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Application of Differential subordination on
p-valent Functions with a fixed point

Sh. Najafzadeh and A. Rahimi

Abstract

Making Use of the familiar differential subordination Structure
in this paper, we investigate a new class of p-valent functions with
a fixed point w. Some results connected to sharp coefficient bounds,

Distortion Theorem and other important properties are obtained.

2000 Mathematics Subject Classification:30C45,30C50
Key words and phrases: Subordination, P-valent function,Coefficient

estimate, Distortion bound and Radii of starlikeness and Convexity.

1 Introduction

Let S, (P) for a fixed point w denote the class of functions f(z) of the form
1 —
f0)= oy ¥ 2 tele )™ oy 20 (1)
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For the function f(z) in the class S,,(P), Frasin and Darus [3] defined the

differential operator D* as follow:

Df(z) = f(2)

D) = (= w)f0) + o
DY) = (=)D ) +
and for £k =1,2,3...
DH(:) = (2 =) (D) + s

— G PP e 0™ (12)

See also [4].

Now we define the class Q¥p(A, B) consisting the functions f(z)eS,(p)

such that
(2= w)(D*f(2))" ;
Dy e Y
where H(z) = (p+1)152, A=B+(C-B)(1-X),-1<B<C<1,0<

A< 1land” <7 denotes the subrdination Symbol. See [2],[5] and [1].

2 Main Results

In this section we find sharp Coefficient estimates and Integral representa-

tion for the class (0(A, B).
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Theorem 2.1 Let f(z2) € Su(p), then f(z) € (A, B) if and only if

+oo
S [(020) (B+1)+(p+1)(C—B) 1=N]ansy < P(p+1)(C—B)(1-A). (2.1)

n=1
The result is sharp for the function h(z) given by

1 P(p+1)(C+ B)(1—X\)

") = oy T (B ) + 0+ (0 + B

proof. Let f(z) € (A, B), then the inequality (1.2) or inequality

(z —w)(D*f(2))" + (p+ 1) (D f(2))
B(z —w)(D*f(2))" + (p+ 1)[B + (C = B)(1 = M](D*f(2))

| <1 (23)

holds true, therefore by using (1.1) we have

| > i (n+2p)(n+ p)* M ap (2 — w) P

S+ 1)(C—B)1 - AN+ A <1

where

A= f[(p+1)(3+(0—3)(1—)\))—i—B(n—i—p—i—1)](n+p)kan+p(z_w)n+p1.

n=1

Since Re(z) < (z) for all z, therefore

e S0 4 )+ ) (2 — )

P+ D)(C—B)1-)\)—A } < 1.

where

A=) [(p+1)(B+(C=B)(1=A)+B(n+p+1)](n+p) an,(z —w) 7"

n=1
By letting (2 — w) — 1 through real valves, we have

Yl +2p)(B+1)+ (p+1)(C = B)(1 = N]ans, < p(p+1)(C = B)(1-\).

n=1

(z—w)",n=1,2,..

(2.2)
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Conversely, Let (2.1) holds true, if we Let (z—w)00AA* where 0A* denotes
the boundary of A*, then we have

| (z = w)(D"f(2))" + (p+ (D" f(2)'
B(z —w)(D*f(2))" + (p+ 1)[B+ (C = B)(1 = N](D*f(2))

| <

29 (n 4 2p) (n + ) ans,|

P(p+1)(C = B)(1 = X) = 3, 5[B(n+ 2p) + (p+ 1)(C + B)(1+ A)]|ans|
(by(2.1))
<1

Thus by the Maximum modolus Theorem, we conclude f(z) € (4, B).

Theorem 2.2 If f(z) € (A, B), then

DFf(z) = /Oz[exp /OZ ((]t)i—tlu))([(i]\{%)]\;(g dtlds (2.4)

where 6 = B+ (¢c— B)(1 — ) and | M(z)| < 1.

proof. Since f(z) € (A, B), so (1.2) or equivalently (2.3) holds true.

Hence

(z —w)(D¥f(2))" + (p+ 1)(D¥f(2)) — M(2)
B(z —w)(DFf(2))" + (p+ 1)6(Dkf(2)) ’

where |[M(2)| < 1,2e/A* and § = B+ (C' — B)(1 — \).

This yields
DY) (p+ DM () — 1)
[DFf(2)] (2 —w)(l = BM(2))

After integration we obtain the required result.

Remark. Theorem 2.1 shows that if f(2)e2'(A, B), then

|anp| < plp + (O = B)1 ~A)
n+p| = 2p+1)(B+1)+(p+1)(C—DB)(1-))

n=123,.. (25)
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3 Distortion Bounds and Extreme points

In this section we investigate about Distortion theorem and extreme points

of the class Q2(4, B).

Theorem 3.1 Let f(2)eS2)(A, B), then

—p p(p+1)(c—B)(1—)\) -

T r DB C B —n  ° [D*f(2)]
p(p+1)(C — B)(1—))

2p+1)(B+1)+ (p+1)(C—B)(1-))

where 0 < |z —w| =1 < 1.

<rt4 rPtt(3.1)

proof. By theorem 2.1 and (2.5) we have

1 =

|D*f(2)] = I(Z_—w)p + ) (4 D) anpy(z —w)" 7|

—+o0
< P> (0 p)Man "

plp+1)(C — B)(1- )
Cp+1)(B+1)+(p+1)(C—-B)(1-2A)

similarly we obtain

<r P4 Itany

plp+1)(C = B)(1 - 1))

2p+1H)(B+1)+ (p+1)(C—-B)(1 - A)TPH'

D f(2)] =177
So the proof is complete.

Theorem 3.2 The function f(z) of the from (1.1) belongs to (A, B) if

and only if it can be expressed by

400
F) = ful2), 7 20, n=pp+1,.. (3.2)
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where f,(z) = — (3.2),

(z—w)P

1 plp+1D(C = B)(1 =) n o
M) = o i s B s DO - BN =R

+o00
n=p

proof. Let
+00
f(z) = Z’Ynfn(z) = Ypfp(2)+
S 1 pp+1)(C — B)(1 - \) )
nzp;l%[(z BN OGS [ WA W IS (s B RS VASR
1 — p(p+1)(C = B)(1- 1) .
(- 2 (n+2p)(B+1)+ (p+1)(C — B)(1 — )\)%(Z —w)"

n=p
Now by using Theorem 2.1 we conclude that f(z) € (A, B). Conversely,
if f(z) given by (1.1) belongs to €2'(A, B). by letting 7, = 1 — Z::;H Tn
where

(A 2p)(B+1)+ (p+1)(C—B)(1—A)
= pp+ 1)(C = B)(1 - A)

an+p, n = 1, 2,

we conclude the required result.

4 Radii of starlikeness and convexity

In the last section we introduce the Radii of Starlikeness and convexity for

functions in the class (A, B).
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Theorem 4.1 If f(z) € QUJ(A, B), then f is starlike of order {(0 < & < p)

in disk |z —w| < R, and it is convex of order & in disk |zw| < R2 where
(Cp+1)(B+1)+ @+ 1)(C=B)?A-Np—-§ 1

R1 == ann

(n+3p+&p(p+1)(C = B)(1—-A) n+p
Ry —inf (m+p)[2p+1)(B+1)+(p+1)(C-B)1-N] 1
? g (n+3p+&)(p+1)(C—B)(1—\) n+p
proof. For Starlikeness it is enough to show that
(z —w)f'(2)
7 t Pl <Dpe
IR
but .
[ERIDYAE I s CRI DS CRS L
f(2) (Z_lw)p + :2 Antp(z — W B
(0 4 2p)aniy|z — w|HP
nfl( — ) +P| n—[_ Zp—f
1= 3200 anaplz — w[FP
or
+00 +oo
> (4 2)an iz —w|"P <p—E—(p— &) tniplz —w[™T
n=1 n=1
< (n+3p+¢)
S OERAD e wpr <t
~ p=g

by using (2.5) we obtain
+oo

(n+3p+¢)
; p—=E§
i’f (n+3p+ PP +1)(C—B)(1-A)

(2P +1)(B+ 1)+ (P +1)(C—B)(1=N]p—¢)
So it is enough to suppose
2P+ 1)(B+ 1)+ (P+1)(C—B)(1=N](p—¢)

(n+3p+ 8PP +1)(C—B)(1-A)
For convexity by using the fact that ” f(z) is convex if and only if z f'(2) is

an+p|z - w|n+p <

|z —w|"P <1

n=1

T

starlike ” and by an easy calculation we conclude the required result.
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