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On quadrature formulas of (Gauss-Turan and
Gauss-Turan-Stancu type !
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Abstract
In this paper we study the quadrature formulas of Gauss-Turan
and Gauss-Turan-Stancu type, the determination of the nodes and

the coefficients using the s-orthogonal and o-orthogonal polynomials.
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1 Introduction

Let P,,, be the set of all algebraic polynomials of degree at most m. In 1950

P.Turan [17] was studied numerical quadratures of the form :

n s—1
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where the nodes —1 <z < --- < z,, < 1 are arbitrary, Ay, = f_ll Uy (z)d,
(k=1,n; v=20,s—1) and li,(z) are the fundamental polynomials of
Hermite interpolation. The formula (1) is exact for any f € Py, .

One raise the problem to determine, if it is possible the nodes {z;, i =
1,n} so that the quadrature formula is exact for all f € Ps+1yn—1. Turdn
showed that the nodes must have odd multiplicities to obtain an increase
of degree of exactness and these nodes must be the zeros of the monic
polynomial 7¥(x) = 2" + ap,_12" ' + -+ + a1x + ag, which minimizes the
value of the integral [* [m,(z)]** da.

If one consider the odd orders of multiplicity of the nodes to be 2s + 1

then one obtain the Gauss-Turdn type quadrature formula :

n 2s

2) / )Nz = 303 Au O (0) + Rooal ),

k=1 v=0
where dA(z) is a nonnegative measure on the interval (a,b) which can be
the real axis R , with compact or infinite support for which all moments:
= fab zhd\(z), k=0,1,..., exists, are finite, and po > 0.
If the nodes {z3, & = 1,n} in (2) are chosen the zeros of the monic

polynomial 7, s = m, s(z) which minimizes the integral.

b
(3) F(ag,a1,...,a,-1) = / [0 ()] T2d\ (2),

then the formula (2) is exact for all polynomials of degree at most
2(s +1)n — 1, that is, R,2:(f) =0, Vf € Pys11)n—1. The condition (3) is

equivalent with the following conditions:

b
(4) / [ ()] 2¥d\(x) =0, (k=0,n—1).
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Let denote, m, s(x) by P, s(z) . The case d\(z) = w(x)dz on [a, b] has been
studied by Osscini and Ghizzetti.

2 The construction of GAUSS-TURAN Quadra-
ture Formulas by using s-Orthogonal and
0-Orthogonal Polynomials

In order to numerically construct the s-orthogonal polynomials with respect
to the measure d\(x), one can use the orthogonality conditions (4). Let n
and s be given, and the measure : du(x) = dp, o(z) = (7,(2))**d\(z). Then
the orthogonality conditions can be written as: fab . (2)tVdp(x) =0, (v =
0,k — 1), where {m"}1en is a sequence of monic orthogonal polynomials
with respect to the new measure du(z).

So, the polynomials 7,"®, which we will denote by 7, = 7 (z) satisfies a

three-term recurrence relation of the form :

(5) Te1(2) = (x — o) m(@) — Brme—1(2),
where 7_1(z) = 0, mo(z) = 1, and we have from the orthogonality property:

ﬂO = f; dﬂ<x)7

(6)
= ST T > f: wmi(z)du(z)
T < > f; w2 (x)dp(x)

PR R M { O C)
O <menmer > [Pl (2)dp(o)

One can calculate the coefficients ag, Bk, (K = 0,n — 1), and are ob-

tained the first n + 1 orthogonal polynomials g, 7, ..., m,, and let denote
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them by P, s = 7.

Let define the function on the Euclidian space R™

(7) O(xq,...,2,) = / (x— )2 (2 — 2,)*2d\ (7).

If dA\(z) is a positive measure, it was proven that this function is continuous

and positive. Then the function ®(zy,...,x,) has an lower bound o and

this value is attained for ¢ < 27 < --- <z, <b (see [8] T.Popoviciu).
Let consider the polynomial P25 (z) = [,_; (# — xx)**"* with the zeros

a<x < <z, <b.

Then the function ®(xy,...,x,) have a relative minimum point and we
2542
have: —2512% = I(P;) =0, where Py(x) = an——;v;(f) Then one must have:

b
/ Pr?fsﬂlk(x)d)‘(x) =0, k=1,n, where Ip(x), k= In

a

are the Lagrange’s fundamental interpolation polynomials corresponding to
the nodes : zy,...,x,, which are linearly independent. Thus, one obtain

that the polynomial ngs“ satisfies the orthogonality conditions :

b
/ [P, o(2)]* ek dA (@) = 0, k=0,n— 1.

From the condition to have a relative minimum we obtain:

0P foali 0*®
— =0, =0, +5 >

07 k,j:].,_n,k%j

It was showed that the remainder in (2) can be expressed as

(N) b
(8) R(f) = / N!(é) / P22\ (z), N =2(s+ 1)n.
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Now, we consider the following expression of the remainder in the quadra-
ture formula (2) R(f;d\) f U(z)D(f;x)d\(z), where
H 2s+1 ({L’) _ u(x)(x . -771) :L‘ . xn H 28+2

k=1

xz, xy, T2, Tn; f

and D(f;z) =
1 2s+1 2s+1 ... 2s5+1

If f € CN(a,b), by using the Peano’s Theorem, then the remainder can
be expressed as R[f] = f: Kyt f™N(t)dA(t), with N = 2(s + 1)n,
where the Peano’s Kernel have the expression :

N-1
Kn(t) = Rx[%], which is a spline function of degree N — 1 with the
interpolation points in the nodes of the quadrature formula and the compact
support [a, b]. Then we have:
b (LL’ . t) n t)Nfzzfl
9 Ky(t) = —_— —+.
(9 v = [ -3y s
k=1 v= 0

Let n € N, 0 = (s1,...,8,) be a sequence of nonnegative integers, and the
nodes xj, ordered, say a < x1 < x5 < --- < x, < b, with odd multiplicities
251+ 1,...,2s, + 1, respectively.

A generalization of the quadrature formula of Gauss-Turdn type was
given independently by Chakalov [2] and T.Popoviciu, [8], for the nodes x,
with different multiplicities 2s, 4+ 1, k = 1, n of the following form

n  2sg

(10) /f JaA(@) =D > A f @ () + R(f),

k=1 v=0

which have d, . = 2 Z sk + 2n — 1, if and only if
k=1

b n
(11) [ Tl = ibir = o, k=oa=1

v=1
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The conditions (11) defines a sequence of polynomials {7, » }neNy, Tno(T) =
n n

H(x — 1), such that f: Tho () H(q: — 2, M d\(z) =0, k=0,n— 1.
k=1 v=1
These polynomials are called o-orthogonal polynomials and they corre-
sponds to the sequence o = (s1, s9,. .., S,) of nonnegative integers.
Definition 1 The polynomials P, ,(x) = H(x—xﬁ“) are called c—orthogonal,
v=1

if they satisfies the orthogonality conditions f; P o(x) 29wy o (z)de =0, j =

0,n — 1, with respect to the weight w, ,(x) = w(x) H(a: — g7,

v=1

It can be proved that the o —orthogonal polynomial P, , can be obtained

by the minimization of the integral ff w(w) H(x — 1z, dg.
v=1

If we consider the vector of multiplicity orders o = (2s+1,2s+1,...,2s+
1), then the above polynomials reduces to the s-orthogonal polynomials.

Let consider the Lagrange-Hermite interpolation polynomial

Tk, P)/ja xZ; f

2Sk+1 1 1

(12) (Luf)(z) =L

on the nodes z;, with the multiplicities 2s; + 1, k = 1,n and we apply the
parameters method of D.D. Stancu.

Then Ly f can be expressed in the following form

(13)

(Lgf)(x) =v(x)Ly Tk, r; fi @)Ly Vi T o
2sp +1 1 11

2s1+1 (

u(x) = (x—mx1) r—x9)22 T (2=, w(z) = (2—m) (=) . .. (2—Tn),
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filz) = f(x)/v(z),  folz) = f(z)/ulz).
Note that v(z) is the polynomial of undetermined nodes. Then we have the

following interpolation formula

(14) f(@) = (Luf)(@) + (rf)(z), where
(15)

xy, CII Ha Y1, -5 Un I f
(rf)(z) = u(z)v(z)
%1 +1, ..., 2,41 1, ... 1 1

By multiplying the Lagrange-Hermite formula (13) with the weight func-
tion w = w(x) and by integrating on (a,b) with respect to the measure

d\(z) = w(z)dz, we obtain the quadrature formula

(16) I{w; ) = Q(f) + G(f) + R(f),

where R(f) = I(w,rf) , and

n

(17) G(f) =) Bif(3).

j=1
One can observe that in (15) , the divided difference which appears have

the order N +1 = QZsk +2n =25 + 2n, where S = Zsk.
k=1 k=1

Thus, the degree of exactness of (16) is N = 2S + 2n — 1.

Remark 1 One must determine the nodes xj,, k = 1,n with the multiplic-

ities 2s, + 1, (k =1,n), so that By = --- = B, =0, for any values of the
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parameters y;, j = 1,n, and it is necessary and sufficient that

/ 2s,,+1 kd)\( )=0, k=0,n—1, where d\(x) = w(z)dz.

One can prove that the system (18) with the unknowns w1, xs, ..., x,
has at least a solution with distinct values. If f € CV*(a,b), then the
expression for the remainder will be R(f) = f252)(€) Ky, 9,, where

1 n

ool (Wi Uzsion), Ussion = H(x — 33,2,
(25 + 2n)! 11

K25+2n -

a) The determination of the Gaussian nodes
Let denote 74, := z, the nodes of the quadrature (10), and {p,};en,, let be
a sequence of orthonormal polynomials with respect to the measure, dA(t)

on R. Then, these polynomials satisfy the three-term recurrence relation

(19) V Bit1 pj1(t) + a; pi(t) + /55 pj—1(t) =tp,;(t), j=0,1,...,
where p_i(t) =0, po(t) = 1/v/Bo, fo = po = fab dA(t)

For a given sequence o = (s1, Sa,...,Sy) , the orthogonality conditions (18)

can be written as

@) B0 = [ pa [H nt| e o,

where t = (71,...,7,)7, F(t) = [Fi(t), F5(t), ..., F.(t)]' , which is a non

T,

linear system of equations.
To solve the system (20) can be used the Newton-Kantorovic method (see

[7]). One can construct the iterative formula

tEH) — ¢ &) Y P, k=0,1,2,...
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where t®) = (7" 7P 2T and W= W(t) = [kl nxn = [22]nxn, is

0Tk

the Jacobian of F(t) , whose elements can be calculated by

OF} - S
Wy = 3Tk —(2s,+ 1) /pj 1 {H 25V+1} A1), j. k=T, 7.
v=1

t—Tk

But, wo = 0 and

n

28k + 1 2 2 1
(21) Wy = — / (t —7%) 5’“ H suh }d)\( ),
\/% R v=1,v#k

then, by integrating (19) one obtain
(22)
VBjt1 Wivar = (T — ) Wit1p— /B wir — (28, +1)Fjy, j=0,n—2.

Thus, knowing only Fj and wy ;, (j = 1,n), one can calculate the elements
of the Jacobian matrix by the nonhomogenous recurrence relation (22).
The integrals (20), (21), can be calculated by using a Gauss-Christoffel

quadrature formula, (w.r.t. the measure dA(t) ) of the following form

/ab 0 = 3" AL g(rP) + Ralg),

k=1
with L = Y7 | sx + n, which is exact for Vf € Py, where 20 — 1 =
2> sk+2n—1.
For a sufficiently good approximation ¢(), the convergence of the method
for the calculation of t*+1) is quadratic (see [7]).
If one consider o = (s,s,...,s), and the quadrature formula (2) then,
in order to determine the coefficients «,,, 5, from the recurrence relation

(5), can be used the discretized Stieltjes procedure for infinite intervals of
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orthogonality. From (5) one obtain the following nonlinear system

fo = o / 725 ()dA(t) = 0, fay1 = / (0, —1)2()r2(£)dA(E) = 0, (v = T — 1),

fo = / (B2 (1) — m2(8)] 72 (H)AA(E) = 0, (v = 0, = 1),

The polynomials 7, 7y, ..., T, can be expressed in terms of «,,,f,, v =
0,n, by the recurrence relation (5).

By using the Newton-Kantorovic’s method, one obtain the following
relations for the determination of the coefficients in (5), namely z*+1) =
2B W1 (z®) f(®), k=0,1,..., where the zeros 7 = 7(s,n), (v =1,n)
of 3" are the nodes of Gauss-Turan’s type quadrature formula.

Note that these zeros can be obtained by using the QR algotithm, which

determines the eigenvalues of a symmetric tridiagonal Jacobi matrix J,

a VB 0 0 o 0 0
VB ar VB
In =
0 0 0 s ﬁn—Z Qp—2 ﬂn—l
0 0 0 c. 0 ﬁn,1 [e7%m}

This algorithm can be used to determine the s— or o—orthogonal poly-
nomials by constructing MATLAB routines for some Gauss-Christoffel quadra-

ture formulas and routines to solve some systems of equations.

b) The determination of the coefficients

Let denote U(t) = [;_,(t — 7)****!, and let consider the Hermite interpo-
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lation formula

28) 0= HNO+RNG = zyhm T (RP)(1), where
—Ty i 2l —Ty k k - 25 1 25,
h”vi(t):<t il : [Z ¢ k! : (Uyl(t)>(ﬁl, H ()

By integrating (23), one obtain

b 2Sﬂ 25 +17 (k) b
_ (t—m,)* ik U)AA(D)
A”vi_/a hui Zl Z k! { U(t) ] /a (t=) (t—, )23;/4-1

t=1y

;3 H e e

k=0 t=7y

Let denote U,.;4(t) = (,57)(2]% =

= (t—7,) TFx (t—m)? T (=12 (7 )P T (7)Y where
deg(Uyivr) < 28,4+ (2s14+1)+ 4+ (2s,_1+ 1)+ (28,401 + 1)+ - -+ (25,+1) =

=2 5, +n—1<20) s,+n) = 1=2N —1=dpe, N=2(S+n)
v=1 v=1
So, one obtain

1 1 (t )23y+1 (k) b
24 AI,Z-:,— — | — ik (D)dA(L),
( ) f il k’ |: U(t) . /a U ; +k< ) ( )
k= =7y
forv=1,n; i=0,1,...,2s, and deg(U,;1x) < 2N — 1.
The integrals f: Uivk(®)dA(t), v=1,n; i =0,2s,, k=0,2s, — i, can

be calculated by applying the quadrature formula

/ab ZAk a(e™) + Ru(g),

with N =3""_ s, +n nodes.
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3 A generalization given by D.D.Stancu to
the Gauss-Turan type quadrature formula

A generalization of the Turdn quadrature formula (2) to quadratures having
nodes with arbitrary multiplicities was derived independently by Chakalov
2] and T. Popoviciu [8].

D.D. Stancu in [14], [16], was bring very important contributions in this
domain, by investigating and constructing so-called Gauss-Stancu quadra-
ture formulas having multiple fixed nodes and simple or multiple free (Gaus-
sian) nodes.

Let a;, i = 1,n fixed (or prescribed) nodes, with the given multiplicities
mi, i = I,n , and ¥, < 9 < --- < x,, be the free nodes with given
multiplicities nq,...,n,, . Then, we have the general quadrature of Gauss-
Stancu type for the integral
I1f] = [ f(x)d\(z), (d\(z) = w(z)dz) of the form

n m;—1 m ni—1
(25) QUI =YD Bufa) + Y > Apuf ().
i=1 v=0 k=1 v=0
We denote
(26)
w(x) = OZH(I — ai)mi7 u(ZE) - H(Jf — xk)”k7 M = Zmi, N = an
i=1 k=1 i=1 1

The quadrature formula (25) have interpolatory type with the algebraic
degree of exactness at least d* = M+N—1,if I(f) = Q(f), Vf € Pyron_1-

The free nodes x, k = 1,m can be chosen to increase the degree of
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exactness, and so one can obtain I[f] = Q[f], V f € Pyinin_1-

D.D. Stancu gave the following characterizations

Theorem 1 The nodes x4, ..., x, are the Gaussian nodes if and only if
b
(27) / Fo(@)u(@)dA(z) = 0, Yk =0 m =1,

Theorem 2 If the multiplicities of the Gaussian nodes are all odd , n, =

2s; + 1, (k = 1,m) and if the multiplicities of the fized nodes are even,
m; = 2r; , 1= 1,n , then there exist the real distinct nodes: xj, k=1, m ,

which are the Gaussian nodes for the quadrature formula of Gauss-Turan-

Stancu type (25).

In this case, the orthogonality conditions (27) can be written as

b m
/ "1, (2)dp(z), k =0,m — 1, where 7,,(z) = H(:c — Tk,
a k=1

m n

du(z) = (] [z = ) )([ (& = @)™ )dA(2).

k=1 i=1
This fact means that the polynomial 7, (z) is orthogonal with respect to
the new nonnegative measure du(x), and therefore , all zeros z1, ..., x,, are
simple, real and belongs to supp(du) = supp(dX).

One can observe that the measure du(z) , contains the nodes x1, ..., x,,
, 1.e. the unknown polynomial 7,,(¢) is implicitly defined.

Let now consider the sets of fixed and Gaussian nodes F,, = {ay, ..., a,}

Y

Gy = {x1,..., 2} and let F, (G, = 0, and denote X, = {&,...,§,} =

F,UGnm, (p=n+m) with the multiplicity of the node & be ry, k=1, p.
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Then can be determined the coeflicients C;, (i.e. A;, and B;, ) by using
an interpolatory formula of the form

29 [ 1000 =3 Y i)+ myt).

i=1 v=0

Note that the multiplicity of the Gaussian nodes are odd numbers.

Example 3.1
If (a,0) = (-1,1), w(z) = (1 — 2)*(1 + 2)’, a,3 > —1, and ay =
—1,a; = 1 are simple fixed nodes, xq is a simple free node, then the highest

degree of exactness will be D = (14 1) 4+ 1 = 3 which will be obtained for

B—a
a+B+4"

Ty = The corresponding quadrature formula of Gauss-Christoffel-

Stancu type will be

/ (10" (1)’ f(a)da =27 <a+§§fﬁ++1§f§fj+%+ gl (-1

HatD(F+1)(a+ B+ 1L+ (6 + (6 + 270 ()] -

) a4+ 3)'(8+3) J
2 3(a+ B+ Do+ 3+ 6)f '©.

Example 3.2 Let u(z) = [[/)!(z — 2;)™, be the polynomial of nodes

with the following multiplicities z¢ = a, ro = p+1, 1 = b, Trmy1 = q+1,
the fixed nodes and the Gaussian nodes z;, 7; = 2s+ 1, (i =1, m).

Then we can construct the quadrature formula of Gauss-Stancu type
with fixes nodes z¢y = a, 7,41 = b, with the above given multiplicity

orders.

m

(29)
b p q 2s
[ Hau@de=3" Aai O@HY Anrsf D EHY S A d D wR()

k=1 v=0
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with the polynomial of fixed nodes w(x) = (z — a)?*(b— z)?"!. For a given
s € N, the polynomial P, ; is orthogonal on [a, b] with respect to the weight
function w(x), if this polynomial is chosen as the solution of the extremal
problem | ’ PijQw(x)dx = min, which is equivalent with the condition that
f P (x)rFw(z)de = 0,k =0,m — 1.

Then the last one condition can be interpreted as a orthogonality condition
with respect to the weight function p(z) = w(z) P2 ().

We use a method given by D.D Stancu in [12]. Let consider the auxiliary

function

(x) = L bu(:v)—u(t)w where u;(x) = u(x)/(x — x;)"
30 el = | (1)t where ui(x) = u(z)/(z — 2.)"

w;( r—t
We have
m  2s m ri—1
Z ZA;Wf (rg) = Z [/ )w(x)das] f®) (), where
k=1 v=0 =1 k=0
(z—a)t "~ e —w) 1)
hi() = R j;o [ J! (ui(:c))“ Jui(e).

Let n; = r; — k—1, and calculate the expression using the Leibniz’s formula

o (2) = nz (n> (ui@)”’ { / ’ Ww(t)dt} (m_j),where

=0 7

x—1 v x—1
v=0

[/ab Mw(t)dt] (k) _ i (k) /ab (L)(V)[u(x) ()] ().

If x = «v is a zero of order 7, r > k for the polynomial u(z), then one obtain

bulz) —u & b A
[ M= ), = - [ ()Yt =

Tx—1
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— J! /ab EE f(zkﬂw(t)dt.

Then one obtain the expression

—k—

STTED () = (s — k= 1) 1 / %w(@dm _

:(ri—k—l)!/ (“(—x)w[ by <I_.xi)j( ! )P w(x)da.

T —xy)"iT = j! w; ()
By integrating the Lagrange-Hermite interpolation formula and using the
expression of h;x(x), finally one obtain the following expression for the

coefficients of the quadrature formula

1
A= (ri=k=1) (2.
Z,k? k’ ( . kj . 1)|SO'L (x’b)

Note that the quadrature formula (29) is called the Turan-Ionescu formula.
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