A characterization of the orthogonal polynomials

Ioan Gavrea

Abstract

We give a characterization of the orthogonal polynomials using certain inequalities linked to the scalar product between a fixed function ϕ and any convex function of order $n-1$.

2000 Mathematical Subject Classification: 26D05, 33C45.

1 Introduction

We denote by I the interval $[0,1], \dot{I}=(0,1)$ and by e_{i} the monomial e_{i} : $[0,1] \rightarrow \mathbb{R}, e_{i}(x)=x^{i}, i=0,1,2, \ldots$

Definition 1 Let $J \subset \mathbb{R}$ be an interval. A function $f: J \rightarrow \mathbb{R}$ is called nonconcave of order $n-1$ on J if for every system $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of distinct points from J we have

$$
\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right] \geq 0
$$

where $\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]$ is the divided difference of function f on a system of distinct points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{k} \in J$.

In the following we denote by $K_{n-1}(\dot{I})$ the set of nonconcave functions of order $n-1$ on \dot{I} with the property that $\int_{0}^{1} x^{k} f(x) d x, k \in\{0,1, \ldots, n\}$ exist. Let us denote by P_{n} the Legendre polynomial of degree n on the interval I.
N. Ciorănescu ([1], [2], [3]) proved the following result:

Let $f \in K_{n-1}(\dot{I}) \cap C^{n}(\dot{I})$. Then there exists a point $\theta=\theta(f) \in \dot{I}$ such that

$$
\begin{equation*}
\int_{0}^{1} P_{n}(x) f(x) d x=K \frac{f^{(n)}(\theta)}{n!} \tag{1}
\end{equation*}
$$

where $K=\int_{0}^{1} x^{n} P_{n}(x) d x$.
A. Lupas, [5], showed that for any $f \in K_{n-1}(\dot{I})$ there exist distinct points $c_{i}(f) \in \dot{I}, i=0,1, \ldots, n$ such that the following equation holds:

$$
\begin{equation*}
\int_{0}^{1} P_{n}(x) f(x) d x=K\left[c_{0}, c_{1}, \ldots, c_{n} ; f\right] \tag{2}
\end{equation*}
$$

where $K=\int_{0}^{1} x^{n} P_{n}(x) d x$. In fact Lupaş's result shows that the linear functional $A, A: C(I) \rightarrow \mathbb{R}$ is a P_{n} simple functional in the sense of T . Popoviciu ([7]).

In [5] we have extended the result obtained by A. Lupaş. We proved the following: let $A: C[0,1] \rightarrow \mathbb{R}$ be a linear positive definite functional and P_{n} the orthogonal polynomial of degree n relative to the functional A. Then for every $f \in C[0,1]$ there exist n distinct points $c_{i}:=c_{i}(f)$, $c_{i} \in[0,1], i=0,1, \ldots, n$ such that:

$$
\begin{equation*}
A\left(f P_{n}\right)=K\left[c_{0}, c_{1}, \ldots, c_{n} ; f\right], K=A\left(e_{n}\right) \tag{3}
\end{equation*}
$$

In [6], A. Lupaş and A. Vernescu gave a characterization of the Legendre polynomials. They proved the following.

Theorem 1 Let $p \in \Pi_{n}$ a monic polynomial. A necessary and sufficient condition such that the inequality

$$
\begin{equation*}
\int_{0}^{1} p(x) f(x) d x \geq 0 \tag{4}
\end{equation*}
$$

holds for all $f \in K_{n-1}(\dot{I})$ is that $p=P_{n}^{*}$, where P_{n}^{*} is the Legendre monic polynomial of degree n.

The aim of this paper is to extend the result of Theorem 1.

2 Main Results

Let \mathcal{L} be a $n+1$-dimensional space of $C^{n}(I)$ and $U_{0}, U_{1}, \ldots, U_{n}$ a basis of \mathcal{L}. The following definition is well known

Definition 2 Let $\left(U_{0}, U_{1}, \ldots, U_{n}\right)$ be a basis of \mathcal{L}. The space \mathcal{L} is said to be an extended Chebysev space on I if any nonzero element of \mathcal{L} vanishes at most n times on \dot{I} (with multiplicities).

In the following we denote by $\Phi \subset C^{n-1}(\dot{I})$ the set of all functions ϕ for which the following conditions are satisfied:

1. For every $f \in K_{n-1}(\dot{I}), \int_{0}^{1} f(x) \phi(x) d x$ is finite.
2. The space \mathcal{L} spanned by the functions $\left\{e_{0}, e_{1}, \ldots, e_{n-1}, \phi\right\}$ is an $n+1$ dimensional extended Chebysev space on \dot{I}.

Theorem 2 Let $\phi \in \Phi$ be a fixed function such that

$$
\begin{equation*}
\int_{0}^{1} \phi(x) f(x) d x \geq 0 \tag{5}
\end{equation*}
$$

Then, there exists a weight function w such that function ϕ can be written as

$$
\phi=P_{n} w,
$$

where P_{n} is the monic orthogonal polynomial of degree n on $[0,1]$ relative to the scalar product

$$
<f, g>=\int_{0}^{1} f(x) g(x) w(x) d x
$$

Proof. The functions $\pm e_{i} \in K_{n-1}, i=0,1, \ldots, n-1$. From (5) we get

$$
\begin{equation*}
\int_{0}^{1} x^{i} f(x) d x=0, \quad i=0,1, \ldots, n-1 \tag{6}
\end{equation*}
$$

From (6) it follows that there exist n distinct points $x_{i} \in \dot{I}, i=0,1, \ldots, n$ where the function ϕ changes its sign. The function ϕ doesn't change its sign in any other points, because $\phi \in \mathcal{L}$. Therefore, the function ϕ can be written in the following form:

$$
\phi=P_{n} w
$$

where

$$
P_{n}(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right), x \in I
$$

and

$$
w(x)= \begin{cases}\frac{\phi(x)}{P_{n}(x)}, & x \in \dot{I} \backslash\left\{x_{1}, \ldots, x_{n}\right\} \\ \frac{\phi^{\prime}(x)}{P_{n}^{\prime}(x)}, & x \in\left\{x_{1}, \ldots, x_{n}\right\}\end{cases}
$$

The function w is continuous and has the constant sign on \dot{I}. The function $P_{n} \in K_{n-1}(I)$ and therefore

$$
\int_{0}^{1} P_{n}(x) \phi(x) d x>0
$$

or

$$
\begin{equation*}
\int_{0}^{1} P_{n}^{2}(x) w(x) d x>0 . \tag{7}
\end{equation*}
$$

From (7), it follows that

$$
w(x)>0
$$

for every $x \in \dot{I}$ and therefore the proof is complete.
Corollary 1 Let w be a positive function defined on $(0,1)$, such that for every $i \in\{0,1, \ldots, n\}, \int_{0}^{1} x^{i} w(x) d x<\infty$ and let p be a monic polynomial of degree n such that

$$
\int_{0}^{1} f(x) p(x) w(x) d x \geq 0
$$

for every $f \in K_{n-1}(\dot{I})$. Then p coincides with the monic orthogonal polynomial of degree n relative to the scalar product

$$
<f, g>=\int_{0}^{1} f(x) g(x) w(x) d x
$$

Proof. The proof follows from the fact that the set $\operatorname{span}\left\{e_{0}, e_{1}, \ldots, e_{n-1}, p w\right\}$, with p a monic polynomial of degree n is an extended Chebysev space on \dot{I}.

Remark 1 For $w=1$, we obtain the result from Theorem 1.

References

[1] N. Ciorănescu, Sur une nouvelle généralisation des polynômes de Legendre, Acta Math, 61, Upsala 1932, 135-148.
[2] N. Ciorănescu, La généralisation de la première formule de la moyenne, L'enseignement Math. Genève, 37, 1938, 298-302.
[3] N. Ciorănescu, The Mathematical Work (in Romanian), Publishing House of the Romanian Academy, Bucharest, 1975.
[4] I. Gavrea, Operators which occur in approximation theory (doctoral thesis), Cluj-Napoca, 1982.
[5] A. Lupaş, Mean theorems for the Fourier-Jacobi's coefficients, Revue d'Analyse Numérique et Théorie de l'Approximation, 3(1974), No. 1, 79-84 (in Romanian).
[6] A. Lupaş, A. Vernescu A characterization of the polynomial of Legen$d r e$, Result. Math. (to appear).
[7] T. Popoviciu Les Fonctions Convexes, Actualités Scientifiques et Industrielles, Hermann \& Cie, Paris, 1945.

Ioan Gavrea
Technical University of Cluj-Napoca
Department of Mathematics, Faculty of Automation and Computer Science Str. G. Baritiu nr. 26-28, 400027 Cluj-Napoca, Romania
e-mail: Ioan.Gavrea@math.utcluj.ro

