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Some theorems on the explicit evaluations of
singular moduli!

K. Sushan Bairy

Abstract

At scattered places in his notebooks, Ramanujan recorded some
theorems for calculating singular moduli and also recorded several
values of singular moduli. In this paper, we establish several general
theorems for the explicit evaluations of singular moduli. We also

obtain some values of class invariants and singular moduli.
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1 Introduction

In Chapter 16, of his second notebook [2], [10] Ramanujan has defined his
theta-function as

f(a,b) := Z an0/2pnn=1)/2. lab| < 1.

n=—oo
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Following Ramanujan, we define

X(@) == (= ¢*)oo:

where
o0

(@;0)oe == [J(1 —ag™),  lal <1.

n=0
The ordinary hypergeometric series o Fi(a, b; ¢; z) is defined by
- n b n
2 Fi(a,biciz) = Z—<a) ) ",

|
— (c)un!

where
(a)o=1,(a),=ala+1)(a+2)..(a+n—1), for n>1,|z|<1.

The complete elliptic integral of the first kind K := K(«) associated with
the modulus «, 0 < a < 1, is defined by

2 d 11
K(a) := / —¢ -z 2 F1 (—7—; 1504)
0o /1—asin?¢ 2 2°2
where the latter representation is achieved by expanding the integrand in a

binomial series and integrating termwise. Singular modulus « := «, is that

unique positive number between 0 and 1 satisfying

2F1(1 1. 1_an)

2197

2 F (1 1'1;Oén) ’

2727

(1.1) Vn = neQr.

At scattered places in his first notebook, Ramanujan recorded several values
of singular moduli o, := a(e~™") in terms of units. On page 82 of his first
notebook, he gave some theorems for calculating «,, when n is even. J.
M. Borwein and P. B. Borwein [6] had calculated some of Ramanujan’s
values for a,. Watson [12] used the formula found in Ramanujan’s first
notebook [10, vol.1, p. 320], to prove the value of kojg, where a,, = k2,

which Ramanujan wrote in his second letter to Hardy [11, p. xxix].
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Let

1 r—1
Z(r) == Z(riz) = oF, ( - 1
(T) (T,Jf) 2 1<r7 r ) ,Z’)

and

b= 00) = e (e (%)

where r =2,3,4,6 and 0 < z < 1.

Let n denote a fixed natural number, and assume that

(1.2) R2h (. 5hL1-a) R (5 ;1,1,1 3)

2F1(r’ r ,1,&’) 2F1(r7 7” 7/6) ’

where r = 2,3,4, or 6. Then a modular equation of degree n in theory of

2F1(7" r ,1,1-%))
2F1( 1: Z’)

r) oy 0

elliptic functions of signature r is a relation between moduli o and 3 induced

Z(r:
by (1.2). We often say that [ is of degree n over o and m(r) := %
T
is called multiplier. We also use the notations Z; := Z;(r) = Z(r : «) and
Zp = Zn(r) = Z(r : () to indicate that @ has degree n over a. When the
context is clear, we omit the argument r in g,., Z(r) and m(r).

Ramanujan class invariants are defined as

(1.3) G =271 x(q) = {4a(l —a)} V™
and
(1.4) g =271 x(—g) = {da(l—a) 7}

On pages 294-299, Ramanujan recorded table of values for 77 class invari-
ants or monic irreducible polynomials. In [13], [14], Watson proved 24 of
Ramanujan’s class invariants from Ramanujan’s paper [10]. Watson also
wrote further four papers [15], [16], [17], [18] on the calculation of class in-
variants. In [4], B. C. Berndt, H. H. Chan and L. -C. Zhang has used class
field theory, Galois theory and Kronecker’s limit formula to justify Watson’s
assumptions and calculated some values of G,,. In [1], N. D. Baruah has
established the value of Gay7. In [9], Mahadeva Naika and K. Sushan Bairy
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have established several new explicit evaluations of class invariants and sin-
gular moduli. In [8], Mahadeva Naika has established several new explicit
values for G,,.

In this paper, we establish several general formulas for explicit evalu-
ations of singular moduli using Ramanujan’s modular equations. We also

obtain some values of class invariant and singular moduli.

2 Preliminary Results

In this section, we collect the identities which are useful in proving our main

results.

Lemma 2.1. If (3 is of degree 3 over «, then

(2.1) () + {1 -1 - = 1.

For a proof of Lemma 2.1, see Entry 5 of Chapter 19 in [2, pp. 230-231].
Lemma 2.2. If 5 is of degree 5 over «, then

(22)  (@B)?+{(1 —a)(1 - B)}/* + 2{16a8(1 — a)(1 — B)}/° = 1.
For a proof of Lemma 2.2, see Entry 13 of Chapter 19 in [2, pp. 280-282].
Lemma 2.3. If (3 is of degree 7 over «, then

(2.3) (@) "+ {1 - o)1=} =1.

For a proof of Lemma 2.3 see Entry 19 of Chapter 19 in [2, pp. 314-315].
Lemma 2.4. If (3 is of degree 11 over «, then

24) (@' +{1-a)1 - +2{aB(l - )1 - B}/ =1.

For a proof of Lemma 2.4, see Entry 7 of Chapter 20 in [2, p. 363].



Some theorems on the explicit ... 75

Lemma 2.5. If 5 is of degree 23 over «, then

(25)  (aB)*+{(1—a)(1 =B} + 2 {ap(l—a)(1 - B}/* = 1.
For a proof of Lemma 2.5, see Entry 15 of Chapter 20 in [2, p. 411].

Lemma 2.6. We have

(2.6) 29," =

Using (1.4), we obtain (2.6).
Lemma 2.7. If a*> — ¢b® = d?, a perfect square, then

(2.7) \/a~|—b\/§:\/a;d+(sgnb) a;d‘

The above lemma is due to Bruce Reznick. For a proof of Lemma via

1
V On

— .

Chebyshev polynomials, see [5, p. 150].

Lemma 2.8. We have

6 6

2.8 2&{23n+ }:gﬂ—g—”,

(28) Infon T g5z | 7 g8 T g8,
1 Gs  Gs

2.9 2V2 |GEGE — = n
(29) f{ nGon Ging cs T e
1 G3 G3
2.10 2 |G*G2. — = —2n n_
(2.10) [ nCaon Gz%] e e,

Proofs can be found in [2, pp. 231, 282], [7, Th.(4.1), (4.2)].
Lemma 2.9. We have

2 42 4 4 20—20-2

2

G2G2, + v/ GAGE, — 2G72G,2
212 2 2 — n~9n n~"9n n In
( ) gn99n ( 2 )

(2.13) G895, = 9iG5n (gigﬁn + \/ Gr98n + 297295, > ,

(2.14) = GG, (GiGSn - \/ GiGs, — 2Gn209;$> :
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Proofs can be found in [7].

3 Main Theorems

In this section, we obtain several general formulas connecting singular mod-

uli and class invariants.

Theorem 3.1. We have

4
G241 1 /G241 1
1 . = 2) 12 n - n =
8
\/1+\/§u3 \/1—\/§u3
4 4 ’

8
\/m \/F
2 2|

(3.2)

-2
(—922 + Vg2 + 1)

where u = (Gnng)f1 and v = gngon,.
Proof of (3.1). Using (1.3) in (2.1), we find that

1—VI= 2u6]4

(3.3) af = { 5

Using (1.3) and in the above equation (3.3), we obtain the required
result.
Proof of (3.2). Using (1.4) in (2.1), we find that

—v% + V0 + 2
V2

Using (1.4) and (2.7) in the above equation (3.4), we obtain the required

result.

8

(3.4) aff =
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Corollary 3.1. We have

8

(3.5) (g7 = 2714/3 (2 + \/3) (1 V- 1) .
Proof. Using n =3 in with
(3.6) Gs = 21/12,

—-1/3
(3.7) Gy = 21/12 (\/5 - 1) :

we obtain the required result.

Theorem 3.2. We have

4
G241 1 /G2 +1 1
) N = 2 12 n - n _ =
4
/1 — 2u* + ub /1 —2u* — ub
4 4 ’

Proof. Using (1.3) in (2.2), we deduce that

(3.9) 0f — [(1 ~out) — (1= 2a8) = u]

X

where u = (GnG25n)_1.

2

Using (1.3) and (2.7) in (3.9), we deduce the required result.

Corollary 3.2. We have

(3.10)  ag ==+ (255\/5 - 570)1/2 (10\/5 +17 -85 — 5—%) .

1
2

Proof. From [3, p.191], we have

1/4 1/3
(3.11) Gus = <2+ \/5> / (%) .

7
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9
Using (3.11) with n = R in (2.10), we deduce that

= <2+\/g>1/4 (M)I/S

(3.12) G %

9
Using (3.11) and (3.12) with n = R in (3.8), we obtain the required result.
Remark: A different proof of ays can be found in [3, p. 290).

Theorem 3.3. We have

G241 1 G2 41
(3.13) au, = 2G \/ n * +—+\/ w2

8
1— 1—2& 3]

(3.14) = (g2 \/2\/_+U3 ,/

where u = (G Gaon) ™" and v = gngaon.

Proof of (3.13). Using (1.3) in (2.3), we find that

(3.15) aB = [1 —Vi- 2\/5“3]

2

Using (1.3) and (2.7) in equation (3.15), we obtain the required result (3.13)).
Proof of (3.14). Using (1.4) and in (2.3), we find that

(3.16) aff = ,/2\[“’3 1/

Using (1.4) and (2.7)) in the above equation (3.16), we obtain the required

result (3.14).
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Corollary 3.3. We have

X _2(1_¢_7_2ﬁ+ﬂM+3ﬁw>8
49 — 9 .

(3.17)

Proof. From [3, p. 191], we have

1/4

447
: .

Using n = 1 with (3.18) in (3.13), we obtain the required result.

Corollary 3.4. We have

[2v2 +1 [ 1 N
(319) 14 = W — 2—\/§

X [\/ 498 + 352v/2 — 4\/ 30926 + 21868v/2

2

+\/497 +352V/2 — 4\/30926 + 21868\@]
Proof. From [3, p. 200], we have

. _\/1+\/§+\/2\/§—1
14 — 9 .

(3.20)

2
Using n = - in (2.8), we deduce that

g _\/Hf_m
7 2 :

(3.21)

2
Using (3.20) and (3.21) with n = = in (3.14), we obtain the required result.
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Theorem 3.4. We have

Gir+1 1 Gi24+1 1
(3.22)aio, = 2G7? \/\/ 3 +§+\/\/ 5 3

8
" \/1—2u2+\/§u3 \/12u2\/§u3J
4 4 ’

(3.23) - (_97112 + VP T 1) - [—U(U +2)+ \\gﬂ(v? +2)2+2

4

8

where u = (G Gion) " and v = gngrain.

Proof of (3.22). Using (1.3) and (2.7) in (2.4), we deduce that

8
1 —2u? 2u3 1 —2u? —/2u3
(3.24) 0f = \/ u4+\/_u_\/ u4 V2u '

Using (1.3) and (2.7) in (3.24), we deduce the required result (3.22).
Proof of (3.23). Using (1.4) in (2.4), we deduce that

ab = [_”(“2 +2)+ T E T2 |

(3.25) 7

Using (1.4) in the above equation (3.25), we find the required result (3.23).
Theorem 3.5. We have

[GR2+1 1 /Gl2+1 1

(1 - V2u) + /(1 - v2u)? - 2V2u? 8
5 ,

4

X

(3.27) = (—g}{"+ g,%4+1)2

—V2u(v +V2) + \/\/iv(v +v/2)2 + 4
2

16

X




Some theorems on the explicit ... 81

where u = (GpGsn) " and v = gngsaon.

Proof of (3.26). Using (1.3) in (2.5)), we deduce that

(1 —+/2u) + \/(1 —V2u)? — 2/2u3 8
5 :

(3.28) aff =

Using (1.3) and (2.7) in (3.28), we obtain the required result (3.26).
Proof of (3.27). Using (1.4) in (2.5), we deduce that

—V2y/o(v + v2) + \/\/iv(v+\/§)2+4 8
2

(3.29) aff =

Using (1.4) in the above equation (3.29), we find the required result .

4 Explicit Evaluations of g,

In this section, we obtain some explicit evaluations of g,.

Theorem 4.1. We have

1/12

1/4 45 + 27/3 43 + 27/3
(4.1) g = (\/§ + 1> \/ 5 + \/ 5 ,

1/12

(42) g

_ <¢§+1>1/4 \/45+227\/§_\/43+227\/§

Proof. In [7, Th.4.5], we have

(4.3) 98924 = \/ V3 +1.

Using (4.3) in (2.8), we deduce that

4 \/45+27\/§ \/43+27\/§
- SR 2

wloo

Q
()N

(4.4)

g

wloo O

From (4.3) and (4.4), we obtain the required results.



82 K. Sushan Bairy

Theorem 4.2. We have

9o = (1 + \/§>1/4 (1 +V3+ \/3+3\/§>1/4
(4.5)

\/7110 + 4104+/3 + 271/141706 + 81814+/3
4

1/12
. \/ 7106 4+ 4104+/3 + 271/141706 + 81814+/3
4 b

\/7110 +4104+/3 + 271/141706 + 81814+/3

(4.6) 4

1/12
B \/ 7106 + 4104+/3 + 27+/141706 + 81814/3
4 Y

1/4

=2 (51) " (0 +0)" (59

\/ 35135104/10 + 6410880+/3 + 11104056 + 2028510+/30
(4 7) 16

1/12
N \/ 3513510/10 + 6410880+/3 + 11104040 + 2028510@)
16 ’
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1/4

g =21/° (\/ﬁ + 1) v (\/ﬁ + 3) v <\/6 + \/S)

\/ 35135104/10 + 6410880+v/3 4 11104056 + 2028510+/30
(4.8)

16

1/12
_\/3513510\/ 10 + 6410880+/3 4+ 11104040 + 2028510+/30
16 ’

Proof of (4.5). Using (4.3) in , we obtain the required result.
Since the proofs of (4.6) — (4.8) are similar to the proof of (4.5), we omit
the details.

5 Explicit Evaluations of G,

In this section, we obtain some explicit evaluations of G,,.

Theorem 5.1. We have

1/12

G24 =

(1+\/§+ \/3+3\/§>1/4 \/45+27\/§ - \/43+27\/§)
2 2 2

(5.1 \/7110 1 4104v/3 + 271/ 141706 + 81814+/3
' A

1/12
N \/ 7106 + 4104+/3 + 271/141706 + 81814+/3
4 b)
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1/12

G

8
3

1/4
<1+\/§+ \/3+3¢§) / \/45+27\/§+\/43+2W§
2 2 2

(5:2) \/7110 1 4104v/3 + 271/141706 + 81814+/3
' 4

1/12
\/7106 + 41043 + 27\/141706 + 81814+/3
1 .

Theorem is obtained by using Theorem and the formula g4, =
251G, gn.

6 Explicit Evaluations of «,

In this section, we obtain some explicit evaluations of «,.

Theorem 6.1. We have

(6.1)
2
gy = (69 +40V/3 — 28v/6 — 48v2 + 6\/256 +153v3 — 2\/2333 - 1347\/§>

X (\/6+3f—\/5+3\/§)8,

(6.2)
-2
as = (69 +40v/3 — 28v/6 — 482 + 6\/256 +153V/3 — 2\/2333 - 1347@) :
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(6.3)
9 12 4
g (V1343 5+V13  [VI3-3 1 1 [-3+3V13
439 = 2 8 8 2 1 2

X (\/ 1295056 + 359184v/13 — 48\/ 1455864558 + 403784178v/13

+ \/ 1295055 + 359184V/13 — 48\/ 1455864558 + 403784178@) ,

(6.4)

9 12
4 (V13 =3 o+ v13 V13 -3
=l W Y s

X <\/1295056 + 359184v13 — 48\/1455864558 +403784178v'13

—~ \/ 1295055 + 359184v/13 — 48\/ 1455864558 + 403784178@) .

Proofs are similar to the proof of corollary so we omit the details.
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