Inclusion and neighborhood properties of some analytic p-valent functions ¹

R. M. El-Ashwah, M. K. Aouf

Abstract

By means of a certain extended derivative operator of Salagean type, the authors introduce and investigate two new subclasses of p-valently analytic function of complex ordor. The various results obtained here for each of these function classes include coefficient inqualities and the consequent inclusion relationships involving the neighborhoods of the p-valently analytic functions.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic function, p-valent function, Salagean derivative operator, neighborhood of analytic functions.

1 Introduction

Let T(j,p) denote the class of functions of the form :

(1)
$$f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k \ (a_k \ge 0; p, j \in \mathbb{N} = \{1, 2, \dots\}),$$

Accepted for publication (in revised form) 27 April, 2009

¹Received 14 July, 2008

which are analytic and p-valent in the open unit disc $U = \{z : |z| < 1\}$. For a function f(z) in T(j,p), we define

$$\begin{split} D^{0}_{\lambda,p}f(z) &= f(z), \\ D^{1}_{\lambda,p}f(z) &= D_{\lambda,p}(D^{0}_{\lambda,p}f(z)) = (1-\lambda)f(z) + \frac{\lambda}{p}zf'(z) \\ &= z^{p} - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]a_{k}z^{k}, \\ D^{2}_{\lambda,p}f(z) &= D_{\lambda,p}(D^{1}_{\lambda,p}f(z)) \\ &= z^{p} - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{2}a_{k}z^{k} \end{split}$$

and

$$D_{\lambda,p}^n f(z) = D_{\lambda,p}(D_{\lambda,p}^{n-1} f(z)) \qquad (n \in N).$$

It can be easily seen that

(2)
$$D_{\lambda,p}^{n}f(z) = z^{p} - \sum_{k=j+p}^{\infty} \left[1 + \lambda \left(\frac{k-p}{p}\right)\right]^{n} a_{k} z^{k}$$
$$(p, j \in N; n \in N_{0} = N \cup \{0\}).$$

We note that:

- (i) By taking $j=p=\lambda=1,$ the differential operator $D_{1,1}^n=D^n$ was introduced by Salagean[11];
- (ii) By taking j = p = 1, the differential operator $D_{\lambda,1}^n = D_{\lambda}^n$ was introduced by Al-Oboudi[1].

Now, making use of the differential operator $D_{\lambda,p}^n f(z)$ given by (2), we introduce a new subclass $H_j(n, p, \lambda, b, \beta)$ of the p-valent analytic function class T(j, p) which consist of function $f(z) \in T(j, p)$ satisfying the following inequality:

(3)
$$\left| \frac{1}{b} \left(\frac{z(D_{\lambda,p}^n f(z))'}{D_{\lambda,p}^n f(z)} - p \right) \right| < \beta \qquad ,$$

$$(z \in U; p, j \in N; n \in N_0; \lambda \ge 0; b \in C \setminus \{0\}; 0 < \beta \le 1).$$

We note that:

(i)
$$H_j(n, p, 1, b, \beta) = H_j(n, p, b, \beta) = \{f(z) \in T(j, p) : \left| \frac{1}{b} \left(\frac{z(D_p^n f(z))'}{D_p^n f(z)} - p \right) \right| < \beta$$

(4)
$$(z \in U; p, j \in N; n \in N_0; b \in C \setminus \{0\}; 0 < \beta \le 1)\};$$

(ii)
$$H_j(0, p, 0, b, \beta) = S_j(p, b, \beta) = \{f(z) \in T(j, p) : \left| \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - p \right) \right| < \beta$$

$$(5) (z \in U; p, j \in N; b \in C \setminus \{0\}; 0 < \beta \le 1)\};$$

(iii)
$$H_j(1, p, \lambda, b, \beta) = C_j(p, \lambda, b, \beta) = \left\{ f(z) \in T(j, p) : \left| \frac{1}{b} \left(\frac{z F'_{\lambda, p}(z)}{F_{\lambda, p}(z)} - p \right) \right| < \beta \right\}$$

(6)

$$(z \in U; p, j \in N; \lambda \ge 0; b \in C \setminus \{0\}; 0 < \beta \le 1; F_{\lambda, p}(z) = (1 - \lambda)f(z) + \frac{\lambda}{p}zf'(z))\}.$$

Now following the earlier investigations by Goodman [7], Ruscheweyh [10], and others including Altintas and Owa [3], Altintas et al.([4] and [5]), Murugusundaramoorthy and Srivastava [8], Raina and Srivastava [9], Aouf [6] and Srivastava and Orhan [13] (see also [2], [12] and [14]), we define the (j, δ) — neighborhood of a function $f(z) \in T$ (j, p) by (see, for example, [5, p. 1668])

(7)
$$N_{j,\delta}(f) = \{g : g \in T(j,p), g(z) = z^p - \sum_{k=j+p}^{\infty} b_k z^k \text{ and } \sum_{k=j+p}^{\infty} k |a_k - b_k| \le \delta \}.$$

In particular, if

(8)
$$h(z) = z^p \qquad (p \in N),$$

we immediately have

(9)
$$N_{j,\delta}(h) = \{g : g \in T(j,p), g(z) = z^p - \sum_{k=j+p}^{\infty} b_k z^k \text{ and } \sum_{k=j+p}^{\infty} k |b_k| \le \delta \}.$$

Also, let $L_j(n, p, \lambda, b, \beta, \mu)$ denote the subclass of T(j, p) consisting of function $f(z) \in T(j, p)$ which satisfy the inequality:

$$\left| \frac{1}{b} \{ [(1-\mu) \frac{D_{\lambda,p}^n f(z)}{z^p} + \mu \frac{D_{\lambda,p}^n f'(z)}{pz^{p-1}}] - 1 \} \right| < \beta$$

(10)
$$(z \in U; p, j \in N; n \in N_0; \lambda \ge 0; b \in C \setminus \{0\}; 0 < \beta \le 1; \mu \ge 0).$$

We note that:

(i)
$$L_j(0, p, 0, b, \beta, \mu) = L_j(p, b, \beta, \mu)$$

$$= \left\{ f(z) \in T(j, p) : \left| \frac{1}{b} \left\{ \left[(1 - \mu) \frac{f(z)}{z^p} + \mu \frac{f'(z)}{pz^{p-1}} \right] - 1 \right\} \right| < \beta$$

(11)
$$(z \in U; p, j \in N; b \in C \setminus \{0\}; 0 < \beta \le 1; \mu \ge 0\}.$$

2 Neighborhoods for the classes $H_j(n, p, \lambda, b, \beta)$ and $L_j(n, p, \lambda, b, \beta, \mu)$

In our investigation of the inclution relations involving $N_{j,\delta}(h)$, we shall require Lemmas 1 and 2 below.

Lemma 1 Let the function $f(z) \in T(j,p)$ be defined by (1). Then $f(z) \in H_j(n,p,\lambda,b,\beta)$ if and only if

(12)
$$\sum_{k=j+p}^{\infty} \left[1 + \lambda \left(\frac{k-p}{p} \right) \right]^n (k+\beta |b| - p) a_k \le \beta |b|.$$

Proof. Let a function f(z) of the form (1) belong to the class $H_j(n, p, \lambda, b, \beta)$. Then, in view of (2) and (3), we obtain the following inequality:

(13)
$$Re\left\{\frac{z(D_{\lambda,p}^{n}f(z))'}{D_{\lambda,p}^{n}f(z)} - p\right\} > -\beta|b| \qquad (z \in U),$$

or, equivalently,

(14)
$$Re\left\{\frac{-\sum_{k=j+p}^{\infty} \left[1 + \lambda \left(\frac{k-p}{p}\right)\right]^{n} (k-p) a_{k} z^{k-p}}{1 - \sum_{k=j+p}^{\infty} \left[1 + \lambda \left(\frac{k-p}{p}\right)\right]^{n} a_{k} z^{k-p}}\right\} > -\beta |b| \qquad (z \in U).$$

Setting z=r ($0 \le r < 1$) in (14), we observe that the expression in the denominator of the left-hand side of (14) is positive for r=0 and also for all r (0 < r < 1). Thus, by letting $r \to 1^-$ through real values, (14) leads us to the desired assertion (12) of Lemma 1.

Conversaly, by applying the hypothesis (12) and letting |z| = 1, we find from (3) that

$$\left| \frac{z(D_{\lambda,p}^{n}f(z))'}{D_{\lambda,p}^{n}f(z)} - p \right| = \left| \frac{\sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}(k-p)a_{k}z^{k-p}}{1 - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}a_{k}z^{k-p}} \right|$$

$$\leq \frac{\sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}(k-p)a_{k}}{1 - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}a_{k}}$$

$$\leq \frac{\beta |b| \left\{ 1 - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}a_{k} \right\}}{1 - \sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^{n}a_{k}} = \beta |b|.$$

Hence, by the maximum modulus theorem, we have $f(z) \in H_j(n, p, \lambda, b, \beta)$, which evidently completes the proof of Lemma 1.

Similarly, we can prove the following lemma.

Lemma 2 Let the function $f(z) \in T(j,p)$ be defined by (1). Then $f(z) \in L_j(n,p,\lambda,b,\beta,\mu)$ if and only if

(15)
$$\sum_{k=j+p}^{\infty} [1 + \lambda(\frac{k-p}{p})]^n [p + \mu(k-p)] a_k \le p\beta |b|.$$

Our first inclusion relation involving $N_{j,\delta}(h)$ is given in the following theorem.

Theorem 1 Let

(16)
$$\delta = \frac{(j+p)\beta |b|}{(1+\frac{\lambda j}{p})^n (j+\beta |b|)} \qquad (p>|b|),$$

178

then

(17)
$$H_j(n, p, \lambda, b, \beta) \subset N_{j,\delta}(h).$$

Proof. Let $f(z) \in H_j(n, p, \lambda, b, \beta)$. Then, in view of the assertion (12) of Lemma 1, we have

$$(18)(1+\frac{\lambda j}{p})^{n}(j+\beta|b|)\sum_{k=j+p}^{\infty}a_{k}\leq \sum_{k=j+p}^{\infty}[1+\lambda(\frac{k-p}{p})]^{n}(k+\beta|b|-p)a_{k}\leq \beta|b|,$$

which readily yeilds

(19)
$$\sum_{k=j+p}^{\infty} a_k \le \frac{\beta |b|}{(1+\frac{\lambda j}{p})^n (j+\beta |b|)}.$$

Making use of (12) again, in conjunction with (19), we get

$$(1 + \frac{\lambda j}{p})^n \sum_{k=j+p}^{\infty} k a_k \leq \beta |b| + (p - \beta |b|) (1 + \frac{\lambda j}{p})^n \sum_{k=j+p}^{\infty} a_k$$

$$\leq \beta |b| + \frac{\beta |b| (p - \beta |b|)}{(j + \beta |b|)} = \frac{(j + p)\beta |b|}{(j + \beta |b|)}.$$

Hence

(20)
$$\sum_{k=j+p}^{\infty} k a_k \le \frac{(j+p)\beta |b|}{(1+\frac{\lambda j}{p})^n (j+\beta |b|)} = \delta \qquad (p>|b|),$$

which, by means of the definition (9), establishes the inclusion (17) asserted by Theorem 1.

Putting (i) $n = \lambda = 0$ and (ii) n = 1 in Theorem 1, we obtain the following results.

Corollary 1 Let

(21)
$$\delta = \frac{(j+p)\beta |b|}{(j+\beta |b|)} \quad (p>|b|),$$

then

(22)
$$S_j(p,b,\beta) \subset N_{j,\delta}(h).$$

Corollary 2 Let

(23)
$$\delta = \frac{(j+p)p\beta |b|}{(p+\lambda j)(j+\beta |b|)} \qquad (p>|b|),$$

then

(24)
$$C_j(p,\lambda,b,\beta) \subset N_{j,\delta}(h).$$

In a similar manner, by applying the assertion (15) of Lemma 2 instead of the assertion (12) of Lemma 1 to functions in the class $L_j(n, p, \lambda, b, \beta, \mu)$, we can prove the following inclusion relationship.

Theorem 2 If

(25)
$$\delta = \frac{(j+p)p\beta |b|}{(1+\frac{\lambda j}{p})^n (p+\mu j)} \qquad (\mu > 1),$$

then

(26)
$$L_j(n, p, \lambda, b, \beta, \mu) \subset N_{j,\delta}(h).$$

Putting $n = \lambda = 0$ in Theorem 2, we obtain the following result.

Corollary 3 If

(27)
$$\delta = \frac{(j+p)p\beta |b|}{(p+\mu j)},$$

then

(28)
$$L_j(p,b,\beta,\mu) \subset N_{j,\delta}(h).$$

3 Neighborhoods for the classes $H_j^{(\alpha)}(n,p,\lambda,b,\beta)$ and $L_j^{(\alpha)}(n,p,\lambda,b,\beta,\mu)$

In this section, we determine the neighborhood for the each classes $H_j^{(\alpha)}(n, p, \lambda, b, \beta)$ and $L_j^{(\alpha)}(n, p, \lambda, b, \beta, \mu)$, which we define as follows. A function $f(z) \in T(j, p)$ is said to be in the class $H_j^{(\alpha)}(n, p, \lambda, b, \beta)$ if there exists a function $g(z) \in H_j(n, p, \lambda, b, \beta)$ such that

(29)
$$\left| \frac{f(z)}{g(z)} - 1 \right|$$

Analogously, a function $f(z) \in T(j,p)$ is said to be in the class $L_j^{(\alpha)}(n,p,\lambda,b,\beta,\mu)$ if there exists a function $g(z) \in L_j(n,p,\lambda,b,\beta,\mu)$ such that the inequality (29) holds true.

Theorem 3 If $g(z) \in H_i(n, p, \lambda, b, \beta)$ and

(30)
$$\alpha = p - \frac{\delta(1 + \frac{\lambda j}{p})^n (j + \beta |b|)}{(j+p)[(1 + \frac{\lambda j}{p})^n (j + \beta |b|) - \beta |b|]},$$

then

(31)
$$N_{j,\delta}(g) \subset H_j^{(\alpha)}(n, p, \lambda, b, \beta),$$

where

(32)
$$\delta \leq p(j+p)\{1-\beta|b|[(1+\frac{\lambda j}{p})^n(j+\beta|b|)]^{-1}\}.$$

Proof. Suppose that $f(z) \in N_{j,\delta}(g)$. We find from (7) that

(33)
$$\sum_{k=j+p}^{\infty} k |a_k - b_k| \le \delta,$$

which readily implies that

(34)
$$\sum_{k=j+p}^{\infty} |a_k - b_k| \le \frac{\delta}{j+p} \qquad (p, j \in N).$$

Next, since $g(z) \in H_j(n, p, \lambda, b, \beta)$, we have [cf. equation (19)]

(35)
$$\sum_{k=j+p}^{\infty} b_k \le \frac{\beta |b|}{(1+\frac{\lambda j}{p})^n (j+\beta |b|)},$$

so that

$$(36) \left| \frac{f(z)}{g(z)} - 1 \right| \leq \frac{\sum_{k=j+p}^{\infty} |a_k - b_k|}{1 - \sum_{k=j+p}^{\infty} b_k} \leq \frac{\delta}{j+p} \cdot \frac{(1 + \frac{\lambda j}{p})^n (j + \beta |b|)}{[(1 + \frac{\lambda j}{p})^n (j + \beta |b|) - \beta |b|]}$$

$$= p - \alpha,$$

provided that α is given by (30). Thus, by the above definition, $f(z) \in H_j^{(\alpha)}(n, p, \lambda, b, \beta)$ for α given by (30). This evidently proves Theorem 3.

Putting (i) $n = \lambda = 0$ and (ii) n = 1 in Theorem 3, we obtain the following results.

Corollary 4 If $g(z) \in S_j(p, b, \beta)$ and

(37)
$$\alpha = p - \frac{\delta(j + \beta |b|)}{(j + p)[(j + \beta |b|) - \beta |b|]},$$

then

(38)
$$N_{i,\delta}(g) \subset S_i^{(\alpha)}(p,b,\beta),$$

where

(39)
$$\delta \le p(j+p)\{1-\beta |b| (j+\beta |b|)^{-1}\}.$$

Corollary 5 If $g(z) \in C_j(p, \lambda, b, \beta)$ and

(40)
$$\alpha = p - \frac{\delta(p+\lambda j)(j+\beta|b|)}{(j+p)[(p+\lambda j)(j+\beta|b|) - p\beta|b|]},$$

then

$$N_{j,\delta}(g) \subset C_j^{(\alpha)}(p,\lambda,b,\beta),$$

where

(41)
$$\delta \le p(j+p)\{1-p\beta |b| [(p+\lambda j)(j+\beta |b|)]^{-1}\}.$$

The proof of Theorem 4 below is similar to that the proof of Theorem 3 above. We, therefore, skip its proof.

Theorem 4 If $g(z) \in L_j(n, p, \lambda, b, \beta, \mu)$ and

(42)
$$\alpha = p - \frac{\delta(1 + \frac{\lambda j}{p})^n (p + \mu j)}{(j+p)[(1 + \frac{\lambda j}{p})^n (p + \mu j) - p\beta |b|]},$$

then

(43)
$$N_{j,\delta}(g) \subset L_j^{(\alpha)}(n, p, \lambda, b, \beta, \mu),$$

where

(44)
$$\delta \le p(j+p)\{1-p\beta |b| \left[(1+\frac{\lambda j}{p})^n (p+\mu j) \right]^{-1} \}.$$

Putting $n = \lambda = 0$ in Theorem 4, we obtain the following result.

Corollary 6 If $g(z) \in L_j(p, b, \beta, \mu)$ and

(45)
$$\alpha = p - \frac{\delta(p + \mu j)}{(j + p)[(p + \mu j) - p\beta |b|]},$$

then

(46)
$$N_{j,\delta}(g) \subset L_j^{(\alpha)}(p,b,\beta,\mu),$$

where

(47)
$$\delta \le p(j+p)\{1-p\beta |b| (p+\mu j)^{-1}\}.$$

References

- F. M. Al-Oboudi, On univalent functions defined by agereralized Salagean operator, Internat. J. Math. Math. Sci. 27, 2004, 1429-1436.
- [2] O. P. Ahuja, M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. Japon. 51, 2003, 487-492.
- [3] O. Altintas, S. Owa, Neighorhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19, 1996, 797-800.
- [4] O. Altintas, O. Ozkan, H. M. Srivastava, Neighborhoods of class of analytic functions with negative coefficients, Appl. Math. Letters 13 (3), 2000, 63-67.
- [5] O. Altintas, O. Ozkan, H. M. Srivastava, Neighborhoods of certain family of multivalent functions with negative coefficients, Comput, Math. Appl. 47, 2004, 1667-1673.
- [6] M.K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., Art. ID 38258, 2006, 1-6.
- [7] A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc. 8, 1957, 598-601.
- [8] G. Murugusundaramoorthy, H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2), 2004, Art. 24, 1-8.
- [9] R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure. Appl. Math. 7 (1), 2006, Art. 5, 1-6.

- [10] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 1981, 521-527.
- [11] G. S. Salagean, Subclasses of univalent function, Lecture Notes in Math. (Springer-Verlag) 1013, 1983, 368-372.
- [12] H. Silverman, Neighborhoods of classes of analytic function, Far East J. Math. Sci. 3, 1995, 165-169.
- [13] H. M. Srivastava, H. Orhan, Coefficient-inqualities and inclusion relation for some families of analytic and multivalent function, Appl. Math. Letters 20, 2007, 686-691.
- [14] H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

R. M. El-Ashwah

Mansoura University
Department of Mathematic
Mansoura 35516, Egypt
e-mail: elashwah@mans.edu.eg

M. K. Aouf

Mansoura University

Department of Mathematic

Mansoura 35516, Egypt

e-mail: mkaouf127@yahoo.com