General Mathematics Vol. 18, No. 3 (2010), 3-12

A common fixed point theorem for weakly compatible mappings in fuzzy metric spaces⁻¹

Shaban Sedghi, Nabi Shobe, Abdelkrim Aliouche

Abstract

In this paper, we prove a common fixed point theorem for weakly compatible mappings in fuzzy metric spaces using the property (E.A).

2010 Mathematics Subject Classification: 54H25, 47H10.Key words and phrases: Fuzzy metric space, Weakly compatible mappings, Common fixed point, Property (E.A).

1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [15] in 1965. To use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and applications. George and Veeramani [7] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [10] and defined the Hausdorff topology of fuzzy metric spaces which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by El- Naschie [2, 3, 4, 5, 6] and [13]. They showed also that every metric induces a fuzzy metric. Vasuki [14] obtained the fuzzy version of common fixed point theorem which had extra conditions, in fact, he proved a fuzzy common fixed point theorem by a strong definition of Cauchy sequence, see [7]. First, we give some definitions.

¹Received 30 December, 2008

Accepted for publication (in revised form) 2 February, 2009

³

Definition 1 ([12]) A binary operation $* : [0,1]^2 \longrightarrow [0,1]$ is called a continuous t-norm if ([0,1],*) is an abelian topological monoid; i.e.,

- (1) * is associative and commutative,
- (2) * is continuous,
- (3) a * 1 = a for all $a \in [0, 1]$,
- (4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Two typical examples of a continuous t-norm are a * b = ab and $a * b = \min\{a, b\}$.

Definition 2 ([7]) The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and t, s > 0.

 $\begin{array}{l} (FM\text{-}1) \ M(x,y,t) > 0, \\ (FM\text{-}2) \ M(x,y,t) = 1 \ if \ and \ only \ if \ x = y, \\ (FM\text{-}3) \ M(x,y,t) = M(y,x,t), \\ (FM\text{-}4) \ M(x,y,t) * M(y,z,s) \leq M(x,z,t+s), \\ (FM\text{-}5) \ M(x,y,.) : (0,\infty) \longrightarrow [0,1] \ is \ continuous. \end{array}$

Let (X, M, *) be a fuzzy metric space. For t > 0, the open ball B(x, r, t)with a center $x \in X$ and a radius 0 < r < 1 is defined by

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.$$

A subset $A \subset X$ is called open if for each $x \in A$, there exist t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Let τ denote the family of all open subsets of X. Then τ is called the topology on X induced by the fuzzy metric M. This topology is Hausdorff and first countable.

Example 1 Let $X = \mathbb{R}$. Denote a * b = a.b for all $a, b \in [0, 1]$. For each $t \in (0, \infty)$, define

$$M(x, y, t) = \frac{t}{t + |x - y|}$$

for all $x, y \in X$.

Example 2 Let X be an arbitrary non-empty set and ψ be an increasing and a continuous function of \mathbb{R}_+ into (0,1) such that $\lim_{t \to \infty} \psi(t) = 1$. Three

typical examples of these functions are $\psi(x) = \frac{x}{x+1}$, $\psi(x) = \sin(\frac{\pi x}{2x+1})$ and $\psi(x) = 1 - e^{-x}$. Denote a * b = a.b for all $a, b \in [0, 1]$. For each $t \in (0, \infty)$, define

$$M(x, y, t) = \psi(t)^{d(x,y)}$$

for all $x, y \in X$, where d(x, y) is an ordinary metric. It is easy to see that (X, M, *) is a fuzzy metric space.

Definition 3 ([7]) Let (X, M, *) be a fuzzy metric space.

(i) A sequence $\{x_n\}$ in X is said to be convergent to $x \in X$ if for each $\epsilon > 0$ and each t > 0, there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x, t) > 1 - \epsilon$ for all $n \ge n_0$; i.e., $M(x_n, x, t) \to 1$ as $n \to \infty$ for all t > 0.

(ii) A sequence $\{x_n\}$ in X is said to be Cauchy if for each $\epsilon > 0$ and each t > 0, there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \epsilon$ for all $n, m \ge n_0$; i.e., $M(x_n, x_m, t) \to 1$ as $n, m \to \infty$ for all t > 0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 1 ([8]) For all $x, y \in X$, M(x, y, .) is a non-decreasing function.

Definition 4 Let (X, M, *) be a fuzzy metric space. M is said to be continuous on $X^2 \times (0, \infty)$ if

$$\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t),$$

whenever $\{(x_n, y_n, t_n)\}$ is a sequence in $X^2 \times (0, \infty)$ which converges to a point $(x, y, t) \in X^2 \times (0, \infty)$; i.e.,

 $\lim_{n \to \infty} M(x_n, x, t) = \lim_{n \to \infty} M(y_n, y, t) = 1 \ and \ \lim_{n \to \infty} M(x, y, t_n) = M(x, y, t)$

Lemma 2 ([8]) M is a continuous function on $X^2 \times (0, \infty)$.

Let A and S be self-mappings of a fuzzy metric space (X, M, *).

Definition 5 ([9]) A and S are said to be weakly compatible if they commute at their coincidence points; i.e., Ax = Sx for some $x \in X$ implies that ASx = SAx.

Definition 6 ([1]) The pair (A, S) satisfies the property (E.A) if there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} M(Ax_n, u, t) = \lim_{n \to \infty} M(Sx_n, u, t) = 1$$

for some $u \in X$ and all t > 0.

Example 3 Let $X = \mathbb{R}$ and $M(x, y, t) = \frac{t}{t + |x - y|}$ for every $x, y \in X$ and t > 0. Define A and S by Ax = 2x + 1, Sx = x + 2 and the sequence $\{x_n\}$ by $x_n = 1 + \frac{1}{n}$, n = 1, 2, ... We have

$$\lim_{n \to \infty} M(Ax_n, 3, t) = \lim_{n \to \infty} M(Sx_n, 3, t) = 1$$

for every t > 0. Then, the pair (A, S) satisfies the property (E.A). However, A and S are not weakly compatible.

The following example shows that there are some pairs of mappings which do not satisfy the property (E.A).

Example 4 Let $X = \mathbb{R}$ and $M(x, y, t) = \frac{t}{t + |x - y|}$ for every $x, y \in X$ and t > 0. Define A and B by Ax = x + 1 and Sx = x + 2. Assume that there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} M(Ax_n, u, t) = \lim_{n \to \infty} M(Sx_n, u, t) = 1$$

for some $u \in X$ and all t > 0. Therefore

$$\lim_{n \to \infty} M(x_n + 1, u, t) = \lim_{n \to \infty} M(x_n + 2, u, t) = 1.$$

We conclude that $x_n \to u-1$ and $x_n \to u-2$ which is a contradiction. Hence, the pair (A, S) do not satisfy property (E.A).

It is our purpose in this paper to prove a common fixed point theorem for weakly compatible mappings satisfying a contractive condition in fuzzy metric spaces using the property (E.A).

2 Main Results

Let Φ be the set of all increasing and continuous functions $\phi : (0, 1] \longrightarrow (0, 1]$, such that $\phi(t) > t$ for every $t \in (0, 1)$.

Example 5 Let $\phi: (0,1] \longrightarrow (0,1]$ defined by $\phi(t) = t^{1/2}$.

Theorem 1 Let (X, M, *) be a fuzzy metric space and S and T be self-mappings of X satisfying the following conditions: (i) $T(X) \subseteq S(X)$ and T(X) or S(X) is a closed subset of X, (ii)

$$M(Tx, Ty, t) \ge \phi(\min \left\{ \begin{array}{l} M(Sx, Sy, t), \\ \sup_{t_1+t_2=\frac{2}{k}t} \min \left\{ \begin{array}{l} M(Sx, Tx, t_1), \\ M(Sy, Ty, t_2) \\ \sup_{t_3+t_4=\frac{2}{k}t} \max \left\{ \begin{array}{l} M(Sx, Ty, t_3), \\ M(Sy, Tx, t_4) \end{array} \right\}, \end{array} \right\} \right\}$$

for all $x, y \in X$, t > 0 and for some $1 \le k < 2$. Suppose that the pair (T, S) satisfies the property (E.A) and (T, S) is weakly compatible. Then S and T have a unique common fixed point in X.

Proof. Since the pair (T, S) satisfies the property (E.A), there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} M(Tx_n, z, t) = \lim_{n \to \infty} M(Sx_n, z, t) = 1$$

for some $z \in X$ and every t > 0. Suppose that S(X) is a closed subset of X. Then, there exists $v \in X$ such that Sv = z and so

$$\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Sx_n = Sv = z. \quad (*)$$

Assume that T(X) is a closed subset of X. Therefore, there exists $v \in X$ such that Sv = z. Hence (*) still holds. Now, we show that Tv = Sv. Suppose that $Tv \neq Sv$. It is not difficult to prove that there exists $t_0 > 0$ such that

$$M(Tv, Sv, \frac{2}{k}t_0) > M(Tv, Sv, t_0).$$
 (**)

If not, we have $M(Tv, Sv, t) = M(Tv, Sv, \frac{2}{k}t)$ for all t > 0. Repeatedly using this equality, we obtain

$$M(Tv, Sv, t) = M(Tv, Sv, \frac{2}{k}t) = \dots = M(Tv, Sv, (\frac{2}{k})^n t) \longrightarrow 1 \quad (n \longrightarrow \infty).$$

This shows that M(Tv, Sv, t) = 1 for all t > 0 which contradicts $Tv \neq Sv$ and so (**) is proved.

Using (ii) we get

$$M(Tx_{n}, Tv, t_{0}) \geq \phi(\min \begin{cases} M(Sx_{n}, Sv, t_{0}), \\ \sup_{t_{1}+t_{2}=\frac{2}{k}t_{0}} \min \begin{cases} M(Sx_{n}, Tx_{n}, t_{1}), \\ M(Sv, Tv, t_{2}) \end{cases}, \\ \sup_{t_{3}+t_{4}=\frac{2}{k}t_{0}} \max \begin{cases} M(Sx_{n}, Tv, t_{3}), \\ M(Sv, Tx_{n}, t_{4}) \end{cases} \end{cases} \end{pmatrix} \end{pmatrix}$$
$$\geq \phi(\min \begin{cases} M(Sx_{n}, Sv, t_{0}), \\ \min \{ M(Sx_{n}, Sv, t_{0}), \\ \min \{ M(Sx_{n}, Tx_{n}, \epsilon), M(Sv, Tv, \frac{2}{k}t_{0} - \epsilon) \}, \\ \max \{ M(Sx_{n}, Tv, \frac{2}{k}t_{0} - \epsilon), M(Sv, Tx_{n}, \epsilon) \} \end{cases} \end{pmatrix}$$

 $\forall \epsilon \in (0, \frac{2}{k}t_0).$ As $n \to \infty$, it follows that

$$M(Sv, Tv, t_0) \geq \phi(\min \begin{cases} M(Sv, Sv, t_0), \\ \min \begin{cases} M(Sv, Sv, \epsilon), \\ M(Sv, Tv, \frac{2}{k}t_0 - \epsilon) \end{cases}, \\ \max \begin{cases} M(Sv, Tv, \frac{2}{k}t_0 - \epsilon), \\ M(Sv, Sv, \epsilon) \end{cases} \end{cases} \end{cases}$$

as $\epsilon \longrightarrow 0$, we have

$$M(Sv, Tv, t_0) \ge M(Sv, Tv, \frac{2}{k}t_0)$$

which is a contradiction. Therefore, z = Sv = Tv. Since S and T are weakly compatible, we have Tz = Sz.

Now, we show that z is a common fixed point of S and T. If $Tz \neq z$ using (ii) we obtain

$$M(z, Tz, t) \geq \phi(\min \begin{cases} M(z, Tz, t), \\ \sup_{t_1+t_2=\frac{2}{k}t} \min \begin{cases} M(z, Tz, t_1), \\ M(Sz, Tz, t_2) \end{cases}, \\ \sup_{t_3+t_4=\frac{2}{k}t} \max \begin{cases} M(z, Tz, t_3), \\ M(Tz, z, t_4) \end{cases} \end{cases} \end{cases}$$

for all $\epsilon \in (0, \frac{2}{k}t)$. As $\epsilon \longrightarrow 0$, we have

$$\begin{split} M(z,Tz,t) &\geq \phi(\min\{M(z,Tz,t),M(z,Tz,\frac{2}{k}t)\}) \\ &= \phi(M(z,Tz,t)) > M(z,Tz,t) \end{split}$$

which is a contradiction. Hence Tz = Sz = z. Thus z is a common fixed point of S and T. The uniqueness of z follows from the inequality (*ii*).

Example 6 Let (X, M, *) be a fuzzy metric space, where X = [0, 1] with a *t*-norm defined a * b = a.b for all $a, b \in [0, 1]$ and ψ is an increasing and a continuous function of \mathbb{R}_+ into (0, 1) such $\lim_{t \to \infty} \psi(t) = 1$. For each $t \in (0, \infty)$, define

$$M(x, y, t) = \psi(t)^{|x-y|}$$

for all $x, y \in X$, see example 2. Define self-maps T and S on X as follows:

$$Tx = \frac{x+2}{3}, \quad Sx = \tan(\frac{\pi x}{4})$$

It is easy to see that (i) $T(X) = \left[\frac{2}{3}, 1\right] \subseteq [0, 1] = S(X),$ (ii) For a sequence $x_n = 1 - \frac{1}{n}$, we have

$$\lim_{n \to \infty} M(Tx_n, 1, t) = \psi(t)^{\left|\frac{1-1/n+2}{3} - 1\right|} = \lim_{n \to \infty} M(Sx_n, 1, t) = \psi(t)^{\left|\tan\left(\frac{\pi(1-1/n)}{4}\right) - 1\right|} = 1$$

for every t > 0. Hence the pair (T, S) satisfies the property (E.A). It is easy to see that the pair (T, S) is weakly compatible. Let $\phi : (0, 1] \longrightarrow (0, 1]$ defined by $\phi(t) = t^{1/2}$. As

$$|\tan(\frac{\pi x}{4}) - \tan(\frac{\pi y}{4})| \ge \frac{\pi}{4}|x - y|$$

we get

$$M(Tx, Ty, t) = \psi(t)^{\frac{1}{3}|x-y|} \\ \ge \psi(t)^{\frac{\pi}{8}|x-y|} = \phi(M(Sx, Sy, t)).$$

Thus for $\phi(t) = t^{1/2}$ we have

$$M(Tx, Ty, t) \ge \phi(\min \left\{ \begin{array}{c} M(Sx, Sy, t), \\ \sup_{t_1+t_2=\frac{2}{k}t} \min \left\{ \begin{array}{c} M(Sx, Tx, t_1), \\ M(Sy, Ty, t_2) \\ \sup_{t_3+t_4=\frac{2}{k}t} \max \left\{ \begin{array}{c} M(Sx, Ty, t_3), \\ M(Sy, Tx, t_4) \end{array} \right\}, \end{array} \right\} \right\}$$

for all $x, y \in X$, t > 0 and for some $1 \le k < 2$. All conditions of Theorem 1 hold and z = 1 is a unique common fixed point of S and T.

Corollary 1 Let T and S be self-mappings of a fuzzy metric space (X, M, *) satisfying the following conditions:

(i) $T^n(X) \subseteq S^m(X)$, $T^n(X)$ or $S^m(X)$ is a closed subset of X and $T^nS = ST^n$, $TS^m = S^mT$,

$$M(T^{n}x, T^{n}y, t) \ge \phi(\min \left\{ \begin{array}{c} M(S^{m}x, S^{m}y, t), \\ \sup_{t_{1}+t_{2}=\frac{2}{k}t} \min \left\{ \begin{array}{c} M(S^{m}x, T^{n}x, t_{1}), \\ M(S^{m}y, T^{n}y, t_{2}) \\ \sup_{t_{3}+t_{4}=\frac{2}{k}t} \max \left\{ \begin{array}{c} M(S^{m}x, T^{n}y, t_{3}), \\ M(S^{m}y, T^{n}x, t_{4}) \end{array} \right\}, \end{array} \right\} \right\}$$

for all $x, y \in X$, for some $n, m = 2, 3, \dots, t > 0$ and for some $1 \le k < 2$. Suppose that the pair (T^n, S^m) satisfies the property (E.A) and (T^n, S^m) is weakly compatible. Then S and T have a unique common fixed point in X.

References

- A. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270, 2002, 181-188.
- [2] M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals., 9, 1998, 517–29.
- [3] M.S. El Naschie, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals., 19, 2004, 209–36.
- [4] M.S. El Naschie, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int. J of Nonlinear Science and Numerical Simulation., 6, 2005, 95–98.
- [5] M.S. El Naschie, The idealized quantum two-slit gedanken experiment revisited Criticism and reinterpretation., Chaos, Solitons and Fractals., 27, 2006, 9–13.
- [6] M.S. El Naschie, On two new fuzzy Ka "hler manifols, Klein modular space and 't Hooft holographic principles, Chaos, Solitons & Fractals., 29, 2006, 876–881.
- [7] A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64, 1994, 395-399.

- [8] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27, 1988, 385-389.
- [9] G. Jungck, Common fixed points for non-continuous non-self maps on non metric spaces, Far East J. Math. Sci., 4 (2), 1996, 199-215.
- [10] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica., 11, 1975, 326-334.
- [11] J. Rodríguez López, S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys., 147, 2004, 273-283.
- [12] B. Schweizer, A. Sklar, *Statistical metric spaces*, Pacific J. Math., 10, 1960, 313-334.
- [13] Y. Tanaka, Y. Mizno, T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals., 24, 2005, 407–422.
- [14] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric space, Indian J. Pure Appl. Math. 30, 1999, 419-423.
- [15] L. A. Zadeh, Fuzzy sets, Inform and Control., 8, 1965, 338-353.

Shaban Sedghi,

Department of Mathematics, Islamic Azad University-Ghaemshahr Branch Ghaemshahr, P.O.Box 163, Iran e-mail: sedghi_gh@yahoo.com

Nabi Shobe,

Department of Mathematics Address: Department of Mathematics, Islamic Azad University-Babol Branch, Iran e-mail: nabi_shobe@yahoo.com

Abdelkrim Aliouche,

Department of Mathematics, University LarbiBen M'Hidi, Oum-El-Bouaghi ,04000, Algeria. e-mail: alioumath@yahoo.fr