper, we consider fi = f(xi), the value of a function f : [a, b]→

R in the knotpoint xi, for every i = 0, N + 1.

In general, it is known (see [2]) that the spline function of order l (with

the defect one) is a piecewise polynomial function s(x) = sl1(x) ∈ C l−1[a, b],

which is a polynomial of the l-th degree on each interval [xi−1, x] and

(1) s(xi) = f(xi) = fi.

In what follows, we consider l = 3.

Under this circumstances, we want to determine the cubic polinom s on

every interval [xi−1, xi].

2 Some computations

According with [3], if s is a cubic polinom on [xi−1, xi], one can write

(2) s′′(x) = Mi−1
xi − x

hi

+ Mi
x− xi−1

hi

, x ∈ [xi−1, xi]

where

Mi := s′′(xi).



Remarks on some parallel computation for spline recurrence formulas 37

Integrating twice relation (2), and using the interpolation relations (1),

the following expression on [xi−1, xi] is obtained:

(3) s(x) = Mi−1
(xi − x)3

6hi

+ Mi
(x− xi−1)

3

6hi

+

(
fi−1 −

Mi−1h
2
i

6

)
xi − x

hi

+

(
fi −

Mih
2
i

6

)
x− xi−1

hi

.

On the next interval, [xi, xi+1], function s can be obtained by replacing

i with i + 1 in (3). Taking into account the continuity conditions of the

first derivatives, s′ in xi, we get the following equality for computing the

unknown values Mi, i = 1, N :

(4)
hi

6
Mi−1 +

hi + hi+1

3
Mi +

hi+1

6
Mi+1 =

fi+1 − fi

hi+1
− fi − fi−1

hi

which, after some computations in the r.h.s. term, generates:

(5)
hi

6
Mi +

hi + hi+1

3
Mi +

hi+1

6
Mi+1 =

1

hi
fi−1 −

hi + hi+1

hihi+1
fi +

1

hi+1
fi+1

for i = 1, N .

(5) is a system of N equations with N +2 unknowns, with a tridiagonal

matrix. In order to solve it, we may use the boundary conditions, if we

consider that M0 = f0 and MN+1 = fN+1 are given. Then, in matricial

form, (5) can be written:

(6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
h1

6

h1 + h2

3

h2

6
0 . . . 0

0
h2

6

h2 + h3

3

h3

6
. . . 0

...

0 0 . . .
hN

6

hN + hN+1

3

hN+1

6

0 0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

M2

...

MN

MN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=



Remarks on some parallel computation for spline recurrence formulas 38

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
1

h1
−h1 + h2

h1h2

1

h2
0 . . . 0

0
1

h2
−h2 + h3

h2h3

1

h3
. . . 0

...

0 0 . . .
1

hN
−hN + hN+1

hNhN+1

1

hN+1

0 0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

...

fN

fN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

(7) A ·M = B · f.

The computation effort, in a serial algorithm, is of order O(N3), be-

cause the final matrices are not quite tridiagonal, due to the values at the

boundaries.

3 Parallel approaches

(7) can be written

(8) M = A−1 · B · f

so, in order to compute M = (M0, M1, . . . , MN+1) we have to obtain the

matriceal product A−1 ·B, with A and B matrices of order N +2. Due to the

fact that the (N +2)3 multiplications involved in the result matrix are very

time-expansive, we try to compute all of them, simultaneously, considering

(acc. with [1]) that we have enough processors.

Denoting by C = A−1 · B, the information will be organized in the

following manner: we generate two arrays, first with N +2 copies of matrix



Remarks on some parallel computation for spline recurrence formulas 39

A−1 and the other one with N +2 copies of row BT
1·, B

T
2·, . . . , B

T
N+2,·, and we

make a single parallel multiplication operation between these two arrays:

↑

N + 2

↓

⎡⎢⎢⎢⎣ A−1 A−1 . . . A−1

⎤⎥⎥⎥⎦ ∗
⎡⎢⎢⎢⎣

BT
1· BT

2· . . . BT
N+2,·

. . .

BT
1· BT

2· . . . BT
N+2,·

⎤⎥⎥⎥⎦
↑

N + 2

↓

← (N + 2) · (N + 2)→ ← (N + 2) · (N + 2)→

Then, by means of double recursive technique, the additions in the final

matrix are computed.

Remarks.

1. In general, by Xi· we understand the generation, from array X, of

another array which contains the elements of the i-th row of X.

2. The operator ”∗” denotes, here, the parallel multiplication operation

between the two arrays, which means that all the corresponding elements

are multiplied in the same time.

4 Conclusions

By means of parallel calculus, the effort of computation is reduced by a

factor of order O(N2), if our parallel system contains enough processors. If

not, we may still improve this effort, by decomposing the matrices in smaller

one, and applying parallel calculus to these smaller peaces.

References

[1] Chiorean, I., Calcul paralel, Ed. Microinformatica, 1995.



Remarks on some parallel computation for spline recurrence formulas 40

[2] Kobza, J., Proc. of Algoritmy, Conf. on Scientific Computing, 2000,

pp. 58-67.

[3] Micula, Gh., Funcţii spline şi aplicaţii.

Ioana Chiorean

”Babes-Bolyai” University

Cluj-Napoca, Romania

e-mail: ioana@cs.ubbcluj.ro


