Voronovskaja's theorem and the exact degree of approximation for the derivatives of complex Riesz-Zygmund means

Sorin G. Gal

Abstract

In this paper we obtain a quantitative Voronovskaja result and the exact orders in approximation by the derivatives of complex Riesz-Zygmund means in compact disks.

2000 Mathematical Subject Classification: Primary : 30E10;
Secondary: 41A25, 41A28.

1 Introduction

Of great importance in approximation theory, Fejér's theorem states that if $f: \mathbb{R} \rightarrow \mathbb{C}$ is a continuous function with period 2π, then the sequence $\left(F_{n}^{*}(g)(x)\right)_{n}$ of arithmetic mean of the sequence of partial sums of the Fourier series of g given by

$$
F_{n}^{*}(g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) K_{n}(x-t) d t, x \in \mathbb{R}
$$

where the kernel $K_{n}(u)$ is given by $K_{n}(u)=\frac{1}{n}\left(\frac{\sin (n u / 2)}{\sin (u / 2)}\right)^{2}$, converges uniformly to g on $[-\pi, \pi]$ (see Fejér [2]).

Their complex form attached to an analytic function $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ in a disk $\mathbb{D}_{R}=\{z \in \mathbb{C},|z|<R\}$ and given by

$$
\begin{gathered}
F_{n}(f)(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(z e^{i u}\right) K_{n}(u) d u=\frac{1}{2 \pi n} \int_{-\pi}^{\pi} f\left(z e^{i u}\right)\left(\frac{\sin (n u / 2)}{\sin (u / 2)}\right)^{2} d u= \\
\sum_{k=0}^{n-1} c_{k} \frac{n-k}{n} z^{k}
\end{gathered}
$$

(for the last formula see e.g. Gal [4, Theorem 3.1]) also have nice approximation properties, satisfying the estimate (see Gaier [3, Theorem 1])

$$
\left\|F_{n}(f)-f\right\|_{r} \leq M \omega_{1}\left(f ; \frac{1}{n}\right)_{\overline{\mathbb{D}}_{r}} \leq \frac{M\|f\|_{r}}{n}:=\frac{C_{r}(f)}{n}, \text { for all } n \in \mathbb{N}
$$

where $M>0,0<r<R,\|f\|_{r}=\sup \{|f(z)| ;|z| \leq r\}$ and $\omega_{1}\left(f ; \frac{1}{n}\right)_{\overline{\mathbb{D}}_{r}}$ is the classical modulus of continuity of f in $\overline{\mathbb{D}}_{r}$.

In fact, from the saturation result in Bruj-Schmieder [1, p. 161-162], it follows that if f is not a constant then the approximation order by $F_{n}(f)$ is exactly $\frac{1}{n}$.

The Fejér means, both trigonometric and complex cases were generalized by Riesz and Zygmund, their complex form being defined for any $s \in \mathbb{N}$ by

$$
R_{n, s}(f)(z)=\sum_{k=0}^{n-1} c_{k}\left[1-\left(\frac{k}{n}\right)^{s}\right] z^{k}, n \in \mathbb{N}
$$

For $s=1$ one recapture the Fejér means and for $s=2$ one get the means introduced by Riesz.

From the saturation result in Bruj-Schmieder [1, p. 161-162] it follows that if f is not a constant then the approximation order by $R_{n, s}(f)$ is exactly $\frac{1}{n^{s}}$.

In this note we prove that the approximation order by the derivatives of $R_{n, s}(f)$ also is exactly $\frac{1}{n^{s}}$. Useful in the proof will be the Voronovskaja's formula for $R_{n, s}(f)(z)$ with a quantitative estimate. It is worth noting that our method is different from that in Bruj-Schmieder [1]. Also, in addition we obtain a Voronovskaja result with a quantitative upper estimate and the exact orders in simultaneous approximation by derivatives.

2 Main Results

First we prove an upper estimate in approximation by the derivatives of $R_{n, s}(f)$.

Theorem 1 Let $R>1, \mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}. Also, denote $C_{r_{1}, s}(f)=\sum_{k=0}^{\infty}\left|c_{k}\right| k^{s} r_{1}^{k}<\infty$. If $1 \leq r<r_{1}<R$ and $s, p \in \mathbb{N}$ then we have

$$
\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r} \leq \frac{r_{1} p!C_{r_{1}, s}(f)}{\left(r_{1}-r\right)^{p+1} n^{s}}, n \in \mathbb{N} .
$$

Proof. An estimate of the form

$$
\left\|R_{n, s}(f)-f\right\|_{r} \leq \frac{C_{r, s}(f)}{n^{s}}, n \in \mathbb{N}
$$

essentially follows from Bruj-Schmieder [1]. Below we reprove this estimate in a different and simple way, with an explicit constant $C_{r, s}(f)$. Thus,
denoting $e_{k}(z)=z^{k}$ and writing $f(z)=\sum_{k=0}^{\infty} c_{k} e_{k}(z)$ valid for all $|z|<R$, for all $|z| \leq r$ we obtain

$$
\begin{gathered}
\left|R_{n, s}(f)(z)-f(z)\right| \leq \\
\sum_{k=0}^{\infty}\left|c_{k}\right| \cdot\left|R_{n, s}\left(e_{k}\right)(z)-e_{k}(z)\right|=\sum_{k=0}^{n-1}\left|c_{k}\right| \cdot\left|R_{n, s}\left(e_{k}\right)(z)-e_{k}(z)\right|+ \\
\sum_{k=n}^{\infty}\left|c_{k}\right| \cdot\left|R_{n, s}\left(e_{k}\right)(z)-e_{k}(z)\right| \leq \frac{1}{n^{s}} \sum_{k=0}^{n-1}\left|c_{k}\right| k^{s} r^{k}+\sum_{k=n}^{\infty}\left|c_{k}\right| r^{k}
\end{gathered}
$$

Here we used that $e_{k}(z)=\sum_{j=0}^{\infty} c_{j} z^{j}$, with $c_{k}=1$ and $c_{j}=0$ for all $j \neq k$.
Taking into account that for $k \geq n$ we have $1 \leq \frac{k^{s}}{n^{s}}$, from the previous inequality we get

$$
\left|R_{n, s}(f)(z)-f(z)\right| \leq \frac{1}{n^{s}} \sum_{k=0}^{n-1}\left|c_{k}\right| k^{s} r^{k}+\frac{1}{n^{s}} \sum_{k=n}^{\infty}\left|c_{k}\right| k^{s} r^{k}=\frac{1}{n^{s}} \sum_{k=0}^{\infty}\left|c_{k}\right| k^{s} r^{k}
$$

for all $|z| \leq r$, therefore we can take $C_{r, s}(f)=\sum_{k=0}^{\infty}\left|c_{k}\right| k^{s} r^{k}<\infty$.
Now, denoting by γ the circle of radius $r_{1}>r$ and center 0 , since for any $|z| \leq r$ and $v \in \gamma$, we have $|v-z| \geq r_{1}-r$, by the Cauchy's formulas it follows that for all $|z| \leq r$ and $n \in \mathbb{N}$, we have

$$
\begin{gathered}
\left|R_{n, s}^{(p)}(f)(z)-f^{(p)}(z)\right|=\frac{p!}{2 \pi}\left|\int_{\gamma} \frac{R_{n, s}(f)(v)-f(v)}{(v-z)^{p+1}} d v\right| \leq \\
\frac{C_{r_{1}, s}(f)}{n^{s}} \cdot \frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1}}{\left(r_{1}-r\right)^{p+1}}
\end{gathered}
$$

which proves the theorem.
Useful in the proof of the exact degree of approximation will be the Voronovskaja's formula for $R_{n, s}(f)(z)$. For this purpose, first we need the following simple lemma.

Lemma 1 Let $k, s \in \mathbb{N}$. If we denote $k^{s}=\sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1))$, then the coefficients $\alpha_{j, s}$ can be chosen independent of k and to satisfy $\alpha_{1, s}=$ $\alpha_{s, s}=1$ for all $s \geq 1$ and $\alpha_{j, s+1}=\alpha_{j-1, s}+j \alpha_{j, s}, j=2, \ldots, s, s \geq 2$.

Proof. We have

$$
\begin{gathered}
k^{s+1}=\sum_{j=1}^{s+1} \alpha_{j, s+1} k(k-1) \ldots(k-(j-1))=k \sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1))= \\
\sum_{j=1}^{s} \alpha_{j, s}(k-j+j) k(k-1) \ldots(k-(j-1))=\sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-j)+ \\
\sum_{j=1}^{s} j \alpha_{j, s} k(k-1) \ldots(k-(j-1))=\sum_{j=2}^{s+1} \alpha_{j-1, s} k(k-1) \ldots(k-(j-1))+ \\
\sum_{j=1}^{s} j \alpha_{j, s} k(k-1) \ldots(k-(j-1))=\alpha_{s, s}+\sum_{j=2}^{s} \alpha_{j-1, s} k(k-1) \ldots(k-(j-1))+ \\
\sum_{j=2}^{s} j \alpha_{j, s} k(k-1) \ldots(k-(j-1))+\alpha_{1, s},
\end{gathered}
$$

which implies

$$
\begin{gathered}
\sum_{j=1}^{s+1} \alpha_{j, s+1} k(k-1) \ldots(k-(j-1))=\alpha_{1, s+1}+\sum_{j=2}^{s} \alpha_{j, s+1} k(k-1) \ldots(k-(j-1))+ \\
\alpha_{s+1, s+1}=\alpha_{s, s}+\sum_{j=2}^{s} \alpha_{j-1, s} k(k-1) \ldots(k-(j-1))+ \\
\sum_{j=2}^{s} j \alpha_{j, s} k(k-1) \ldots(k-(j-1))+\alpha_{1, s}
\end{gathered}
$$

and proves the lemma.
Now, the Voronovskaja's theorem for $R_{n, s}(f)(z)$ one states as follows.

Theorem 2 Let $R>1, \mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, that is we can write $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$. For any $r \in[1, R)$ we have

$$
\left\|R_{n, s}(f)-f+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right\|_{r} \leq \frac{A_{r, s}(f)}{n^{s+1}}, n \in \mathbb{N}
$$

where $A_{r, s}(f)=\sum_{k=1}^{\infty}\left|c_{k}\right| k^{s+1} r^{k}<\infty, e_{j}(z)=z^{j}$ and $\alpha_{j, s}$ are defined by Lemma 1.

Proof. Denoting

$$
E_{k, n, s}(z)=R_{n, s}\left(e_{k}\right)(z)-e_{k}(z)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1)) z^{k}
$$

we obtain

$$
\begin{gathered}
\left|R_{n, s}(f)(z)-f(z)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} z^{j} f^{j}(z)\right| \leq \sum_{k=0}^{\infty}\left|c_{k}\right| \cdot\left|E_{k, n, s}(z)\right|= \\
\sum_{k=1}^{n-1}\left|c_{k}\right| \cdot\left|E_{k, n, s}(z)\right|+\sum_{k=n}^{\infty}\left|c_{k}\right| \cdot\left|E_{k, n, s}(z)\right|= \\
\sum_{k=1}^{n-1}\left|c_{k}\right| \cdot\left|\left(1-\left(\frac{k}{n}\right)^{s}\right)-1+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1))\right| \cdot|z|^{k}+ \\
\sum_{k=n}^{\infty}\left|c_{k}\right| \cdot\left|-1+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1))\right| \cdot|z|^{k}= \\
0+\sum_{k=n}^{\infty}\left|c_{k}\right| \cdot\left|-1+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} k(k-1) \ldots(k-(j-1))\right| \cdot|z|^{k}
\end{gathered}
$$

where for the first sum we used Lemma 1.

Taking into account that by Lemma 1 we have $\sum_{j=1}^{s} \alpha_{j, s} n(n-1) \ldots(n-$ $(j-1))=n^{s}$, for all $|z| \leq r$ it follows

$$
\begin{gathered}
\left|R_{n, s}(f)(z)-f(z)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} z^{j} f^{j}(z)\right| \leq \\
\left(\sum_{k=n}^{\infty}\left|c_{k}\right| r^{k}\right) \cdot\left(\sum_{j=1}^{s} \alpha_{j, s} \frac{k(k-1) \ldots(k-(j-1))}{n^{s}}\right)= \\
\frac{1}{n^{s}} \sum_{k=n}^{\infty}\left|c_{k}\right| k^{s} r^{k} \leq \frac{1}{n^{s+1}} \sum_{k=n}^{\infty}\left|c_{k}\right| k^{s+1} r^{k} \leq \frac{1}{n^{s+1}} \sum_{k=1}^{\infty}\left|c_{k}\right| k^{s+1} r^{k}
\end{gathered}
$$

which proves the theorem.
By using Theorems 1 and 2 we are in position to obtain the exact degree of approximation by the derivatives of $R_{n, s}(f)(z)$.

Theorem 3 Let $\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}$ be with $R>1$ and let us suppose that $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ is analytic in \mathbb{D}_{R}, i.e. $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, for all $z \in \mathbb{D}_{R}$. Also, let $1 \leq r<r_{1}<R$ and $p, s \in \mathbb{N}$ be fixed. If f is not a polynomial of degree $\leq p-1$ then we have

$$
\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r} \sim \frac{1}{n^{s}},
$$

where the constants in the equivalence depend on f, r, r_{1}, s and p.

Proof. Denoting by Γ the circle of radius $r_{1}>$ and center 0 (where $r_{1}>$ $r \geq 1$), by the Cauchy's formulas it follows that for all $|z| \leq r$ and $n \in \mathbb{N}$ we have

$$
R_{n, s}^{(p)}(f)(z)-f^{(p)}(z)=\frac{p!}{2 \pi i} \int_{\Gamma} \frac{R_{n, s}(f)(v)-f(v)}{(v-z)^{p+1}} d v
$$

where the inequality $|v-z| \geq r_{1}-r$ is valid for all $|z| \leq r$ and $v \in \Gamma$.
Taking into account Theorem 1, it remains to prove the lower estimate for $\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r}$. For this purpose, for all $v \in \Gamma$ and $n \in \mathbb{N}$ we have

$$
\begin{gathered}
R_{n, s}(f)(v)-f(v)=\frac{1}{n^{s}}\left\{-\sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)+\right. \\
\left.\frac{1}{n}\left[n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)\right]\right\}
\end{gathered}
$$

which replaced in the above Cauchy's formula implies

$$
\begin{gathered}
R_{n, s}^{(p)}(f)(z)-f^{(p)}(z)=\frac{1}{n^{s}}\left\{\frac{p!}{2 \pi i} \int_{\Gamma} \frac{-\sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)}{(v-z)^{p+1}} d v+\right. \\
\left.\frac{1}{n} \cdot \frac{p!}{2 \pi i} \int_{\Gamma} \frac{n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)}{(v-z)^{p+1}} d v\right\}= \\
\frac{1}{n^{s}}\left\{\left[-\sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right]^{(p)}+\right. \\
\left.\frac{1}{n} \cdot \frac{p!}{2 \pi i} \int_{\Gamma} \frac{n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)}{p+1} d v\right\}
\end{gathered}
$$

Passing now to $\|\cdot\|_{r}$ it follows

$$
\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r} \geq \frac{1}{n^{s}}\left\{\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}-\right.
$$

$$
\left.\frac{1}{n}\left\|\frac{p!}{2 \pi} \int_{\Gamma} \frac{n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)}{(v-z)^{p+1}} d v\right\|_{r}\right\}
$$

where by using Theorem 2 we obtain

$$
\begin{gathered}
\left\|\frac{p!}{2 \pi} \int_{\Gamma} \frac{n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)}{(v-z)^{p+1}} d v\right\|_{\leq} \\
\frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1} n^{s+1}}{\left(r_{1}-r\right)^{p+1}}\left\|R_{n, s}(f)-f+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right\|_{r_{1}} \leq \frac{A_{r_{1}, s}(f) p!r_{1}}{\left(r_{1}-r\right)^{p+1}} .
\end{gathered}
$$

But by hypothesis on f we have $\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}>0$.
Indeed, supposing the contrary it follows that

$$
\sum_{j=1}^{s} \alpha_{j, s} z^{j} f^{(j)}(z)=Q_{p-1}(z)
$$

for all $z \in \overline{\mathbb{D}}_{r}$, where $Q_{p-1}(z)=\sum_{j=1}^{p-1} A_{j} z^{j}$ necessarily is a polynomial of degree $\leq p-1$.

Seeking now the analytic solution in the form $f(z)=\sum_{k=0}^{\infty} \beta_{k} z^{k}$, replacing in the differential equation and taking into account again Lemma 1, by identification of the coefficients β_{k} we easily obtain $\beta_{k}=0$, for all $k \geq p$, that is $f(z)$ necessarily is a polynomial of degree $\leq p-1$, in contradiction with the hypothesis.

Therefore, there exists an index n_{0} depending only on f, s, p, r and r_{1}, such that for all $n \geq n_{0}$ we have

$$
\begin{gathered}
\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}- \\
\frac{1}{n}\left\|\frac{p!}{2 \pi} \int_{\Gamma} \frac{n^{s+1}\left(R_{n, s}(f)(v)-f(v)+\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j, s} v^{j} f^{(j)}(v)\right)}{(v-z)^{p+1}} d v\right\|_{r} \geq \\
\frac{1}{2}\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}
\end{gathered}
$$

which immediately implies

$$
\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r} \geq \frac{1}{n^{s}} \cdot \frac{1}{2}\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}
$$

for all $n \geq n_{0}$.
For $n \in\left\{1, \ldots, n_{0}-1\right\}$ we obviously have $\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r} \geq \frac{M_{r, s, p, n}(f)}{n}$ with $M_{r, s, p, n}(f)=n \cdot\left\|R_{n, s}^{(p)}(f)-f^{(p)}\right\|_{r}>0$, which finally implies $\| R_{n, s}^{(p)}(f)-$ $f^{(p)} \|_{r} \geq \frac{C_{r, s, p}(f)}{n}$ for all n, where

$$
C_{r, s, p}(f)=\min \left\{M_{r, s, p, 1}(f), \ldots, M_{r, s, p, n_{0}-1}(f), \frac{1}{2}\left\|\left[\sum_{j=1}^{s} \alpha_{j, s} e_{j} f^{(j)}\right]^{(p)}\right\|_{r}\right\} .
$$

This completes the proof.
Acknowledgement. Supported by the Romanian Ministry of Education and Research, under CEEX grant, code 2-CEx 06-11-96.

References

[1] I. Bruj and G. Schmieder, Best approximation and saturation on domains bounded by curves of bounded rotation, J. Approx. Theory, 100(1999), 157-182.
[2] L. Fejér, Untersuchungen über Fouriersche Reihen, Mathematische Ann., 58(1904), 51-69.
[3] D. Gaier, Approximation durch Fejér-Mittel in der Klasse A, Mitt. Math. Sem. Giessen, 123(1977), 1-6.
[4] S.G. Gal, Convolution-type integral operators in complex approximation, Comput. Methods and Funct. Theory, 1(2001), No. 2, 417-432.

Sorin G. Gal
University of Oradea
Department of Mathematics and Computer Science
Str. Universitatii No. 1, 410087 Oradea, Romania
e-mail: galso@uoradea.ro

