Notes on radius problems of certain univalent functions

Hiro Kobashi, Kazuo Kuroki, Shigeyoshi Owa

Abstract

For analytic functions f(z) normalized by f(0) = f'(0) - 1 = 0 in the open unit disk \mathbb{U} , a class $\mathcal{P}(\beta_1, \beta_2; \lambda)$ of f(z) defined by some conditions with some complex numbers β_1 and β_2 is introduced. The object of the present paper is to consider some radius problems of $\frac{1}{\alpha}f(\alpha z)$ for $f(z) \in \mathcal{S}$.

2000 Mathematics Subject Classification: Primary 30C45.

Key words and phrases: Analytic, univalent, Cauchy-Schwarz inequality.

1 Introduction

Let \mathcal{A} be the class of functions f(z) of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of all univalent functions f(z) in \mathbb{U} . For $f(z) \in \mathcal{A}$, we say that $f(z) \in \mathcal{P}(\beta_1, \beta_2; \lambda)$ if f(z) satisfies $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and

(1.2)
$$\left| \beta_1 \left(\frac{z}{f(z)} \right)'' + \beta_2 \left(\frac{z}{f(z)} \right)''' \right| \leq \lambda \qquad (z \in \mathbb{U})$$

for some complex numbers β_1 and β_2 , and for some real $\lambda > 0$. Obradović and Ponnusamy [2] have studied the subclass $\mathcal{P}_2(\lambda)$ of \mathcal{A} consisting of f(z) satisfying $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and

(1.3)
$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le \lambda \qquad (z \in \mathbb{U})$$

for some real $\lambda > 0$.

Let us consider a function f(z) given by

(1.4)
$$f(z) = \frac{z}{(1-z)^{\delta}} \qquad (\delta \ge 0).$$

Then, we see that

(1.5)
$$\frac{f(z)}{z} = \frac{1}{(1-z)^{\delta}} \neq 0 \quad (z \in \mathbb{U}),$$

and

$$\left| \left(\frac{z}{f(z)} \right)^{\prime \prime \prime} \right| = \left| \delta(\delta - 1)(\delta - 2)(1 - z)^{\delta - 3} \right| < \delta(\delta - 1)(\delta - 2)2^{\delta - 3} \qquad (\delta \ge 3) .$$

Therefore, Koebe function $f(z) = \frac{z}{(1-z)^2}$ belongs to the class $\mathcal{P}(1,0;2)$ and $\mathcal{P}(0,1;\lambda)$ for any $\lambda > 0$.

If we consider the function f(z) defined by

$$f(z) = \frac{z}{\sum_{k=0}^{n} z^k} ,$$

then

$$\left| \beta_1 \left(\frac{z}{f(z)} \right)'' + \beta_2 \left(\frac{z}{f(z)} \right)''' \right| < |\beta_1| \sum_{k=2}^n k(k-1) + |\beta_2| \sum_{k=3}^n k(k-1)(k-2)$$

$$= \frac{n(n+1)(n-1)(4|\beta_1| + 3(n-2)|\beta_2|)}{12}.$$

This means that $f(z) \in \mathcal{P}(\beta_1, \beta_2; \lambda)$ with

$$\lambda = \frac{n(n+1)(n-1)(4|\beta_1| + 3(n-2)|\beta_2|)}{12} .$$

2 Main results

To consider our problem for the class $\mathcal{P}(\beta_1, \beta_2; \lambda)$, we need the following lemma due to Goodman [1].

Lemma 1 If $f(z) \in \mathcal{S}$ and

(2.1)
$$\frac{z}{f(z)} = 1 + \sum_{n=2}^{\infty} b_n z^n,$$

then we have

(2.2)
$$\sum_{n=2}^{\infty} (n-1) |b_n|^2 \le 1.$$

Further, we need the following lemma.

Lemma 2 Let
$$f(z) \in \mathcal{A}$$
 and $\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n \neq 0$ $(z \in \mathbb{U})$. If $f(z)$ satisfies

(2.3)
$$2|\beta_1||b_2| + \sum_{n=3}^{\infty} n(n-1)(|\beta_1| + (n-2)|\beta_2|)|b_n| \le \lambda,$$

for some complex numbers β_1 and β_2 , then $f(z) \in \mathcal{P}(\beta_1, \beta_2; \lambda)$.

Proof. We note that

$$\left| \beta_1 \left(\frac{z}{f(z)} \right)'' + \beta_2 \left(\frac{z}{f(z)} \right)''' \right| < 2|\beta_1||b_2| + \sum_{n=3}^{\infty} n(n-1)(|\beta_1| + (n-2)|\beta_2|)|b_n|.$$

Thus, if f(z) satisfies the inequality (2.3), then $f(z) \in \mathcal{P}(\beta_1, \beta_2; \lambda)$.

Now, we derive

Theorem 1 Let $f(z) \in \mathcal{S}$ and $\alpha \in \mathbb{C}$ ($|\alpha| < 1$). Then the function $\frac{1}{\alpha}f(\alpha z)$ belongs to the class $\mathcal{P}(\beta_1, \beta_2; \lambda)$ for $0 < |\alpha| \leq |\alpha_0(\lambda)|$, where $|\alpha_0| = |\alpha_0(\lambda)|$ is the smallest root of the equation

$$(2.5)$$

$$|\beta_{1}| \frac{|\alpha|^{2} \sqrt{2(|\alpha|^{2} + 2)}}{(1 - |\alpha|^{2})^{2}} + |\beta_{2}| \frac{|\alpha|^{3} \sqrt{6(3|\alpha|^{4} + 14|\alpha|^{2} + 3)}}{(1 - |\alpha|^{2})^{3}} \left(1 - |b_{2}|^{2}\right)^{\frac{1}{2}} = \lambda$$

$$in \ 0 < |\alpha| < 1.$$

Proof. Since $\frac{z}{f(z)} \neq 0$ $(z \in \mathbb{U})$ for $f(z) \in \mathcal{S}$, if we write

$$\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n,$$

then

(2.6)
$$\frac{z}{\frac{1}{\alpha}f(\alpha z)} = 1 + \sum_{n=1}^{\infty} \alpha^n b_n z^n$$

for $0 < |\alpha| < 1$.

To show that $\frac{1}{\alpha}f(\alpha z)\in\mathcal{P}(\beta_1,\beta_2;\lambda)$, we have to prove that

(2.7)
$$|\beta_1| \sum_{n=2}^{\infty} \frac{n!}{(n-2)!} |\alpha^n b_n| + |\beta_2| \sum_{n=3}^{\infty} \frac{n!}{(n-3)!} |\alpha^n b_n| \le \lambda$$

which is equivalent to (2.3) by means of Lemma 2. Indeed, applying the Cauchy-Schwarz inequality for the left hand of (2.7), we obtain that

$$(2.8) \quad |\beta_1| \sum_{n=2}^{\infty} \frac{n!}{(n-2)!} |\alpha^n b_n| + |\beta_2| \sum_{n=3}^{\infty} \frac{n!}{(n-3)!} |\alpha^n b_n| = |\beta_1| \sum_{n=2}^{\infty} (n^2 (n-1)|\alpha|^{2n})^{\frac{1}{2}} ((n-1)|b_n|^2)^{\frac{1}{2}} + |\beta_2| \sum_{n=3}^{\infty} (n^2 (n-1)(n-2)^2 |\alpha|^{2n})^{\frac{1}{2}} ((n-1)|b_n|^2)^{\frac{1}{2}}$$

$$\leq |\beta_{1}| \left(\sum_{n=2}^{\infty} n^{2}(n-1)|\alpha|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=2}^{\infty} (n-1)|b_{n}|^{2} \right)^{\frac{1}{2}} \\
+ |\beta_{2}| \left(\sum_{n=3}^{\infty} n^{2}(n-1)(n-2)^{2}|\alpha|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=3}^{\infty} (n-1)|b_{n}|^{2} \right)^{\frac{1}{2}} \\
\leq |\beta_{1}| \left(\sum_{n=2}^{\infty} n^{2}(n-1)|\alpha|^{2n} \right)^{\frac{1}{2}} + |\beta_{2}| \left(\sum_{n=3}^{\infty} n^{2}(n-1)(n-2)^{2}|\alpha|^{2n} \right)^{\frac{1}{2}} \left(1 - |b_{2}|^{2} \right)^{\frac{1}{2}} \\
= |\beta_{1}| \frac{|\alpha|^{2} \sqrt{2(|\alpha|^{2} + 2)}}{(1 - |\alpha|^{2})^{2}} + |\beta_{2}| \frac{|\alpha|^{3} \sqrt{6(3|\alpha|^{4} + 14|\alpha|^{2} + 3)}}{(1 - |\alpha|^{2})^{3}} \left(1 - |b_{2}|^{2} \right)^{\frac{1}{2}}.$$

Now, we consider the complex number α (0 < $|\alpha|$ < 1) such that

$$(2.9) |\beta_1| \frac{|\alpha|^2 \sqrt{2(|\alpha|^2 + 2)}}{(1 - |\alpha|^2)^2} + |\beta_2| \frac{|\alpha|^3 \sqrt{6(3|\alpha|^4 + 14|\alpha|^2 + 3)}}{(1 - |\alpha|^2)^3} \left(1 - |b_2|^2\right)^{\frac{1}{2}} = \lambda.$$

This give that

$$h(|\alpha|) = -\lambda |\alpha|^6 + \left(3\lambda + |\beta_1|\sqrt{2(|\alpha|^2 + 2)}\right) |\alpha|^4$$

$$-|\beta_2|\sqrt{6(3|\alpha|^4 + 14|\alpha|^2 + 3)(1 - |b_2|^2)} |\alpha|^3 - \left(3\lambda + |\beta_1|\sqrt{2(|\alpha|^2 + 2)}\right) |\alpha|^2 + \lambda = 0.$$
Noting that $h(0) = \lambda > 0$ and $h(1) = -2\sqrt{30(1 - |b_2|^2)} |\beta_2| < 0$, $h(|\alpha|) = 0$ has a root $|\alpha_0| = |\alpha_0(\lambda)|$ in $0 < |\alpha| < 1$. This completes the proof of the theorem.

Remark 1 In the proof of Theorem 1, we calculate

$$\left(\sum_{n=2}^{\infty} n^2 (n-1)|\alpha|^{2n}\right)^{\frac{1}{2}} = \frac{|\alpha|^2 \sqrt{2(2+|\alpha|^2)}}{\left(1-|\alpha|^2\right)^2}$$

as follows. Note that

$$\sum_{n=2}^{\infty} n^2 (n-1)t^n = t^2 \left(\sum_{n=2}^{\infty} nt^n\right)'' = t^2 \left(\frac{-t^3 + 2t^2}{(1-t)^2}\right)''$$
$$= t^2 \left(\frac{t^3 - 3t^2 + 4t}{(1-t)^3}\right)' = \frac{2t^2(t+2)}{(1-t)^4}.$$

Letting $t = |\alpha|^2$, we have

$$\left(\sum_{n=2}^{\infty} n^2 (n-1) |\alpha|^{2n}\right)^{\frac{1}{2}} = \frac{|\alpha|^2 \sqrt{2(2+|\alpha|^2)}}{\left(1-|\alpha|^2\right)^2} .$$

Further, we prove

$$\left(\sum_{n=2}^{\infty} n^2 (n-1)(n-2)^2 |\alpha|^{2n}\right)^{\frac{1}{2}} = \frac{|\alpha|^3 \sqrt{6(3|\alpha|^4 + 14|\alpha|^2 + 3)}}{\left(1 - |\alpha|^2\right)^3}$$

as follows. Note that

$$\sum_{n=2}^{\infty} n^2 (n-1)(n-2)^2 t^n = t^3 \left(\sum_{n=3}^{\infty} n(n-2) t^n \right)^{"'} = t^3 \left(\frac{-t^4 + 3t^3}{(1-t)^3} \right)^{"'}$$
$$= t^3 \left(\frac{t^4 - 4t^3 + 9t^2}{(1-t)^4} \right)^{"} = t^3 \left(\frac{6t^2 + 18t}{(1-t)^5} \right)^{'} = 6t^3 \frac{3t^2 + 14t + 3}{(1-t)^6} .$$

Letting $t = |\alpha|^2$, we have

$$\left(\sum_{n=2}^{\infty} n^2 (n-1)(n-2)^2 |\alpha|^{2n}\right)^{\frac{1}{2}} = \frac{|\alpha|^3 \sqrt{6(3|\alpha|^4 + 14|\alpha|^2 + 3)}}{\left(1 - |\alpha|^2\right)^3}.$$

Remark 2 If we take $\alpha = \frac{1}{2}e^{i\theta}$ in (2.5), then we have

$$\lambda = \frac{2\sqrt{2}}{3}|\beta_1| + \frac{2\sqrt{642}}{27}|\beta_2|\sqrt{1 - |b_2|^2}.$$

If we put $\lambda = |\beta_1| = |\beta_2| = 1$ and $|b_2| = \frac{1}{2}$ in (2.5), then we have

$$(1-|\alpha|)^2|\alpha|^2\sqrt{2(|\alpha|^2+2)}+|\alpha|^3\sqrt{6(3|\alpha|^4+14|\alpha|^2+3)}\frac{\sqrt{3}}{2}-\left(1-|\alpha|^2\right)^3=0.$$

It is easy to see that the above equation has a root $|\alpha_0|$ such that 0.3999 < $|\alpha_0| < 0.4002$.

References

- [1] A. W. Goodman, Univalent Functions, Vol.I and II, Mariner, Tampa, Florida, 1983.
- [2] M. Obradovć and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis, 25(2005), 183-188.

Hiro Kobashi, Kazuo Kuroki, Shigeyoshi Owa

Kinki University

Department of Mathematics

Higashi-Osaka, Osaka 577-8502, Japan

E-mails: hero_of_earth_oo1@hotmail.com

freedom@sakai.zaq.ne.jp

owa@math.kindai.ac.jp