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Abstract

The main results of this paper establish the superdense unbounded

divergence of some discrete best approximation operators.
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1 Introduction

Denote by C the Banach space of all continuous real functions defined on

the interval [−1, 1], endowed with the uniform norm ‖ · ‖ and let C0 be the
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subspace of all even functions of C; more generally, if B is a set of real

functions defined on an interval I ⊆ R, which is symmetric with respect

to the origin, we put B0 for the subset of all even functions in B. Let us

consider, too, a sequence (En)n≥0 of finite subsets of [−1, 1] so that each En

contains at least n + 1 points.

Given an integer n ≥ 0, denote by Pn the space of all polynomials of real

coefficients having the degree at most n and let us introduce the operator

Un : C → Pn, which associates to each f in C the unique polynomial

Unf ∈ Pn for which the infimum of the set

{max{|f(x) − P (x)| : x ∈ En} : P ∈ Pn}

is attained. The polynomial Unf is said to be the En-projection of f ∈

C on the space Pn and the operators Un, n ≥ 0, will be referred to as

En-polynomial projections. Remark that Unf is the best approximation

polynomial in Pn of a function f ∈ C, with respect to the discrete set En.

It is known that, in the case when each En contains n + 1 points or

each En contains n + 2 points, the corresponding operators Un, n ≥ 0,

are linear and continuous polynomial projections and there exists g ∈ C

so that the sequence (Ung)n≥0 is not uniformly convergent to g, [4]. Our

aim is to prove the unboundedness of the set {‖Un‖ : n ≥ 0}, if each En

contains at most n + 3 points, then to describe the topological structure

of the set of unbounded divergence of En-polynomial projections, namely

{f ∈ C : lim sup
n→∞

‖Unf‖ = ∞}. To this purpose, we need the following

principle of condensation of the singularities, established by I. Muntean

and S. Cobzaş.
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Theorem 1 [2], [3]. If X is a Banach space, Y is a normed space and

An : X → Y , n ≥ 1, are linear continuous operators so that the set

{‖An‖ : n ≥ 1} is unbounded, then the set of singularities of the

family {An : n ≥ 1}, i.e.

{x ∈ X : lim sup ‖Anx‖ = ∞}

is superdense in X.

We recall that a subset S of a topological space T is named superdense in

X if it is residual (i.e. its complement is of first Baire category), uncountable

and dense in X.

In this paper, we use the following notations. Given a positive integer

m and a subset A of the interval [−1, 1] which has m + 1 points tk, 1 ≤

k ≤ m + 1, let Lm(A; f), f ∈ C, be the Lagrange polynomial of degree at

most m which interpolates f at the points of A and let am(f) be the leading

coefficient of Ln(A; f). Particularly, denoting by σm a function of C which

satisfies the equalities σm(tk) = (−1)k, 1 ≤ k ≤ m + 1, it is easily seen that

am(σm) 6= 0.

2 The unboundedness of the norms

of En-polynomial projections

Firstly, remark that if the sets En, n ≥ 1, have n + 1 or n + 2 points,

then the corresponding operator Un are linear and continuous polynomial

projection of C into Pn, [4], [6]; more exactly, if En has n + 1 points, then
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Unf = Ln(En; f). Consequently, in these situations, according to [7], the

following inequalities

(1) ‖Un‖ ≥
4

π2
ln n + O(1), n ≥ 1

are satisfied.

In what follows, we assume in this section that the sets En have n + 3

points which are symmetric with respect to the origin. Let us examine the

operators U2n : C → P2n, associated to the corresponding sets E2n = {xk

2n
:

1 ≤ k ≤ 2n + 3}, n ≥ 1.

Let us prove the equality

(2) U2nf = L2n+2(E2n; f) −
a2n+2(f)

a2n+2(σ2n+2)
L2n+2(En; σ2n+2),

for each function f in C0.

Denoting by P2nf the polynomial of the right member in (1) and re-

marking that L2n+2(E2n; f) and L2n+2(E2n; σ2n+2) are even polynomials in

P2n+2, it is obvious that P2nf is an even polynomial in P2n. Moreover,

(3) (P2nf)(xk

2n
) − f(xk

2n
) = (−1)k+1

a2n+2(f)

a2n+2(σ2n+2)
, 1 ≤ k ≤ 2n + 3.

The relations (3), together with Theorem of Charles de la Vallée-Poussin

[1], [5], [8], lead to the equality P2nf = U2nf , so that (2) is true.

Further, let us point out a lower bound for the norms of the operators

U0
2n

: C0 → P0
2n

, n ≥ 1, where each U 0
2n

is the restriction of U2n to C0.

Theorem 2 The inequalities ‖U 0
2n
‖ ≥

2

π2
ln(2n) hold for all integers n ≥ 1.
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Proof. Given T > 0, denote by CT the set of all continuous functions

g : R → R satisfying g(x + T ) = g(x), ∀ x ∈ R. If f ∈ C, define f̃ ∈ C2π by

f̃(x) = f(cos x), ∀ x ∈ R. It is clear that f̃ ∈ C0
π

for each f ∈ C0.

The operator F : C0 → C0
π
, Ff = f̃ , is an isomorphism and ‖f̃‖ =

‖Ff‖ = ‖f‖, ∀ f ∈ C0. For each integer n ≥ 0, denote by En the space of

all trigonometric polynomials of degree n ≥ 0 and introduce the operator

Ũ0
2n

: C0
π
→ E2n by the equality

(4) (Ũ0

2n
f̃)(x) = (U2nf)(cos x) = (U2n(F−1f̃))(cos x), ∀ x ∈ [0, π].

In order to establish a lower bound for the norm of Ũ0
2n

, let τ be a given

real number and define the translation-operator Tτ : C2π → C2π as

(Tτ f̃)(x) = f̃(x + τ), f̃ ∈ C2π, x ∈ R.

Setting Sτ = Tτ + T−τ , τ ∈ R and noticing that Sτ f̃ ∈ C0
π

for each

f̃ ∈ C0
π
, we obtain:

(5)
1

2π

∫
π

0

Sτ (Ũ
0

2n
(Sτ f̃))(x)dτ = (φ0

2n
+ φ0)(f̃)(x)

for each f̃ ∈ C0
π

and x ∈ [0, π], where φn : C2π → C2π, n ≥ 0 are the Fourier

projections

(6) (φnf̃)(x) =
1

2π

∫
2π

0

f̃(t)Dn(x − t)dt, f̃ ∈ C2π, x ∈ R

with D0(t) = 1, Dn(t) = 1 + 2

n∑

k=1

cos(kt), t ∈ R, n ≥ 1 and φ0
2n

is the

restriction of φ2n to the space C0
π
.

The validity of (5) follows from standard arguments: firstly, it is true

from f̃ ∈ P̃ 0
2n

= span{c2k : 0 ≤ k ≤ n}, with ck(x) = cos(kx), x ∈ R,
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then we use the relation P0 = C0 and the properties of F , which lead to

the equality P̃0 = C0
π
.

Noticing that ‖Tτ‖ = 1 and ‖Sτ‖ ≤ 2, it follows from (5):

‖φ0

2n
+ φ0‖ = sup{‖φ0

2n
f̃ + φ0f̃‖ : f̃ ∈ C0

π
, ‖f̃‖ ≤ 1}

≤
1

2π
sup

{
‖Sτ‖ · ‖Ũ

0

2n
‖ · ‖Sτ‖ · ‖f̃‖ ·

∫
π

0

dτ : f̃ ∈ C0

π
, ‖f̃ ≤ 1

}
,

i.e.

(7) ‖φ0

2n
+ φ0‖ ≤ 2‖Ũ0

2n
‖.

On the other hand, according to (5), we obtain:

‖φ0

2n
+ φ0‖ =

1

2π
max

{∫
2π

0

|1 + D2n(x − t)|dt : 0 ≤ x ≤ 2π

}

≥
1

2π

∫
2π

0

|D0(t) + D2n(t)|dt =
1

π

∫
π

0

|D2n(t) + D0(t)|dt

which, combined with (7) and the inequality [8]:

1

π

∫
π

0

|D2n(t) + D0(t)|dt ≥
4

π2
ln 2n,

gives:

(8) ‖Ũ0

2n
‖ ≥

2

π2
ln(2n)

Now, the relations ‖U 0
2n
‖ = ‖Ũ0

2n
‖, obtained from (4) and (8), complete

the proof.
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3 Superdense Unbounded Divergence

of En-polynomial Projections

In this section we describe the topological structure of the set of unbounded

divergence of En-polynomial projections.

Theorem 3 If each set E2n, n ≥ 1, contains 2n + 3 points which are sym-

metric with respect to the origin, then the set of unbounded divergence of the

discrete best approximation operators (i.e. En-polynomial projections) Un,

namely

{
f ∈ C : lim sup

n→∞

‖Unf‖ = ∞

}
, is superdense in the Banach space

(C, ‖ · ‖).

Proof. Indeed, according to Theorem 2, we get:

sup{‖Un‖ : n ≥1} ≥ sup{‖U2n‖ : n ≥ 1} ≥ sup

{
2

π2
ln(2n) : n ≥ 1

}
= ∞,

which proves the unboundedness of the set {‖Un‖ : n ≥ 1}. Now, let

us apply Theorem 1 and remark that the set of singularities of the family

{Un : n ≥ 1} represents the set of the unbounded divergence of this family.

Theorem 4 Denote Is = {n ≥ 1 : cardEn = n + s}, s ∈ {1, 2, 3} and let

I0
3 be the subset of all n ∈ I3 with the property that the nodes of E2n are

symmetric with respect to the origin. If at least one of the sets I1, I2 and

I0
3 is unbounded, then the set of unbounded divergence of the discrete best

approximation operators Un is superdense in the Banach space (C, ‖ · ‖).

Proof. Take into account the inequalities (1) and Theorem 2.
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