On an expansion theorem in the finite operator calculus of G-C Rota

Emil C. Popa

Abstract

Using a identity for linear operators we present here the Taylor formula in the umbral calculus.

2000 Mathematics Subject Classification: 05A40, 41A58

1 Introduction

We consider the algebra of all polynomials $p(t)$ in one variable over a field of characteristic zero, to be denoted Π.

We denote by Π^{*} the linear space of linear operators on Π to Π. For example $D \in \Pi^{*}, D p(t)=p^{\prime}(t)$ (the derivative), $E^{a} \in \Pi^{*}$, $\left(E^{a} p\right)(t)=$ $p(t+a)$ (the shift operator), $\mathcal{I} p(t)=p(t)$ (the identity).

We denote by Π_{t}^{*} the set of shift invariant operators

$$
\Pi_{t}^{*}=\left\{T \mid T E^{a}=E^{a} T,(\forall) a\right\}
$$

and by Π_{δ}^{*} the set of delta operators

$$
\Pi_{\delta}^{*}=\left\{Q \in \Pi_{t}^{*} \mid Q x \text { is a nonzero constant }\right\} .
$$

Delta operators possess many of the properties of the derivative operator D. For example if Q is a delta operator, then $Q a=0$ for every constant a. Next, if $p(t)$ is a polynomial of degree n and $Q \in \Pi_{\delta}^{*}$, then $Q p(t)$ is a polynomial of degree $n-1$.

A polynomial sequence $\left(p_{n}(t)\right)$ ($\left.\operatorname{deg} p_{n}=n, n=0,1,2, \ldots\right)$ is called the sequence of basic polynomials for $Q \in \Pi_{\delta}^{*}$ if $p_{0}(t)=1, p_{n}(0)=0$ for $n \geq 1$ and $Q p_{n}(t)=n p_{n-1}(t)$ for $n \geq 1$.

It is known the following theorem
Theorem 1. i) Every delta operator has a unique sequence of basic polynomials.
ii) If $\left(p_{n}(t)\right)$ is a basic sequence for some delta operator Q then it is a sequence of polynomials of binomial type.
iii) If $\left(p_{n}(t)\right)$ is a sequence of polynomials of binomial type, then it is a basic sequence for some delta operator.

The following theorem generalizes the Taylor expansion theorem to delta operators and their basic polynomials.

Theorem 2. For $T \in \Pi_{t}^{*}$ and $Q \in \Pi_{\delta}^{*}$ with basic set $\left(p_{n}\right)$, we have

$$
\begin{equation*}
T=\sum_{k \geq 0} \frac{\left(T p_{k}\right)(0)}{k!} Q^{k} \tag{1}
\end{equation*}
$$

We consider now a operator $X \notin \Pi_{t}^{*}$, defined by $X p(t)=t p(t)$ and for any operator T defined on Π, the operator

$$
T^{\prime}=T X-X T
$$

will be called the Pincherle derivative of the operator T.
We observe that $D^{\prime}=\mathcal{I},\left(E^{a}\right)^{\prime}=a E^{a}, \mathcal{I}^{\prime}=O$ (the null operator).

2 The Bernoulli identity

Let T, S be two linear operators such that

$$
\begin{equation*}
T S-S T=\mathcal{I} \tag{2}
\end{equation*}
$$

For example $D X-X D=\mathcal{I}$. From (2) we obtain

$$
T S^{2}=S^{2} T+2 S
$$

and by induction

$$
\begin{equation*}
T S^{n}=S^{n} T+n S^{n-1}, n \geq 1 \tag{3}
\end{equation*}
$$

Starting with the identity

$$
\begin{equation*}
\sum_{k=0}^{n}\left(\alpha_{k}-\alpha_{k+1}\right)=\alpha_{0}-\alpha_{n+1} \tag{4}
\end{equation*}
$$

for

$$
\begin{equation*}
\alpha_{0}=0, \alpha_{k}=\frac{(-1)^{k}}{(k-1)!} S^{k-1} T^{k}, k \geq 1 \tag{5}
\end{equation*}
$$

and using (3) we get

$$
\alpha_{k}-\alpha_{k+1}=\frac{(-1)^{k}}{k!} T S^{k} T^{k}
$$

and hence

$$
\begin{equation*}
T \sum_{k=0}^{n} \frac{(-1)^{k}}{k!} S^{k} T^{k}=\frac{(-1)^{n}}{n!} S^{n} T^{n+1} \tag{6}
\end{equation*}
$$

This is the Bernoulli identity obtained by O.V. Viskov (see [1], [3]).

3 The main result

Let Q be a delta operator with the basic set $\left(p_{n}(t)\right)$. Hence $p_{0}(x)=1$, $p_{n}(0)=0$ for $n \geq 1$ and $Q p_{n}=n p_{n-1}$ for $n \geq 1$.

Definition 1. We define the Q-integral operator as a linear operator $\mathcal{I}_{Q}=\oint d t \quad b y$

$$
\left(\mathcal{I}_{Q} p_{n}\right)(t)=\oint p_{n}(t) d t=\frac{1}{n+1} p_{n+1}(t)
$$

for $n \geq 0$. We denote

$$
\begin{equation*}
\oint_{\alpha}^{x}(Q p)(t) d t=p(x)-p(\alpha) . \tag{7}
\end{equation*}
$$

Definition 2. We define next the pseudo Q-integral operator

$$
T_{Q} \in \Pi^{*},\left(T_{Q} p_{n}\right)(t)=p_{n+1}(t)
$$

Remark 1.For $Q=D$ we have $p_{n}(t)=t^{n}, n=0,1,2, \ldots$ and $T_{Q}=T_{D}=$ $X,(X p)(t)=t p(t)$.

Theorem 3. We have the following Taylor expansion formula

$$
\begin{align*}
& \sum_{k=0}^{n} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{k} Q^{k} f\right)(x)}{k!}= \tag{8}\\
& \sum_{k=0}^{n} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{k} Q^{k} f\right)(\alpha)}{k!}+\oint_{\alpha}^{x} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{n} Q^{n+1} f\right)(t)}{n!} d t
\end{align*}
$$

with the rest term in the Cauchy form.

Proof. Let T, S be as below

$$
T=Q, S=T_{Q}-x \mathcal{I}
$$

We have $(T S-S T) p_{n}(t)=p_{n}(t)$ and hence $T S-S T=\mathcal{I}$. After submition into (6) we get

$$
Q \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\left(T_{Q}-x \mathcal{I}\right)^{k} Q^{k} p(t)=\frac{(-1)^{n}}{n!}\left(T_{Q}-x \mathcal{I}\right)^{n} Q^{n+1} p(t), p(t) \in \Pi .
$$

Apply $\oint_{\alpha}^{x} d t$ to both sides where, of course, t is the variable, and using (7) to obtain

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{k} Q^{k} p\right)(x)}{k!}=\sum_{k=0}^{n} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{k} Q^{k} p\right)(\alpha)}{k!}+\mathcal{R}_{n+1}(x) \tag{9}
\end{equation*}
$$

where the rest term \mathcal{R}_{n+1} is in the Cauchy form

$$
\begin{equation*}
\mathcal{R}_{n+1}(x)=\oint_{\alpha}^{x} \frac{\left(\left(x \mathcal{I}-T_{Q}\right)^{n} Q^{n+1} p\right)(t)}{n!} d t \tag{10}
\end{equation*}
$$

Remark 2. For $Q=D$ we observe that $T_{D}=X$ and hence

$$
\left(T_{D} p\right)(t)=t p(t)
$$

$\operatorname{Next}\left(\left(x \mathcal{I}-T_{D}\right) p\right)(x)=\left.(x p(t)-t p(t))\right|_{t=x}=0$ and of (9) we obtain

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} \frac{(x-\alpha)^{k}}{k!} p^{(k)}(\alpha)+\mathcal{R}_{n+1}(x) \tag{11}
\end{equation*}
$$

with $\mathcal{R}_{n+1}(x)=\int_{\alpha}^{x} \frac{(x-t)^{n}}{n!} p^{(n+1)}(t) d t$.
Remark 3. We have $D X-X D=\mathcal{I}$ and for $T=D$ and $S=X$ in the Bernoulli identity we obtain

$$
D \sum_{k=0}^{n} \frac{(-1)^{k}}{k!} X^{k} D^{k}=\frac{(-1)^{n}}{n!} X^{n} D^{n+1}
$$

and finally a McLaurin expansion formula in the following form

$$
\begin{equation*}
p(0)=\sum_{k=0}^{n} \frac{(-\alpha)^{k}}{k!} p^{(k)}(\alpha)+\int_{0}^{\alpha} \frac{(-t)^{n+1}}{n!} p^{(n+1)}(t) d t \tag{12}
\end{equation*}
$$

References

[1] A. K. Kwasniewski, More on the Bernouli-Taylor formula for extended umbral clculus, Advances in Appl. Clifford Algebras, 16 (2006), 29-39.
[2] G-C. Rota, D. Kahaner, A. Odlyzko, Finite operator calculus, J. Math. Analysis and Appl., Vol. 42 (3), June, 1973.
[3] O.V. Viskov, Noncommutative approach to classical problems of analysis, Trudy Matematiceskovo Instituta AN SSSR, 177 (1986)(in russian).

Emil C. Popa
"Lucian Blaga" University
Department of Mathematics
Sibiu, Romania
e-mail: ecpopa2002@yahoo.com

