On sufficient conditions for starlikeness of p-valently Bazilevic functions of the type β and order γ _1

V.B.L Chaurasia, Vishal Saxena

Abstract

The aim of this paper is to establish certain sufficient conditions for the class of starlikeness p-valently Bazilevič functions of the type β and order γ . Our result is of general nature and capable of yielding a number of unknown new and interesting results.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Multivalent functions, Bazilevic functions, Starlikeness and convexity.

 $^{^1}Received\ 15\ September,\ 2008$

Accepted for publication (in revised form) 10 October, 2008

1 Introduction and definitions

Let $\mathcal{A}_n(p)$ be the class of normalized functions of the form

(1)
$$f(z) = z^p + \sum_{k=n+p}^{\infty} a_k z^k \qquad (n \in \mathbb{N} := \{1, 2, 3,\}),$$

which are analytic in the unit disk $\Delta := \{z : |z| < 1\}$. A function $f \in \mathcal{A}_n(p)$ is said to be in the class $\mathcal{S}_n^*(p,\alpha)$, if it satisfies

(2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (0 \le \alpha < p; \ z \in \Delta).$$

A function in the class $S_n^*(\alpha)$ is starlike of order α in Δ .

Let $\mathcal{K}_n(\alpha)$ be subclass of $\mathcal{A}_n(p)$ consisting of functions f(z) which satisfies

(3)
$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > \alpha \qquad (0 \le \alpha < p; \ z \in \Delta),$$

where $g(z) \in \mathcal{S}_n(p,0) := \mathcal{S}_n(p)$.

Also a function $f \in \mathcal{A}_n$ is said to be p-valently Bazilevic function of type β ($\beta \geq 0$) and order γ ($0 \leq \gamma < p$), if there exists a function $g(z) \in \mathcal{S}_n^*(p)$, such that

(4)
$$\operatorname{Re}\left\{\frac{zf'(z)}{[f(z)]^{1-\beta}[g(z)]^{\beta}}\right\} > \gamma \qquad (0 \le \gamma < p; z \in \Delta).$$

We denote the class of all such functions by $\mathcal{B}_n(\beta, \gamma)$. In particular, when $\beta = 1$, a function $f \in \mathcal{K}_n(\gamma) := \mathcal{B}_n(1, \gamma)$ is p-valently close-to-convex of order γ in Δ . Moreover if $\beta = 0$, then $\mathcal{B}_n(0, \gamma) := \mathcal{S}_n^*(\gamma)$.

In order to prove our main results, we shall require the following lemma.

Lemma 1 ([3]) Let Ω be a set in the complex plane C and suppose that ϕ is a mapping from $C^2 \times \Delta$ to C which satisfies $\phi(ix;y;z) \notin \Omega$ for $z \in \Delta$ and for all real x and y such that $y \geq -n(1+x^2)/2$. If the function $P(z) = 1 + c_n z^n + \ldots$, is analytic in Δ and $\phi(P(z); zp(z); z) \in \Omega$ all $z \in \Delta$ then Re P(z) > 0.

2 Main Results

Applying Lemma 1, we now derive the following

Theorem 1 Let $f(z) \in \mathcal{A}_n(p)$, satisfies If

$$\operatorname{Re}\!\left\{\!\frac{\alpha z f^{'}(z)}{\left[\!f(z)\!\right]^{1\!-\!\mu} \left[\!g\left(z\right)\!\right]^{\!\mu}}\!+\!\frac{\alpha z f^{''}\left(\!z\!\right)}{f^{'}\left(\!z\!\right)}\!-\!\alpha\left(\!1\!-\!\mu\!\right) \frac{z f^{''}\left(\!z\!\right)}{f^{'}\left(\!z\!\right)}\!-\!\alpha\mu\frac{z g^{'}\left(z\right)}{g\left(z\right)}\!+\!1\right\} \frac{z f^{'}\left(z\right)}{\left[\!f\left(z\right)\!\right]^{1\!-\!\mu} \left[\!g\left(z\right)\!\right]^{\!\mu}}$$

(5)
$$> \alpha\beta \left(\beta\delta + \frac{n}{2} - 1\right) + \left(\beta - \frac{np\alpha}{2}\right) (z \in \triangle, 0 \le \alpha, \beta < p),$$

then $f(z) \in \mathcal{B}_n(p,\mu,\beta)$.

Proof. Define P(z) by

(6)
$$\frac{zf'(z)}{[f(z)]^{1-\mu}[g(z)]^{\mu}} = (p-\beta)P(z) + \beta,$$

then $P(z) = 1 + c_n z^n + ...$ is analytic in \triangle . Differentiate logarithmically (6) with respect to z and making a little simplification, we get

$$\frac{\delta z f^{'}(z)}{\left[f(z)\right]^{1-\mu} \left[g(z)\right]^{\mu}} + \frac{z f^{''}(z)}{f^{'}(z)} - (1-\mu) \frac{z f^{'}(z)}{f(z)} - \mu \frac{z g^{'}(z)}{g(z)}$$

(7)
$$= \frac{(p-\beta)zP'(z) + \delta[(p-\beta)P(z) + \beta]^2}{(p-\beta)P(z) + \beta}$$

$$\begin{split} &\left[\frac{\alpha\delta z\,f^{'}\left(z\right)}{\left[f\left(z\right]^{1-\mu}\left[g\left(z\right)\right]^{\mu}} + \alpha\frac{z\,f^{''}\left(z\right)}{f^{'}\left(z\right)} - \alpha\left(1-\mu\right)\,\frac{z\,f^{'}\left(z\right)}{f\left(z\right)} - \alpha\mu\frac{z\,g^{'}\left(z\right)}{g\left(z\right)} + 1\right]\,\frac{z\,f^{'}\left(z\right)}{\left[f\left(z\right]^{1-\mu}\left[g\left(z\right]\right]^{\mu}} \\ &= \alpha\left(p-\beta\right)z\,P^{'}\left(z\right) + \left(2\beta\alpha\delta - \alpha + 1\right)\left(p-\beta\right)P\left(z\right) + \alpha\delta\left(p-\beta\right)^{2}P^{2}\left(z\right) + \left(\delta\alpha\beta^{2} - \alpha\beta + \beta\right)^{2}P^{2}\left(z\right) + \left(\delta\alpha\beta^{2} - \alpha\beta\right)^{2}P^{2}\left(z\right) + \left(\delta\alpha$$

(8)
$$= \phi\left(P(z), zP'(z); z\right),$$

where

(9)

$$\phi(r,s;t) = \alpha (p-\beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha + 1) (p-\beta) r + \alpha\delta (p-\beta)^2 r^2 + (\delta\alpha\beta^2 - \alpha\beta + \beta) \delta + (2\beta\alpha\delta - \alpha\beta + \beta) \delta + (2\beta$$

for all real x and y satisfying $y = -n(1+x^2)/2$, we have

$$\operatorname{Re}\phi\left(ix,y;z\right) = \alpha\left(p-\beta\right)y - \alpha\delta\left(p-\beta\right)^{2}x^{2} + \beta\left(\alpha\beta\delta - \alpha + 1\right)$$

$$\leq -\frac{\alpha}{2}\left(p-\beta\right)n - \left\{\alpha\delta\left(p-\beta\right)^{2} + \frac{n\alpha}{2}\left(p-\beta\right)\right\}x^{2} + \beta\left(\alpha\beta\delta - \alpha + 1\right)$$

$$= -\frac{\alpha}{2}\left(p-\beta\right)n - \frac{\alpha\left(p-\beta\right)}{2}\left(n + 2p\delta - 2\beta\right)x^{2} + \beta\left(\alpha\beta\delta - \alpha + 1\right)$$

(10)
$$\leq \alpha \beta \left(\beta \delta + \frac{n}{2} - 1\right) + \left(\beta - \frac{np\alpha}{2}\right).$$

Let

$$\Omega = \left\{ w; \operatorname{Re} w > 0, \alpha \beta \left(\beta \delta + \frac{n}{2} - 1 \right) + \left(\beta - \frac{np\alpha}{2} \right) \right\},\,$$

then

$$\phi\left(P(z), zP'(z); z\right) \in \Omega \quad and \ \phi\left(ix, y; z\right) \notin \Omega.$$

For all real x and $y = -n(1+x^2)/2, z \in \triangle$, By application of lemma (1), the result (5) follows at once.

On taking $\delta = 1$, $\mu = 0$ in Theorem 1, we get

Corollary 1 If $f(z) \in A_n(p)$ satisfies

(11)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha z\frac{f''(z)}{f'(z)}+1\right)\right\} > \alpha\beta\left(\beta+\frac{n}{2}-1\right)+\left(\beta+\frac{np\alpha}{2}\right),$$

 $(z \in \Delta, 0 \leq \alpha, 0 \leq \beta < p) \text{ then } f(z) \in \mathcal{S}_n(p,\beta).$

On taking $\beta = 0$, n = 1, p = 1 and $\beta = \alpha/2$, n = 1, p = 1 respectively we have a known result obtained by Ravichandran et al. [1]. On taking $\mu = 1$ and $\delta = 1$, we find an interesting result contained in the following corollary.

Corollary 2 If $f(z) \in A_n(p)$, satisfies

$$\operatorname{Re}\left\{\frac{\alpha z f^{'}\left(z\right)}{g\left(z\right)} + \frac{\alpha z f^{''}\left(z\right)}{f^{'}\left(z\right)} - \alpha \frac{z g^{'}\left(z\right)}{g\left(z\right)} + 1\right\} \frac{z f^{'}\left(z\right)}{g\left(z\right)}$$

(12)
$$> \alpha\beta\left(\beta + \frac{n}{2} - 1\right) + \left(\beta - \frac{np\alpha}{2}\right)$$
 $(z \in \Delta, 0 \le \alpha, \beta < p),$

then $f(z) \in \mathcal{K}_n(p,\beta)$.

Theorem 2 Let $0 \le \beta < p$,

$$\lambda = \left(p - \beta + \frac{n}{2}\right)^2 (p - \beta)^2, \quad \eta = \left\{\frac{n}{2} (p - \beta) - \left(\delta \beta^2 - \beta\right)\right\}^2$$
$$v = (p - \beta)^2 + \left(\delta \beta^2 - \beta\right) \text{ and } \quad \sigma = (p - \beta)^2 (2\beta - 1)^2$$

Also, suppose that t_0 to be the smallest positive root of the equation

(13)
$$2\lambda (p-\beta)^{2} t^{3} + \{(p-\beta)^{2} (2\lambda + \eta - v + \sigma) + 3\lambda \beta^{2}\} t^{2} + 2\beta^{2} (2\lambda + \eta - v + \sigma) t + (\lambda + 2\eta - v + \sigma)\beta^{2} - (p-\beta)^{2} \eta = 0$$

and

$$\frac{(p-\beta)^2 (1+t_0)}{(p-\beta)^2 t_0 + \beta^2} \left[\lambda t_0^2 + (\lambda + \eta - v + \sigma) t_0 + \eta \right] = \rho^2.$$

Now, if

$$\left| \left[\frac{\delta z f^{'}(z)}{\left[f\left(z\right) \right]^{1-\mu} \left[g\left(z\right) \right]^{\mu}} - p \right] \left[\frac{\delta z f^{'}\left(z\right)}{\left[f\left(z\right) \right]^{1-\mu} \left[g\left(z\right) \right]^{\mu}} + \frac{z f^{''}\left(z\right)}{f^{'}\left(z\right)} - (1-\mu) \frac{z f^{'}\left(z\right)}{f\left(z\right)} - \mu \frac{z g^{'}\left(z\right)}{g\left(z\right)} \right] \right| \leq \rho, z \in \Delta$$

$$then \ f(z) \in \mathcal{B}_{n}(p, \mu, \beta).$$

Proof. Define P(z) by

$$(p - \beta) P(z) + \beta = \left[\frac{zf'(z)}{[f(z)]^{1-\mu} [g(z)]^{\mu}} \right]$$

then $P(z) = 1 + c_n z^n + ...$, is analytic in \triangle . A computation shows that

$$\begin{split} \frac{\delta z f'(z)}{[f(z)]^{1-\mu}[g(z)]^{\mu}} + \frac{z f''(z)}{f'(z)} - \left(1 - \mu\right) \frac{z f'(z)}{f(z)} - \mu \frac{z g'(z)}{g(z)} \\ &= \frac{(p-\beta)z P'(z) + \delta \{(p-\beta)P(z) + \beta\}^2 - \{(p-\beta)P(z) + \beta\}}{(p-\beta)P(z) + \beta} \\ &= \varphi \left(P(z), z P'(z); z\right), \end{split}$$

where

$$\varphi(r,s;t) = \frac{(p-\beta)(r-1)}{(p-\beta)r+\beta} \left[(p-\beta)s + \delta \left\{ (p-\beta)r + \beta \right\}^2 - \left\{ (p-\beta)r + \beta \right\} \right]$$

For all real x and $y = -n(1+x^2)/2$, we have

$$\begin{aligned} |\varphi\left(ix,y;z\right)|^{2} &= \frac{(p-\beta)^{2}(1+x^{2})}{(p-\beta)^{2}x^{2}+\beta^{2}} \left[\left\{ (p-\beta)y - (p-\beta)^{2}x^{2}\delta + \delta\beta^{2} - \beta \right\}^{2} \right. \\ &\left. + (p-\beta)^{2}x^{2}(2\delta\beta - 1)^{2} \right] = g\left(x^{2},y\right) \end{aligned}$$

Now

$$\frac{\partial g}{\partial y} = \frac{2(p-\beta)^2 (1+x^2)}{(p-\beta)^2 x^2 + \beta^2} \left[(p-\beta) y - (p-\beta)^2 x^2 \delta + \delta \beta^2 - \beta \right] < 0$$

then we have

$$h(t)=g(t,-n(1+t)/2)\leq g(t,y)$$

where

$$\begin{split} h(t) &= \frac{(p-\beta)^2(1+t)}{(p-\beta)^2t+\beta^2} \left[(p-\beta)^2 \left(p - \beta + \frac{n}{2} \right)^2 t^2 + \left\{ (p-\beta)^2 \left(p - \beta + \frac{n}{2} \right)^2 + \left(\frac{n}{2} \left(p - \beta \right) - (\delta\beta^2 - \beta) \right)^2 \right. \\ &- \left. \left((p-\beta)^2 + (\delta\beta^2 - \beta) \right)^2 + (p-\beta)^2 \left(2\beta - 1 \right)^2 \right\} t + \left(\frac{n}{2} \left(p - \beta \right) - (\delta\beta^2 - \beta) \right)^2 \right] \\ &= \frac{(p-\beta)^2(1+t)}{(p-\beta)^2t+\beta^2} \left[\lambda t^2 + (\lambda + \eta - v + \sigma) t + \eta \right], \end{split}$$

where

$$\lambda = (p - \beta + \frac{n}{2})^2 (p - \beta)^2, \quad \eta = \left\{\frac{n}{2} (p - \beta) - (\delta \beta^2 - \beta)\right\}^2$$

and

$$v = \{(p - \beta)^2 + (\delta\beta^2 - \beta)\}^2$$
 and $\sigma = (p - \beta)^2 (2\beta - 1)^2$

Now

$$h'(t) = \frac{(p-\beta)^2}{\{(p-\beta)^2 t + \beta^2\}^2} \left[2(p-\beta)^2 \lambda t^3 + \{(p-\beta)^2 (2\lambda + \eta - v + \sigma) + 3\beta^2 \lambda \} t^2 + 2\beta^2 (2\lambda + \eta - v + \sigma) t + (\lambda + 2\eta - v + \sigma) \beta^2 - (p-\beta)^2 \eta \right]$$

Taking h(t) = 0, we obtain (13) which is cubic in t. Let t_0 be the smallest positive root of the equation, then we have $h(t) = h(t_0)$, and hence

$$\left|\varphi\left(ix,y;z\right)\right|^{2} \ge h\left(t_{0}\right) = \rho^{2}$$

Define $\Omega = w : |w| < \rho$ then $\phi(P(z), zP(z); z) \in \Omega$ for all real x and $y = -n(1+x^2)/2$, $z \in \Delta$. Therefore by application of Lemma 1 the result follows On taking $\beta = 0$ and $\mu = 1, \delta = 1$, n = 1, p = 1 in Theorem 1, we obtain the following interesting result.

Corollary 3 If $f(z) \in A_1(p,0) = A_1(p)$ satisfies

$$\left|\left(\frac{zf^{'}\left(z\right)}{q\left(z\right)}-p\right)\left(\frac{zf^{'}\left(z\right)}{q\left(z\right)}+\frac{zf^{''}\left(z\right)}{f^{'}\left(z\right)}-\frac{zg^{'}\left(z\right)}{q\left(z\right)}\right)\right|\leq\rho,(z\in\Delta)$$

where

$$\rho^2 = \frac{(1+t_0)}{t_0} \left[\frac{9}{4} t_0^2 + \frac{5}{2} t_0 + \frac{1}{4} \right]$$

 t_0 is the smallest positive root by the equation

$$3t^3 + \frac{19}{4}t^2 - \frac{1}{4} = 0$$

then $f(z) \in \mathcal{K}_1(p,0)$.

Remark 1 On taking $\beta=0$ and $\mu=0, \, \delta=1, \, n=1, \, p=1$ in Theorem , we obtain a known result due to Ravichandran et. Al. [1].

References

- [1] V. Ravichandran, C. Selvaraj, Rajagopal Rajalakshmi, Sufficient Conditions for Starlike Functions of Order α, Journal Inq. Pure Appl. Math., Volume 3, Article 81 [2003], 471-476.
- [2] H. Irmak, K. Piejko and J. Stankiewicz, A note involving p-valently Bazilevič functions, Int. J. Math. Math. Sci., Vol. 2005 (2005), 1149-1153.

[3] S.S. Miller and P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differ. Equations, 67 (1987), 199211.

V.B.L Chaurasia, Vishal Saxena
Department of Mathematics
University of Rajasthan
Jaipur - 302055, India
e-mail: saxenavishal13@rediffmail.com