On a sequence of linear and positive operators

Florin Sofonea

Abstract

In order to approximate function $f:[0, \infty) \rightarrow \mathbb{R}$, with $|f(x)| \leq$ $M x^{\alpha}$ for $x>0$ and $M=M(f)>0$, we introduce the approximation operators $\mathcal{F}_{n}: f \rightarrow \mathcal{F}_{n} f$, with $$
\left(\mathcal{F}_{n} f\right)(x)=\frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x-1}(1-t)^{n} f\left(\frac{t}{1-t}\right) d t, \quad x>0, \quad \alpha>0
$$

where $n \geq n_{0}$ with $n_{0}=[\alpha]+b+1$ and $n \in \mathbb{N}^{*}$ is fixed.
Our aim is to find some properties for above operator.
2000 Mathematical Subject Classification: 41A36

Let Y_{α} be the linear space of all functions $f:[0, \infty) \rightarrow \mathbb{R}$, with the property that there exist $M, M=M(f)>0$ and $\alpha>0$ such that $|f(x)| \leq M x^{\alpha}$, for all $x>0$. We define the operators $\mathcal{F}_{n}: f \rightarrow \mathcal{F}_{n} f$,

$$
\begin{equation*}
\left(\mathcal{F}_{n} f\right)(x)=\frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x-1}(1-t)^{n} f\left(\frac{t}{1-t}\right) d t, \quad x>0, \quad \alpha>0 \tag{1}
\end{equation*}
$$

where $n \geq n_{0}, n_{0}=[\alpha]+b+1$ and $n \in \mathbb{N}^{*}$ is fixed.
Now, we demonstrate that if $f \in Y_{\alpha}$, then $\mathcal{F}_{n} f \in Y_{\alpha}$.

Theorem 1 If $\left(\mathcal{F}_{n}\right)_{n \geq n_{0}}$ are the operators defined in relation (1) and $f \in Y_{\alpha},|f(x)| \leq M(f) x^{\alpha}, \alpha>0, x>0$ then, there exist $M\left(\mathcal{F}_{n} f\right)>0$ such that for all $x>c>0$ the following relation hold

$$
\left|\left(\mathcal{F}_{n} f\right)(x)\right| \leq M\left(\mathcal{F}_{n} f\right) x^{\alpha},
$$

where $M\left(\mathcal{F}_{n} f\right)=M(f) e^{\frac{2 \alpha^{2}}{b \sqrt{c}}}$.
Proof. We have successive

$$
\begin{aligned}
\left|\left(\mathcal{F}_{n} f\right)(x)\right| & \leq \frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x-1}(1-t)^{n}\left|f\left(\frac{t}{1-t}\right)\right| d t \\
& \leq M \frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x-1}(1-t)^{n}\left(\frac{t}{1-t}\right)^{\alpha} d t \\
& =M \frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x+\alpha-1}(1-t)^{n-\alpha+1-1} d t \\
& =M \frac{\Gamma(n x+n+1)}{n!\Gamma(n x)} \frac{\Gamma(n x+\alpha) \Gamma(n-\alpha+1)}{\Gamma(n+n x+1)} .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\left|\left(\mathcal{F}_{n} f\right)(x)\right| \leq M \frac{\Gamma(n-\alpha+1) \Gamma(n x+\alpha)}{\Gamma(n+1) \Gamma(n x)} \tag{2}
\end{equation*}
$$

To obtain our results we need the following theorem
Theorem 2 (Bohr \& Mollerup) There is only one function $g:(0, \infty) \rightarrow$ $(0, \infty)$ which verifies:

1. $g(1)=1$
2. $g(x+1)=x g(x)$
3. $\ln g$ is a convex function on $(0, \infty)$,
then $g(x)=\Gamma(x)$, for all $x>0$.

From Theorem 2 we have

$$
\begin{equation*}
\left[x_{1}, x_{2}, x_{3} ; \ln \Gamma\right] \geq 0, \text { for all } 0<x_{1}<x_{2}<x_{3}<\infty \tag{3}
\end{equation*}
$$

namely,

$$
\begin{equation*}
\left(\Gamma\left(x_{2}\right)\right)^{x_{3}-x_{1}} \geq\left(\Gamma\left(x_{1}\right)\right)^{x_{3}-x_{2}}\left(\Gamma\left(x_{3}\right)\right)^{x_{2}-x_{1}} \tag{4}
\end{equation*}
$$

We choose $0<x_{1}=z+1-\alpha<x_{2}=z+1<x_{3}=z+2<\infty$. From relation (4) we obtain

$$
(\Gamma(z+1))^{1+\alpha} \geq(\Gamma(z+1-\alpha))((z+1) \Gamma(z+1))^{\alpha}
$$

therefore

$$
\begin{equation*}
\frac{\Gamma(z+1)}{\Gamma(z+1-\alpha)} \leq(z+1)^{\alpha}, \text { for all } z+1>\alpha>0 \tag{5}
\end{equation*}
$$

If we choose $0<x_{1}=z-\alpha<x_{2}=z+1-\alpha<x_{3}=z+1-\alpha<z+1<\infty$, then the following relation holds

$$
(\Gamma(z+1-\alpha))^{1+\alpha} \geq\left(\frac{\Gamma(z+1-\alpha)}{z-\alpha}\right)^{\alpha} \Gamma(z+1)
$$

namely

$$
\begin{equation*}
\frac{\Gamma(z+1-\alpha)}{\Gamma(z+1)} \leq \frac{1}{(z-\alpha)^{\alpha}}, \text { for all } z>\alpha>0 \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain

$$
\begin{equation*}
\frac{1}{(z+1)^{\alpha}} \leq \frac{\Gamma(z+1-\alpha)}{\Gamma(z+1)} \leq \frac{1}{(z-\alpha)^{\alpha}}, \text { for all } z>\alpha>0 \tag{7}
\end{equation*}
$$

In relation (4) we choose $0<x_{1}=n x<x_{2}=n x+\alpha<x_{3}=n x+\alpha+1<\infty$ and we obtain

$$
\left(\frac{\Gamma(n x+\alpha+1)}{(n x+\alpha)}\right)^{\alpha+1} \leq(\Gamma(n x))(\Gamma(n x+\alpha+1))^{\alpha}
$$

namely

$$
\begin{aligned}
& \frac{\Gamma(n x+\alpha+1)}{\Gamma(n x)} \leq(n x+\alpha)^{\alpha+1}, \text { for all } x>0, \alpha>0 \\
& \frac{(n x+\alpha) \Gamma(n x+\alpha)}{\Gamma(n x)} \leq(n x+\alpha)^{\alpha+1}
\end{aligned}
$$

From above relation we have

$$
\begin{equation*}
\frac{\Gamma(n x+\alpha)}{\Gamma(n x)} \leq(n x+\alpha)^{\alpha}, \text { for all } x>0, \alpha>0 \tag{8}
\end{equation*}
$$

In relation (4) we choose $0<x_{1}=n x-1<x_{2}=n x<x_{3}=n x+\alpha<\infty$ and we obtain

$$
\Gamma(n x)^{\alpha+1} \leq\left(\frac{\Gamma(n x)}{n x-1}\right)^{\alpha} \Gamma(n x+\alpha)
$$

namely

$$
\begin{equation*}
0<(n x-1)^{\alpha} \leq \frac{\Gamma(n x+\alpha)}{\Gamma(n x)}, n x-1>0, \alpha>0 \tag{9}
\end{equation*}
$$

From (8) and (9) we have
(10) $(n x-1)^{\alpha} \leq \frac{\Gamma(n x+\alpha)}{\Gamma(n x)} \leq(n x+\alpha)^{\alpha}$, for all $x>\frac{1}{x}, x>0, \alpha>0$.

If in relation (2) we use the inequalities (7)and (10), we obtain

$$
\begin{aligned}
\left|\left(\mathcal{F}_{n} f\right)(x)\right| & \leq M(f) \frac{(n x+\alpha)^{\alpha}}{(n-\alpha)^{\alpha}}=M(f) x^{\alpha} \frac{\left(n x+\frac{\alpha}{x}\right)^{\alpha}}{(n-\alpha)^{\alpha}} \\
& =M(f) x^{\alpha}\left(1+\frac{\alpha+\frac{\alpha}{x}}{n-\alpha}\right)^{\alpha}=M(f) x^{\alpha}\left(1+\frac{\alpha+\frac{\alpha}{x}}{n-\alpha}\right)^{\frac{n-\alpha}{\alpha+\frac{\alpha}{x}} \frac{\alpha+\frac{\alpha}{x}}{n-\alpha} \alpha}
\end{aligned}
$$

namely

$$
\begin{equation*}
\left|\left(\mathcal{F}_{n} f\right)(x)\right|<M(f) x^{\alpha} e^{\frac{\alpha^{2}\left(1+\frac{1}{x}\right)}{n-\alpha}}<M(f) x^{\alpha} e^{\frac{2 \alpha^{2}}{\sqrt{x}(n-\alpha)}} \tag{11}
\end{equation*}
$$

Let $b \in \mathbb{N}^{*}$ be a fixed number and we denote $n_{0}=[\alpha+b+1]=[\alpha]+b+1>$ $\alpha+b$. We consider $n \geq n_{0}$ and we have $n-\alpha>b$, namely $\frac{1}{n-\alpha}<\frac{1}{b}$. From (11) we obtain

$$
\left|\left(\mathcal{F}_{n} f\right)(x)\right| \leq M(f) x^{\alpha} e^{\frac{2 \alpha^{2}}{\sqrt{x b}}} \leq M(f) x^{\alpha} e^{\frac{2 \alpha^{2}}{b \sqrt{c}}}=: M\left(\mathcal{F}_{n} f\right) x^{\alpha}
$$

where $M\left(\mathcal{F}_{n} f\right)=M(f) x^{\alpha} e^{\frac{2 \alpha^{2}}{b \sqrt{c}}}$.
Next to calculate $\left(\mathcal{F}_{n} e_{j}\right)(x)$, where $e_{j}(x)=x^{j}$. We have

$$
\begin{aligned}
& \left(\mathcal{F}_{n} e_{j}\right)(x)=\frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x+j-1}(1-t)^{n-j} d t=\frac{\Gamma(n x+n+1)}{\Gamma(n x) n!} B(n x+j, n-j+1) \\
& =\frac{\Gamma(n x+n+1)}{\Gamma(n x) n!} \frac{\Gamma(n x+j) \Gamma(n-j+1)}{\Gamma(n x+n+1)}=\frac{(n x)_{j} \Gamma(n-j+1)}{\Gamma(n+1)}=\frac{(n x)_{j}}{(n-j+1)_{j}}
\end{aligned}
$$

Therefore, we have $\left(\mathcal{F}_{n} e_{0}\right)(x)=1,\left(\mathcal{F}_{n} e_{1}\right)(x)=x$, respectively

$$
\left(\mathcal{F}_{n} e_{2}\right)(x)=\frac{(n x)(n x+1)}{(n-2+1)_{2}}=\frac{n x(n x+1)}{n(n-1)}=x^{2}+\frac{x(1+x)}{n-1} \xrightarrow{n \rightarrow \infty} x^{2}
$$

We need the following theorem:
Theorem 3 (A. Lupaş [4]) If $\lim _{n \rightarrow \infty}\left(\mathcal{L} e_{j}\right)(x)=[\varphi(x)]^{j}, j=0,1,2$, then

$$
\lim _{n \rightarrow \infty}(\mathcal{L} f)(x)=f(\varphi(x))
$$

for f a continuous function on the interval $[0, M], M>0$.
Using the above theorem, we obtain the following result:

Theorem 4 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function which verifies $|f(x)| \leq M x^{\alpha}$, $\alpha>0, M>0$, for $x \rightarrow \infty$. If \mathcal{F}_{n} are the linear and positive operators defined in relation (1), then

$$
\lim _{n \rightarrow \infty}(\mathcal{F} f)(x)=f(x)
$$

for f a continuous function on the interval $[0, M], M>0$.
In [6], A. Lupaş has demonstrated the following result:
Theorem 5 If $L: C(K) \rightarrow C\left(K_{1}\right), K_{1}=\left[a_{1}, b_{1}\right] \subseteq K$ is a linear operator, then for all function $f \in C(K)$ and $\delta>0$, the following relation is verified $\|f-L f\|_{K_{1}} \leq\|f\| \cdot\left\|e_{0}-L e_{0}\right\|_{K_{1}}+\inf _{m=1,2, \ldots}\left\{\left\|L e_{0}\right\|_{K_{1}}+\delta^{-m}\left\|L \Omega_{m}\right\|_{K_{1}}\right\} \omega(f ; \delta)$, where $\|\cdot\|=\max _{K}|\cdot|$ and $\Omega_{m}(t)=(t-x)^{m}$.

Using the above theorem, we obtain the following result.
Theorem 6 Let $\mathcal{F}_{n} f$ be the operators defined in (1). Then for all $f \in Y_{\alpha} \cap C[0, \infty), \alpha \geq 2$ we have

$$
\left\|f-\mathcal{F}_{n} f\right\| \leq \frac{5}{4} \omega\left(f ; \frac{1}{\sqrt{n-1}}\right)
$$

Proof. We consider the case $m=2, \Omega_{2}(t)=(t-x)^{2}$.
From (1) we have (see [7]):

$$
\left(\mathcal{F}_{n} \Omega_{2}\right)(x)=x^{2}+\frac{x(1-x)}{n-1}-2 x^{2}+x^{2}=\frac{x(1-x)}{n-1}
$$

If we choose $\delta=\frac{1}{\sqrt{n-1}}$ and use the inequality $x(1-x) \leq \frac{1}{4}$, we obtain

$$
\left\|f-\mathcal{F}_{n} f\right\| \leq \frac{5}{4} \omega\left(f ; \frac{1}{\sqrt{n-1}}\right)
$$

Let $Y_{B}=\left\{f:[0, \infty) \rightarrow \mathbb{R} ;|f(x)| \leq A(f) e^{B x}, x \geq 0\right\}$ be a linear space, where $B>0$. We consider Favard - Sasz linear and positive operators, defined so $S_{n}: f \rightarrow S_{n} f$,

$$
\begin{equation*}
\left(S_{n} f\right)(x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) \quad(n=1,2, \ldots,), \text { where } S_{n} f \in Y_{B} \tag{12}
\end{equation*}
$$

It is know that

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} d t
$$

and using the change of variable $t=a y$, we have

$$
\frac{1}{a^{\alpha}} \Gamma(\alpha)=\int_{0}^{\infty} e^{-a y} y^{\alpha-1} d y
$$

For the Favard - Sasz operator we have

$$
\begin{aligned}
\int_{0}^{\infty} e^{-a y} y^{\alpha-1}\left(S_{n} f\right)(y) d y & =\int_{0}^{\infty} e^{-(a+n) y} \sum_{k=0}^{\infty} \frac{n^{k}}{k!} y^{k+\alpha-1} f\left(\frac{k}{n}\right) d y \\
& =\sum_{k=0}^{\infty} \frac{n^{k}}{k!} f\left(\frac{k}{n}\right) \int_{0}^{\infty} e^{-(a+n) y} y^{k+\alpha-1} d y \\
& =\sum_{k=0}^{\infty} \frac{n^{k}}{k!} \frac{1}{(a+n)^{k+\alpha}} \Gamma(k+\alpha) f\left(\frac{k}{n}\right) \\
& =\frac{1}{(a+n)^{\alpha}} \sum_{k=0}^{\infty} \frac{(\alpha)_{k} \Gamma(\alpha)}{k!}\left(\frac{n}{(a+n)}\right)^{k} f\left(\frac{k}{n}\right) .
\end{aligned}
$$

If we consider the case $\alpha=n x ; \frac{n}{(a+n)}=\frac{1}{2}$ and use the notation $(z)_{k}=$ $\frac{\Gamma(z+k)}{\Gamma(z)}$ we obtain the Lupaş linear and positive operators (see [5])

$$
\begin{equation*}
\left(\mathcal{L}_{n} f\right)(x)=(2)^{-n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{2^{k} k!} f\left(\frac{k}{n}\right), \quad x \geq 0 \tag{13}
\end{equation*}
$$

where $f:[0, \infty) \rightarrow \mathbb{R}$.

We consider the positive operator

$$
\begin{equation*}
\left(G_{n} f\right)(x)=\frac{n^{n x}}{\Gamma(n x)} \int_{0}^{\infty} e^{-n t} t^{n x-1} f(t) d t, \quad x>0 \tag{14}
\end{equation*}
$$

If we use the change of variable $t=\frac{T}{n}, d t=\frac{1}{n} d T$, we obtain

$$
\left(G_{n} f\right)(x)=\frac{n^{n x}}{\Gamma(n x)} \frac{1}{n} \int_{0}^{\infty} e^{-T} \frac{T^{n x-1}}{n^{n x-1}} f\left(\frac{T}{n}\right) d T
$$

namely, we have the Post-Widder operator

$$
\begin{equation*}
\left(W_{n} f\right)(x)=\frac{1}{\Gamma(n x)} \int_{0}^{\infty} e^{-t} t^{n x-1} f\left(\frac{t}{n}\right) d t \tag{15}
\end{equation*}
$$

Theorem 7 The operators $\mathcal{F}_{n} f$ defined in (1)verify the following relation

$$
\mathcal{F}_{n} f=W_{n} G_{n} f
$$

where W_{n} are Post Widder operators, respectively $G_{n} f$ are Gamma operators.

Proof. We use the following representation of Gamma operators

$$
\left(G_{n} f\right)(x)=\frac{1}{n!} \int_{0}^{\infty} e^{-t} t^{n} f\left(\frac{n x}{t}\right) d t
$$

and for $x=\frac{t}{n}$ we have

$$
\left(G_{n} f\right)\left(\frac{t}{n}\right)=\frac{1}{n!} \int_{0}^{\infty} e^{-s} s^{n} f\left(\frac{t}{s}\right) d s
$$

We obtain

$$
\begin{aligned}
\left(W_{n} G_{n} f\right)(x) & =\frac{1}{n!\Gamma(n x)} \int_{0}^{\infty} e^{-t} t^{n x-1}\left(\int_{0}^{\infty} e^{-s} s^{n} f\left(\frac{t}{s}\right) d s\right) d t \\
& =\frac{1}{n!\Gamma(n x)} \int_{0}^{\infty} e^{-s} s^{n}\left(\int_{0}^{\infty} e^{-t} t^{n x-1} f\left(\frac{t}{s}\right) d t\right) d s
\end{aligned}
$$

If we use the change of variable $\frac{t}{s}=y$, namely $t=y s$ we have

$$
\begin{aligned}
\left(W_{n} G_{n} f\right)(x) & =\frac{1}{n!\Gamma(n x)} \int_{0}^{\infty} e^{-s} s^{n+n x}\left(\int_{0}^{\infty} e^{-y s} y^{n x-1} f(y) d y\right) d s \\
& =\frac{1}{n!\Gamma(n x)} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-s(1+y)} s^{n+n x} d s\right) y^{n x-1} f(y) d y
\end{aligned}
$$

Denote $s(1+y)=T, d s=\frac{1}{1+y} d T$ and we obtain
$\left(W_{n} G_{n} f\right)(x)=\frac{1}{n!\Gamma(n x)} \int_{0}^{\infty} \frac{1}{(1+y)^{n+n x+1}}\left(\int_{0}^{\infty} e^{-T} T^{n+n x} d T\right) y^{n x-1} f(y) d y$,
Since

$$
\Gamma(n+n x+1)=\int_{0}^{\infty} e^{-T} T^{n+n x} d T
$$

we have

$$
\begin{aligned}
\left(W_{n} G_{n} f\right)(x) & =\frac{\Gamma(n+n x+1)}{n!\Gamma(n x)} \int_{0}^{\infty} \frac{y^{n x-1}}{(1+y)^{n+n x+1}} f(y) d y \\
& =\frac{(n x)_{n+1}}{n!} \int_{0}^{\infty} \frac{y^{n x-1}}{(1+y)^{n+n x+1}} f(y) d y
\end{aligned}
$$

If we use the change of variable $\frac{y}{1+y}=t, d y=\frac{1}{(1-t)^{2}} d t$, we obtain

$$
\begin{aligned}
\left(W_{n} G_{n} f\right)(x) & =\frac{(n x)_{n+1}}{n!} \int_{0}^{1}\left(\frac{t}{1-t}\right)^{n x-1} \frac{(1-t)^{n+n x+1}}{(1-t)^{2}} f\left(\frac{t}{1-t}\right) d t \\
& =\frac{(n x)_{n+1}}{n!} \int_{0}^{1} t^{n x-1}(1-t)^{n} f\left(\frac{t}{1-t}\right) d t=\left(\mathcal{F}_{n} f\right)(x)
\end{aligned}
$$

References

[1] O. Agratini, On a sequence of linear and positive operators, Facta Universitatis (NIS), Ser. Math. Inform. 14, 1999, 41-48.
[2] A. M. Acu, Moment preserving spline approximation on finite intervals and Chakalov-Popoviciu quadratures, Acta Universitatis Apulensis, Nr. 13/2007, 37-56.
[3] A. M. Acu , A quadrature rule for Beta operators, Journal of Approximation Theory and Applications, Vol. 3, No. 1-2, (2007), 23-30.
[4] A. Lupaş and M. Müller, Approximationseigenschaften der Gammaoperatoren. Math. Z. 98, 1967, 208-226, MR 35 \# 7053.
[5] A. Lupas, The approximation by means of some positive linear operators, Approximation Theory (IDoMAT 95), Akademie Verlag, Berlin, 1995, 201-229.
[6] A. Lupaş, Contribuţii la teoria aproximării prin operatori liniari, Teza de Doctorat, Cluj-Napoca, 1975-1976.
[7] F. Sofonea, Some results for modified Bernstein polynomials, General Mathematics, Vol. 10, Nr.3-4, 2002, 57-62.
[8] F. Sofonea, On a Sequence of Linear and Positive Operators, Roger 2007, Königswinter - Germany, 2007.

Florin Sofonea

University "Lucian Blaga" of Sibiu
Department of Mathematics
Sibiu, Romania
e-mail: florin.sofonea@ulbsibiu.ro

A lower bound for the second moment of Schoenberg operator

Gancho T. Tachev

Abstract

In this paper we represent a new lower bound for the second moment for Schoenberg variation-diminishing spline operator. We apply this estimate for $f \in C^{2}[0,1]$ and generalize the results obtained earlier by Gonska, Pitul and Rasa.

2000 Mathematics Subject Classification: 41A10, 41A15, 41A17, 41A25, 41A36

1 Main result

We start with the definition of variation-diminishing operator, introduced by I.Schoenberg. For the case of equidistant knots we denote it by $S_{n, k}$. Consider the knot sequence $\Delta_{n}=\left\{x_{i}\right\}_{-k}^{n+k}, n \geq 1, k \geq 1$ with equidistant "interior knots", namely

$$
\Delta_{n}: x_{-k}=\cdots=x_{0}=0<x_{1}<x_{2}<\cdots<x_{n}=\cdots=x_{n+k}=1
$$

