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Large quadratic programming problems

generated by rigid body simulation
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Abstract

In the present paper we briefly present how to obtain large quadratic

programming (QP) problems from rigid body simulation. The QPs

are obtained based on the convex relaxation introduced by Mihai

Anitescu in 2006 and its dual formulation.
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1 Introduction

Time-stepping schemes for rigid-body simulation are concerned with the

numerical integration of the motion of several rigid bodies experiencing

contacts and Coulomb friction. One of the standard approaches is to for-

mulate the integration step as a linear complementarity problem (LCP). In

the presence of Coulomb friction the underlying LCP matrix is a copositive

73



Large QPs generated by rigid body simulation 74

matrix. LCPs with copositive matrices, [3], are generally solved by means

of Lemke-type algorithms, and solvers such as PATH, [2], have proved to

be robust. However for large systems the PATH solver or any other pivotal

algorithms become impractical from a computational point of view.

The convex relaxation introduced in [1] formulates the integration step

as a quadratic programming problem (QP), for which polynomial time al-

gorithms and state-of-the-art solvers can be used. Therefore, from a com-

putational point of view such an approach becomes a feasible alternative for

the simulation of large rigid-body systems. On the other hand, Anitescu’s

relaxation in the context of rigid body simulation leads to large QPs that

can be used as test problems for dedicated optimization solvers. In the

present work we briefly present how such QPs can be generated via rigid

body simulation. Computational results, showing the performance of some

state-of-the-art solvers on a large rigid body system have been presented in

[5] and we refer the interested reader to this paper for more details.

2 LCP based time-stepping schemes and An-

itescu’s convex relaxation

In [4] we have analyzed convergence properties of a class of semi-implicit

LCP-based time-stepping schemes. The integration step can be formulated

as follows:

At integration time tl+1 find the new system generalized velocity by solving
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the following mixed linear complementarity problem:

M̃vl+1 −
m∑

i=1

ν(i)c(i)
ν −

∑
j∈A

(n(j)c(j)
n + D(j)β(j)) = M̃vl + k̃(1)

ν(i)T
(
αv(l+1) + (1− α)v(l)

)
= 0 , i = 1, 2, . . . m(2)

0 ≤ ρ(j) := n(j)T
(
αv(l+1) + (1− α)v(l)

)
⊥ c(j)

n ≥ 0, j ∈ A(3)

0 ≤ σ(j) := λ(j)e(j) + D(j)T
(
αv(l+1) + (1− α)v(l)

)
⊥ β(j) ≥ 0, j ∈ A(4)

0 ≤ ζ(j) := μ(j)c(j)
n − e(j)T

β(j) ⊥ λ(j) ≥ 0, j ∈ A.(5)

Equation (1) is a discrete version of Newton’s second law at the velocity-

impulse level. Here the matrix M̃ is dominated by the generalized mass

matrix and for sufficiently small integration step h, h > 0, this matrix is

positive definite. The positive definite property of the matrix M̃ is one

of the key elements in reducing the above mixed linear complementarity

problem to an LCP with a copositive matrix. In equation (1), zl+1
j :=∑m

i=1 ν(i)c
(i)
ν represent the joint constraint impulses, while

∑
j∈A(n(j)c

(j)
n +

D(j)β(j)) are the contact (normal and tangential) impulses. The set A is

an index set of all active contacts, while the term k̃ on the right-hand

side of (1) is connected to the applied (external and inertial) impulses. The

equations comprised in (2) impose the joint constraints at the velocity level,

[4]. The next three equations are complementarity constraints. Here, for

two column vectors u, v ∈ Rp, we write 0 ≤ u ⊥ v ≥ 0 if all components

of both u and v are non-negative and uTv = 0. Equation (3) represents

the contact and non-penetration constraints, while equations (4) and (5)

model Coulomb frictional constraints for a polyhedral friction cone. In all

the above equations α ∈ [1
2
, 1] is a parameter used to span an entire family
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of time-stepping schemes.

In [5] we have used Anitescu’s convex relaxation, [1], to simulate a large

system of rigid bodies. More precisely, in [5], we simulated the loading of

identical pebbles into a vat whose geometry is composed of a finite cylinder

and a truncated cone. For this specific application, Anitescu’s convex relax-

ation formulates the integration step as a quadratic programming problem

(QP) as follows,[5]:

Find the new generalized velocity vl+1 as the solution to the following QP:

(6)

min 1
2
vTMv +

(
f l
)T

v

s.t.
(
n(k)(ql)

)T
v + μ

(
d

(k)
s (ql)

)T

v ≥ − 1
h
Φ(k)(ql)

k ∈ A(ql, ε), s = 1, 2, . . . , pk

In (6), M denotes the generalized mass-matrix (a symmetric positive def-

inite matrix) and f l = −vl − hkapp uses the (known) velocity vl and the

applied forces kapp, which for this application remain constant for the entire

simulation. In the inequality constraints of (6), n(k)(ql) denotes the gen-

eralized normal direction at the active contact k, μ ∈ [0, 1] is the friction

coefficient and Φ(k)(·) is the k-th contact signed distance function, which

for a valid (no penetration) configuration q, must satisfy Φ(q) ≥ 0. The

tangential directions ds(k), s = 1, 2, . . . , pk corresponding to contact k are

used in the polyhedral approximation of the k-th friction cone. The set

A(ql, ε) is an index set of all active contacts, which is calculated based on

the known position ql and a certain tolerance ε, ε > 0.

If we write the inequality constraints of (6) in matrix form and if we

denote by Al the matrix appearing on the left-hand side and by bl the

vector on the left-hand side, then the dual program of (6), takes the form
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of the bound constrained QP:

(7)
min 1

2
λT P lλ +

(
κl
)T

λ,

s.t. λ ≥ 0,

where P l and κl are computed by standard duality techniques, i.e., P l =

AlM−1
(
Al
)T

and κl = −bl − Alf l.

The above two formulations are equivalent, i.e., there is no duality gap,

if the friction cone is pointed, [5]. The friction cone at configuration ql is

defined based on the set of active contacts A(ql, ε) by

(8) FC(ql, ε) =

⎧⎨⎩ ∑
k∈A(ql,ε)

c(k)
n n(k) + D̃(k)β(k)

∣∣ c(k)
n ≥ 0, β(k) ∈ R

pk,

β(k) ≥ 0, ||β(k)||1 ≤ μc(k)
n

}
,

where D̃(k) denotes the matrix of generalized tangential directions, namely,

(9) D̃(k)(ql) := D̃(k) =
(
d

(k)
1 , d

(k)
2 , . . . , d(k)

pk

)
.

We say that the friction cone FC(ql, ε) is pointed if it doesn’t contain any

proper linear subspaces. From a physical point of view lack of pointedness

corresponds to jamming, a situation that is addressed in a different manner.

Therefore when the friction cone is pointed the new velocity vl+1 can be

obtained by solving either (6) or (7). We note, once again, that (7) is a

bound-constrained optimization problem for which dedicated state-of-the-

art solvers exist.
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3 Conclusions

We have briefly presented how large quadratic programming problems can

be obtained via rigid body simulation using Anitescu’s convex relaxation.

The QPs can be used as test problems by both standard QP solvers as well

as bound constrained optimization solvers, in the case when no jamming

occurs. For a set of computational results in which several QP solvers have

been tested we refer the reader to [5].
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