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Multiplier Transformations and A-Uniformly
P-Valent Starlike Functions!

H.A.Al-Kharsani

Abstract

Let A(p) denote the class of functions of the form

(e.9]
flz) =2+ Za;ﬁpz’fﬂ’, which are analytic in the open unit disk
k=1
D = {z: 2z € C;|z| < 1}.Using the multiplier transformation, the
auther introduce new subclasses of k-uniformly p-valent starlike func-
tions and investigate thier inclusion relations and the closure proper-
ties of the above classes of functions under integral operators. These

results also extend to k-uniformly close-to-convex functions.

2000 Mathematics Subject Classification: 30C45

1 Introduction

Let A(p) denote the class of functions of the form f(z) = 2¥ + Z Ay 27,

k=1
which are analytic in the open unit disk D = {2 : z € C;|z| < 1}. If
f and g are analytic in D, we say that f is subordinate to g, written
f < gor f(z) < g(z), if there exists a Schwartz function w in D such
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that f(z) = g(w(z)). A function f(z) € A(p) is said to be in UST,(k, a),
the class of k-uniformly p-valent starlike functions of order if it satisfies the

condition

(1.1) RefZ Gy sy, M—p',kzo,ogaa.

f(2) — /()
Replacing f in (1.1) by zf’(z) we obtain the condition

FRONIS I ©)
(1.2)  Re{l+ f’(z)} >k 702)

required for the function f to be in the subclass UCV,,(k, ) of k-uniformly

—(p—l)',k20,0§a<1.

p-valent convex functions of order a.
Uniformly p-valent starlike and p-valent convex functions were first in-
troduced [4] when p = 1, and [1] when p > 1,p € N, and then studied by

various authors.

Qo = {u+iv,u—a>ky/(u—p)?+02}

with p(z) = %or p(z) =1+ zj{,—é’? and considering the functions which

map D onto the conic domain Q , such that p(z) € Q ., we may rewrite
the conditions (1.1) or (1.2) in the form

Setting

(1.3) P(2) < Qra(2)-

We note that the explicit forms of function Q. o(z) for k=0 and k =1

are Qo) = H(ll_—_j(”z and Qy o () = p+w <log G - é)f

For 0 < k < 1, we obtain

e forn (S () )

and

Qralz) = (f__];) Ccos {% arccos(k:)ilog(i 1L \\;_i)} - (k‘lp_—k;)
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For k > 1,

o=t (SR ()

and

Qral2) =

u()
(p— ) <in T Ve dt N (k*p — )
21 K@ Sy Vioevioge) | Bl
where u(z) = 1= \‘[Z,x € (0,1) and K is such that k& = cos h“K/(x)

By virtue of (1.3) and the properties of the domains, we have

k
(1.4) Re(p(2) > Re(@ual2) > T
Define UCC,(k,a, 3) to be the family of functions f(z) € A(p) such
that 7(2)
: Qk a( )

9(2)
for some g(z) € UST,(k, 3).

Similarly, we define UQC,(k, o, 5) to be the family of functions f(z) €
A(p) such that
(2f (2))
9'(2)
for some g(z) € UCV,(k, ().
We note that UCC,(0, c, B) is the class of close-to-convex p-valent func-

=< Q;W(z).

tions of order a and type § and UQC,(0, o, ) is the class of quasi-convex
p-valent functions of order o and type S.

For any integer n , we define the multiplier transformations I,jp of func-

tions f(z) € A(p) by
Ap \"
I’\ —z’H—Z (k+p ()\+ —i—k) Ay p2™ P N > 0.

The operators Iﬁb"p are closely related to the Komatu integral operators[5]
and the differential and integral operators defined by Salagean[9].We also
note that I, f(z) = zf'(2) and I, f(z) = I,) f(z) the operator defined by
Cho and Kim|2].
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2 Main Results

In this section, we prove some results on the linear operator I\, .

In order to give our theorems, we need following lemmas.

Lemma 1. If f(z) € A(p), then

(2.1) A+ LS (2) = 20, f (2) + N, f (2),
First is the inclusion theorem.

Theorem 2. Let f(z) € A(p). If I ,f (2) € UST,(k, ).
Then I;b\+17pf (2) € UST,(k,a) .ma which is due to Eenigenburg, Miller,
Mocanu, and Reade [3].

Lemma 3. Let v, be complex constants and h(z)be univalently convex
in the unit disk D with h(0) =p

and Re(Bh(z) +7) > 0. Let g(z) = 22 + Y 1o | bpyp2*+r be analytic in
D. Then 2)
2qg'(z L
z) + ————"— < h(z) implies g(z) < h(z).
9(2) Ba(2) +7 (z) implies g(z) < h(z)
(I, f (2))

]’r)l\—l—l,pf (2)

Proof of Theorem 2. Setting s(z) = in (2.1), we can

write

A +p)Unpf (2) _ 2(ha,f (2)
Ll (2) Lyt (2)

Differentiating (2.2) yields

21, f (2) zs'(2)
Lot (2) s(2) + (A)

From this and the argument given in Section 1, we may write

(2.2)

+ (A) =s(2) + (V).

(2.3) = s(z) +

z5'(2)
NSy

Therefore, the theorem follows by Lemma A and the condition (1.4) since

kp+a
k+1 -

=< Qk@(Z).

Qk.a(z) is univalent and convex in D and Re(Q.o(2)) >
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Theorem 4. Let f(z) € A(p). If I, ,f (z) € UCV,(k,«) then I, f (2) €
UCV,(k,a) .

Proof. By virtue of (1.1), (1.2) and Theorem 2.1, we have

I f (2) € UCV,(k,a) & z(I),f (2)) € UST,(k, )
& I 2f '(2) € UST,(k, a)
= Iy 1,21 '(2) € UST,(k,a)
& I, f (2) e UCV,(ka)

and the proof is complete.

We next prove:

Theorem 5. Let f(z) € A(p). If I ,f (2) € UCCy(k,o, 8). Then I}, f (z) €
UCC,(k, o, B).

To prove the above theorem, we shall need the following lemma which
is due to Miller and Mocanu [6].

Lemma 6. Let h(z) be convex in the unit disk D and let E > 0. Suppose
B(z)is analytic in D with Re(B(z)) > 0. If g(z)is analytic in D and h(0) =
g(0). Then

E2*¢"(2) + B(2)g(2) < h(z) implies g(2) < h(z).

Proof of Theorem 5. Since I, f (z) € UCC,(k, o, 3), by definition, we
can write
2,1 (2)
k(2)
for some k(z) € UST,(k, 3). For g(z) such that I} g(z) = k(z), we have

< Qk,a (Z>

2L, f (2)

(24) I3 ,9(2)

=< Qk@(z).
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Whargf O i iy — 2Res0C))

]7)z\+1,pg(z) I?i\-i-l,pg(z)
h and H are analytic in D and h(0) = H(0) = p. Now, by Theorem 2.1,

I, ,9(2) € UST,(k, ) and so Re{H (z)} > k]f +1ﬁ. Also, note that

n

(2.5) 2y pf (2)) = (I4,9(2))h(2)-
Differentiating both sides of (2.5) yields
VEna,f () (n+1p9(2))
[n+17p9(z) n+1 pg( z)

Now using the identity (2.1), we obtain

2t (2) L ,(2f '(2)

Letting h(z) = , we observe that

h(z) + 2zl (z) = H(2)h(z) + 21/ (2).

159(2) 13p9(2)
(n+1p( 2f () + NIy, (2 '(2))

2(I341,9(2)) + (A)I*ﬂpg( 2)
Z(In+1,p(zf '(2))) ()\) n+1 p(zf '(2))

I,AH_LPQ(Z) I)‘J,-l g(z)
Z(I’ri\-‘,-l,pg(z))/
Ié-u,pg(z) T <)\)

_ H(z)h(z) 4+ zh'(2) + (M) h(z)

H(z) + ()

From (2.4), (2.5), and (2.6), we conclude that

2l (z)

h(z) + m =< Qk’a(Z).

On letting £ =0 and B(z) = m, we obtain

1

Re(B(z)) = —————=RNe(H (= A 0.
(BE) = e )+ 00) >

The above inequality satisfies the conditions required by Lemma B. Hence
h(z) < Qk.(z) and so the proof is complete.

Using a similar argument to that in Theorem 4, we can prove
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Theorem 7. Let f(z) € A(p). If I ,f (2) € UQCy(k,c, B) then I, ,f (2) €
UQCy(k,a, 3)
Finally, we examine the closure properties of the above classes of func-

tions under the generalized Bernardi-Libera-Livingston integral operator
F.(f) which is defined by

en R =L [ e p= 0,46 € )
0
Theorem 8. Let ¢ > % CIf Iy f (2) € USTy(k,«), then

Ino F(f (2) € USTy(k,a) where F, is the integral operator defined by
(2.7).

Proof. From (2.1), we have

(28) 2L Fef (2)) = (c+ Py, f (2) = el Fef (2).
Substituting s(z) = i ::11;)5]{ <(ZZ))) n (2.8), we can write
(29) ( n—i—lpr (Z)) +e= (C+p> IT)L\—i-lpf (Z)

n+1,pFCf (Z) n+1pr( )

Differentiating (2.9) yields

28'(z) (I pf (Z))/.

G o e o f (2)

(I, f (2))
Iri\+1pf (2)

Applying Lemma A, it follows that s(z) < Q.o (%), that is,
Qk,a(z)'

A similar argument leads to:

Theorem 9. Let ¢ > M.
k+1
I F(f (2) e UCV, (ko) .

<

If I, ,f (2) € UCV,(k,), then
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Theorem 10. Let ¢ > %

Iﬁb‘“’pFC(f (2)) e UCC,(k,a, ) .

Cf I, f (2) € UCCy(k o, () then

Proof. By definition, there exists a function k(z) € UST,(k,3). For g(z)
such that I, g(z) = k(z), we have

il (2))
Iy 9(2)

(2.10) < Qr.a(2).

Now from (2.8) we have

gl (2)) 2 pFe(2f '(2)) + elpy pFe(2f '(2)
I31,9(2) A1 pFeg(2)) + (NI pFeg (2)
(I pFe(2f '(2)) Iy pFe(=f ()
(2 11) — L pFeg(?) te Ir)z‘+1 pFeg(2)

2y pFeg(2))
I$+1 chg(Z) te

Since I, ,9(z) € UST,(k,(), by Theorem 8, we have F.(I), 9(z)) €
2T, Feg(2))

UST,(k,B). Letting H(z) =
I’I’>L\+]- pFCg(Z)

, we observe that Re{H(z)} >

"5 Now, let h be defined by

kE+1

(2.12) 2T pFef (2)) = (I Feg(2))h(2).
Differentiating both sides of (2.12) yields

(2.13)

A CRA VG _ AP G
o)) (BauFg)(e) ) TR (E) = HEAE) + 2 ().

Therefore from (2.11) and (2.13), we obtain

(I, f (2)) _ H(2)h(z) + zW (2) + ch(z)
In+17pg(z) H(z)+c¢

that is,
zh (2
h(Z) + W{gc =< Qk,a(z).
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1 kp+ 3
H(z)+c k+1
Now for F = 0 and B(z) as described, we conclude the proof since the

On letting B(z) = , we note that ®e{B(z)} > 0if ¢ > —

required conditions of Lemma B are satisfied. A similar argument yields

Theorem 11. Let ¢ > M
k+1

IéJerFc(f (Z)) € UQCy(k, o, B) .

CIf L, f (2) € UQC(K, o, 3), then
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