Generalized \boldsymbol{q}-Taylor's series and applications ${ }^{1}$

S.D. Purohit, R.K. Raina

Abstract

A generalized q-Taylor's formula in fractional q-calculus is established and used in deriving certain q-generating functions for the basic hypergeometric functions and basic Fox's H-function.

2010 Mathematics Subject Classification: 33D45, 26A33 and 33D90.
Key words and phrases: Riemann-Liouville fractional q-differential operator, q-Taylor's formula, Basic hypergeometric functions, Basic Fox's H-function.

1 Introduction

In the theory of q-series [3], the q-shifted factorial for a real (or complex) number a is defined by
(1) $\quad(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right) \quad(n \in \mathbf{N} ;|q|<1)$.

Also, the q-analogue of $(x \pm y)^{n}([8])$ is given by
(2) $(x \pm y)^{(n)}=(x \pm y)_{n}=x^{n}(\mp y / x ; q)_{n}=x^{n} \sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} q^{k(k-1) / 2}(\pm y / x)^{k}$

[^0]$$
(n \in \mathbf{N} ; \quad|q|<1)
$$
where the q-binomial coefficient is defined by
\[

\left[$$
\begin{array}{l}
n \tag{3}\\
k
\end{array}
$$\right]_{q}=\frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}}\left(-q^{n}\right)^{k} q^{-k(k-1) / 2}
\]

For a bounded sequence of real (or complex) numbers $\left\{A_{n}\right\}$, let $f(x)=$ $\sum_{n=-\infty}^{\infty} A_{n} x^{n}$, then ([4]; see also [2, p. 502])

$$
\begin{equation*}
f[(x \pm y)]=\sum_{n=-\infty}^{\infty} A_{n} x^{n}(\mp y / x ; q)_{n} \tag{4}
\end{equation*}
$$

The q-gamma function (cf. [3]) is defined by

$$
\begin{equation*}
\Gamma_{q}(a)=\frac{(q ; q)_{\infty}}{\left(q^{a} ; q\right)_{\infty}(1-q)^{a-1}}=\frac{(q ; q)_{a-1}}{(1-q)^{a-1}} \quad(a \neq 0,-1,-2, \cdots ;|q|<1) \tag{5}
\end{equation*}
$$

and in terms of (2) and (5), the Riemann-Liouville fractional q-differential operator of a function $f(x)$ is defined by ([1])

$$
\begin{align*}
D_{x, q}^{\mu}\{f(x)\}= & \frac{1}{\Gamma_{q}(-\mu)} \int_{0}^{x}(x-t q)_{-\mu-1} f(t) d(t ; q) \tag{6}\\
& (\Re(\mu)<0 ;|q|<1)
\end{align*}
$$

In particular, for $f(x)=x^{p}$, (6) gives

$$
\begin{equation*}
D_{x, q}^{\mu}\left\{x^{p}\right\}=\frac{\Gamma_{q}(1+p)}{\Gamma_{q}(1+p-\mu)} x^{p-\mu} \quad(\Re(p)>-1 ; \Re(\mu)<0) \tag{7}
\end{equation*}
$$

The generalized basic hypergeometric series (cf. Slater [11]) is given by

$$
{ }_{r} \Phi_{s}\left[\begin{array}{cc}
a_{1}, \cdots, a_{r} & ; \tag{8}\\
b_{1}, \cdots, b_{s} & ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, \cdots, b_{s} ; q\right)_{n}} x^{n}
$$

where for convergence, $|q|<1(|x|<1$ if $r=s+1$; and for any x : if $r \leq s)$.

Saxena et al [9] introduced a basic analogue of the H-function in terms of the Mellin-Barnes type basic contour integral in the following manner:

$$
\begin{align*}
& H_{A, B}^{m_{1}, n_{1}}\left[x ; q \left\lvert\, \begin{array}{c}
\left(a_{1}, \alpha_{1}\right), \cdots,\left(a_{A}, \alpha_{A}\right) \\
\left(b_{1}, \beta_{1}\right), \cdots,\left(b_{B}, \beta_{B}\right)
\end{array}\right.\right] \\
= & \frac{1}{2 \pi i} \int_{C} \frac{\prod_{j=1}^{m_{1}} G\left(q^{b_{j}-\beta_{j} s}\right) \prod_{j=1}^{n_{1}} G\left(q^{1-a_{j}+\alpha_{j} s}\right) \pi x^{s}}{\prod_{j=m_{1}+1}^{B} G\left(q^{1-b_{j}+\beta_{j} s}\right) \prod_{j=n_{1}+1}^{A} G\left(q^{a_{j}-\alpha_{j} s}\right) G\left(q^{1-s}\right) \sin \pi s} d s \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(q^{\alpha}\right)=\prod_{n=0}^{\infty}\left\{\left(1-q^{\alpha+n}\right)\right\}^{-1}=\frac{1}{\left(q^{\alpha} ; q\right)_{\infty}} \tag{10}
\end{equation*}
$$

and $0 \leq m_{1} \leq B ; 0 \leq n_{1} \leq A ; \alpha_{j}$ and β_{j} are all positive integers. The contour C is a line parallel to $\Re(\omega s)=0$, with indentations, if necessary, in such a manner that all the poles of $G\left(q^{b_{j}-\beta_{j} s}\right)\left(1 \leq j \leq m_{1}\right)$ are to its right, and those of $G\left(q^{1-a_{j}+\alpha_{j} s}\right)\left(1 \leq j \leq n_{1}\right)$ are to the left of C. The basic integral converges if $\Re[s \log (x)-\log \sin \pi s]<0$, for large values of $|s|$ on the contour C, that is if $\left|\left\{\arg (x)-\omega_{2} \omega_{1}^{-1} \log |x|\right\}\right|<\pi$, where $|q|<1, \log q=-\omega=-\left(\omega_{1}+i \omega_{2}\right)$, ω_{1} and ω_{2} being real.

For $\alpha_{j}=\beta_{i}=1(j=1, \cdots, A ; i=1, \cdots, B),(9)$ reduces to the q-analogue of the Meijer's G-function [9] defined by

$$
\begin{align*}
& G_{A, B}^{m_{1}, n_{1}}\left[x ; q \left\lvert\, \begin{array}{l}
a_{1}, \cdots, a_{A} \\
b_{1}, \cdots, b_{B}
\end{array}\right.\right] \\
= & \frac{1}{2 \pi i} \int_{C} \frac{\prod_{j=1}^{m_{1}} G\left(q^{b_{j}-s}\right) \prod_{j=1}^{n_{1}} G\left(q^{1-a_{j}+s}\right) \pi x^{s}}{\prod_{j=m_{1}+1}^{B} G\left(q^{1-b_{j}+s}\right) \prod_{j=n_{1}+1}^{A} G\left(q^{a_{j}-s}\right) G\left(q^{1-s}\right) \sin \pi s} d s \tag{11}
\end{align*}
$$

where $0 \leq m_{1} \leq B ; 0 \leq n_{1} \leq A$ and $\Re[s \log (x)-\log \sin \pi s]<0$.

The object of this paper is to derive a generalized q-Taylor's formula in fractional q-calculus using Riemann-Liouville fractional q-differential operator (6). The usefulness of the main result is exhibited by deriving certain q generating functions for the basic hypergeometric function ${ }_{r} \Phi_{s}($.$) and for the$ basic analogue of the Fox's H-function.

2 Main result

In this section, we prove the following theorem which may be regarded as a generalization of the q-Taylor's formula.

Theorem 1 Let η be an arbitrary complex number and $\Re(p)>-1$, then

$$
\begin{equation*}
(x+t)_{p} f\left[\left(x+t q^{p}\right)\right]=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)} D_{x, q}^{n+\eta}\left\{x^{p} f(x)\right\} \tag{12}
\end{equation*}
$$

valid for all t where $|t / x|<1,\left|t q^{p} / x\right|<1$ and $|q|<1$.
Proof. Making use of (4) in conjunction with (2), the left-hand side of (12) (say L) gives

$$
\begin{align*}
L & =\sum_{m=0}^{\infty} A_{m} x^{p+m}(-t / x ; q)_{p}\left(-t q^{p} / x ; q\right)_{m} \\
& =\sum_{m=0}^{\infty} A_{m} x^{p+m}(-t / x ; q)_{p+m} \tag{13}
\end{align*}
$$

On the other hand, the right-hand side (say R) of (12) leads to

$$
R=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)} D_{x, q}^{n+\eta}\left\{\sum_{m=0}^{\infty} A_{m} x^{p+m}\right\}
$$

Using the fractional q-derivative formula (6), the right-hand side of (12) becomes

$$
\begin{equation*}
R=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2}(t / x)^{n+\eta}}{\Gamma_{q}(n+\eta+1)} \sum_{m=0}^{\infty} A_{m} \frac{\Gamma_{q}(p+m+1)}{\Gamma_{q}(p+m+1-n-\eta)} x^{p+m} . \tag{14}
\end{equation*}
$$

On interchanging the order of summations and carring out elementary simplifications, we get

$$
\begin{equation*}
R=\frac{(1-q)^{-\eta}}{\Gamma_{q}(\eta+1)} \sum_{m=0}^{\infty} A_{m} x^{p+m}(t / x)^{\eta} \sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2}(t / x)^{n}}{\left(q^{1+\eta} ; q\right)_{n}\left(q^{p+m+1} ; q\right)_{-n-\eta}} \tag{15}
\end{equation*}
$$

which in view of the q-identities [3, pp. 233-234]:

$$
(a ; q)_{-n}=\frac{(-q / a)^{n}}{(q / a ; q)_{n}} q^{n(n-1) / 2}, \quad(a ; q)_{n+k}=(a ; q)_{n}\left(a q^{n} ; q\right)_{k}
$$

yields

$$
\begin{align*}
& R=\frac{(1-q)^{-\eta}}{\Gamma_{q}(\eta+1)} \sum_{m=0}^{\infty} A_{m} x^{p+m}\left(-t q^{p+m} / x\right)^{\eta}\left(q^{-p-m} ; q\right)_{\eta} \tag{16}\\
& \sum_{n=-\infty}^{\infty} \frac{\left(q^{\eta-p-m} ; q\right)_{n}\left(-t q^{p+m} / x\right)^{n}}{\left(q^{1+\eta} ; q\right)_{n}}
\end{align*}
$$

Applying the Ramanujan's summation formula (cf. [3, II.29, p. 239]), viz.
(17) ${ }_{1} \psi_{1}(a ; b ; q, z)=\sum_{n=-\infty}^{\infty} \frac{(a ; q)_{n}}{(b ; q)_{n}} z^{n}=\frac{(q ; q)_{\infty}(b / a ; q)_{\infty}(a z ; q)_{\infty}(q / a z ; q)_{\infty}}{(b ; q)_{\infty}(q / a ; q)_{\infty}(z ; q)_{\infty}(b / a z ; q)_{\infty}}$,
we find that (16) reduces to

$$
\begin{align*}
R= & \frac{(1-q)^{-\eta}}{\Gamma_{q}(\eta+1)} \sum_{m=0}^{\infty} A_{m} x^{p+m}\left(-t q^{p+m} / x\right)^{\eta}\left(q^{-p-m} ; q\right)_{\eta} \tag{18}\\
& \frac{(q ; q)_{\infty}\left(q^{1+m+p} ; q\right)_{\infty}\left(-t q^{\eta} / x ; q\right)_{\infty}\left(-q^{1-\eta} x / t ; q\right)_{\infty}}{\left(q^{1+\eta} ; q\right)_{\infty}\left(q^{1+m+p-\eta} ; q\right)_{\infty}\left(-t q^{m+p} / x ; q\right)_{\infty}(-q x / t ; q)_{\infty}}
\end{align*}
$$

which implies that

$$
\begin{equation*}
R=\sum_{m=0}^{\infty} A_{m} x^{p+m}(-t / x ; q)_{p+m}=L \tag{19}
\end{equation*}
$$

This completes the proof of the theorem.

It may be observed that a generalized Taylor's formula involving the RiemannLiouville type operator was obtained earlier by Raina [6, p. 81, eqn. (2.1)]. If we set $\eta=0$ in the above theorem, we get the following corollary (giving a simple form of q-Taylor's formula).

Corollary 1 If $\Re(p)>-1$, then

$$
\begin{equation*}
(x+t)_{p} f\left[\left(x+t q^{p}\right)\right]=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2} t^{n}}{\Gamma_{q}(n+1)} D_{x, q}^{n}\left\{x^{p} f(x)\right\}, \tag{20}
\end{equation*}
$$

valid for all t where $|t / x|<1,\left|t q^{p} / x\right|<1$ and $|q|<1$.
A similar type of q-Taylor's formula was also given by Jackson [5].

3 Applications of the main result

The generalized fractional q-Taylor's formula established in the previous section would find many applications giving q-generating functions and series summation for the basic functions.

To illustrate the applications, we first apply formula (12) to obtain the series summation (or q-generating function) for the basic hypergeometric function ${ }_{r} \Phi_{s}(\cdots)$, defined by (8).

Let us set

$$
f(x)={ }_{r} \Phi_{s}\left[\begin{array}{ll}
a_{1}, \cdots, a_{r} & ; \\
b_{1}, \cdots, b_{s} & ;
\end{array}\right]
$$

in (12), then we get
$(21)(x+t)_{p r} \Phi_{s}\left[\begin{array}{ll}a_{1}, \cdots, a_{r} & ; \\ b_{1}, \cdots, b_{s} & ;\end{array}, \rho\left(x+t q^{p}\right)\right]=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)}$

$$
D_{x, q}^{n+\eta}\left\{x_{r}^{p} \Phi_{s}\left[\begin{array}{ll}
a_{1}, \cdots, a_{r} & ; \\
b_{1}, \cdots, b_{s} & ;
\end{array}\right]\right\}
$$

Using the result (due to Yadav and Purohit [12]):

$$
\begin{gather*}
D_{x, q}^{\lambda}\left\{x^{p}{ }_{r} \Phi_{s}\left[\begin{array}{cc}
a_{1}, \cdots, a_{r} & ; \\
b_{1}, \cdots, b_{s} & ;
\end{array}\right]\right\}, \rho x \tag{22}\\
{ }_{r+1} \Phi_{s+1}\left[\begin{array}{ll}
a_{1}, \cdots, a_{r}, q^{p+1} & ; \\
b_{1}, \cdots, b_{s}, q^{p+1-\lambda} & ;
\end{array}\right], \frac{\Gamma_{q}(p+1)}{\Gamma_{q}(p+1-\lambda)} x^{p-\lambda} \\
\end{gather*}
$$

valid for all values of λ, the series relation (21) leads to
$(23)(x+t)_{p r} \Phi_{s}\left[\begin{array}{ll}a_{1}, \cdots, a_{r} & ; \\ b_{1}, \cdots, b_{s} & ; q, \rho\left(x+t q^{p}\right)\end{array}\right]=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2} t^{n+\eta}}{\Gamma_{q}(n+\eta+1)}$

$$
\frac{\Gamma_{q}(p+1)}{\Gamma_{q}(p+1-n-\eta)} x_{r+1}^{p-n-\eta} \Phi_{s+1}\left[\begin{array}{ll}
a_{1}, \cdots, a_{r}, q^{p+1} & ; \\
b_{1}, \cdots, b_{s}, q^{p+1-n-\eta} & ;
\end{array}\right]
$$

On replacing t by $-x t$ in (23), we arrive at the following q-generating function.

$$
\begin{gather*}
(t ; q)_{p r+1} \Phi_{s}\left[\begin{array}{cc}
a_{1}, \cdots, a_{r}, t q^{p} & ; \\
b_{1}, \cdots, b_{s} & ;
\end{array}\right], \rho x \tag{24}\\
\\
{ }_{r+1} \Phi_{s+1}\left[\begin{array}{ll}
a_{1}, \cdots, a_{r}, q^{p+1} & ; \\
\sum_{n=-\infty}^{\infty} \frac{\left(q^{-p} ; q\right)_{n+\eta}\left(t q^{p}\right)^{n+\eta}}{(q ; q)_{n+\eta}} \\
b_{1}, \cdots, b_{s}, q^{p+1-n-\eta} & ;
\end{array}\right]
\end{gather*}
$$

provided that both the sides exist.
For $\eta=0,(21)$ yields the q-generating function

$$
\begin{gather*}
(t ; q)_{p r+1} \Phi_{s}\left[\begin{array}{cc}
a_{1}, \cdots, a_{r}, t q^{p} & ; \\
b_{1}, \cdots, b_{s} & ;
\end{array}\right], \rho x \tag{25}\\
{ }_{r+1} \Phi_{s+1}\left[\begin{array}{cc}
a_{1}, \cdots, a_{r}, q^{p+1} & ; \\
b_{n=0}^{\infty} \frac{\left(q^{-p} ; q\right)_{n}\left(t q^{p}\right)^{n}}{(q ; q)_{n}} \\
b_{1}, \cdots, b_{s}, q^{p+1-n} & ;
\end{array}\right]
\end{gather*}
$$

Further, if we put $r=s=0$, then (25) yields the following series summation:

$$
\left.(t ; q)_{p 1} \Phi_{0}\left[\begin{array}{cc}
t q^{p} & ; \tag{26}\\
& q, \rho x \\
- & ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(q^{-p} ; q\right)_{n}\left(t q^{p}\right)^{n}}{(q ; q)_{n}}{ }_{1} \Phi_{1}\left[\begin{array}{ll}
q^{p+1} & ; \\
q^{p+1-n} & ;
\end{array}\right], \rho x\right]
$$

The q-extensions of the Fox's H-function and Meijer's G-function defined, respectively by (9) and (11) in terms of the Mellin-Barne's type of basic integrals possess the advantage that a number of q-special functions (including the basic hypergeometric functions) happen to be the particular cases of these functions. For various basic special functions which are deducible from basic analogue of Fox's H-function or Meijer's G-function, one may refer to the paper of Saxena et al [10]. We apply q-Taylor's formula (12) to obtain a series summation (or q-generating function) for the basic Fox's H-function.

Let us choose

$$
f(x)=H_{A, B}^{m_{1}, n_{1}}\left[\rho x ; q \left\lvert\, \begin{array}{c|c}
(a, \alpha) \\
(b, \beta)
\end{array}\right.\right]
$$

in (12), then using the fractional q-derivative formula for H-function of Yadav and Purohit [13], we arrive at the following result:

$$
\begin{align*}
& (x+t)_{p} H_{A, B}^{m_{1}, n_{1}}\left[\begin{array}{l|l}
\rho\left(x+t q^{p}\right) ; q & \left.\begin{array}{c}
(a, \alpha) \\
(b, \beta)
\end{array}\right]=\sum_{n=-\infty}^{\infty} \frac{q^{(n+\eta)(n+\eta-1) / 2} x^{p}(t / x)^{n+\eta}}{\Gamma_{q}(n+\eta+1)(1-q)^{n+\eta}}, ~
\end{array}\right. \tag{27}\\
& H_{A+1, B+1}^{m_{1}, n_{1}+1}\left[\begin{array}{l|l}
\rho x ; q & \begin{array}{l}
(-p, 1),(a, \alpha) \\
(b, \beta),(n+\eta-p, 1)
\end{array}
\end{array}\right],
\end{align*}
$$

where η is an arbitrary complex number, $0 \leq m_{1} \leq B ; 0 \leq n_{1} \leq A$ and the H-function satisfies the existence conditions as stated with (9).

A generalized Taylor's formula involving Weyl type fractional derivatives was also used (see Raina [7]) to derive generating function relationship for the Fox's H-function.

For $\alpha_{j}=\beta_{i}=1(j=1, \cdots, A ; i=1, \cdots, B)$, the result (27) reduces to a q-generating function for the basic analogue of G-function given by

$$
\left.\begin{array}{l}
\text { (28) } \quad(x+t)_{p} G_{A, B}^{m_{1}, n_{1}}\left[\rho\left(x+t q^{p}\right) ; q\right.
\end{array} \begin{array}{l}
a_{1}, \cdots, a_{A} \tag{28}\\
b_{1}, \cdots, b_{B}
\end{array}\right] .
$$

We conclude this paper by remarking that several series summations and generating functions to various basic (or q-analogue) special functions can be deduced from the results (24) and (27).

References

[1] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc., 66, 1969, 365-370.
[2] T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10(4), 2003, 487-525.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[4] W. Hahn, Beiträge zur theorie der heineschen reihen, Math. Nachr., 2, 1949, 340-379.
[5] F. H. Jackson, A q-form of Taylor's formula, Mess. Math., 38, 1909, 62-64.
[6] R. K. Raina, Generalized Taylor's formula and applications, J. Math. Sci., 12-13, 1977-1978, 80-85.
[7] R. K. Raina and C.L. Koul, On Weyl fractional calculus, Proc. Amer. Math. Soc., 73(2), 1979, 188-192.
[8] P. M. Rajković, S. D. Marinković, M. S. Stanković, Frcational integrals and derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, 1, 2007, 1-13.
[9] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of Fox's Hfunction, Rev. Tec. Ing. Univ. Zulia, 6, 1983, 139-143.
[10] R.K. Saxena, R.K. Yadav, S.D. Purohit and S.L. Kalla, Kober fractional q-integral operator of the basic analogue of the H-function, Rev. Tec. Ing. Univ. Zulia, 28(2), 2005, 154-158.
[11] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London and New York, 1966.
[12] R.K. Yadav and S.D. Purohit, Fractional q-derivatives and certain basic hypergeometric transformations, South East Asian J. Math. Math. Sci., $\mathbf{2 (2) , ~ 2 0 0 4 , ~ 3 7 - 4 6 . ~}$
[13] R.K. Yadav and S.D. Purohit, On fractional q-derivatives and transformations of the generalized basic hypergeometric functions, J. Indian Acad. Math., 28(2), 2006, 321-326.

S.D. Purohit

M.P. University of Agriculture and Technology

Department of Basic-Sciences (Mathematics)
College of Technology and Engineering, Udaipur-313001, India
e-mail: sunil_a_purohit@yahoo.com

R.K. Raina

M.P. University of Agriculture and Technology

Udaipur- 313001, Rajasthan, India
Present address:
10/11, Ganpati Vihar, Opposite Sector-5, Udaipur-313002, India . e-mail: rkraina_7@hotmail.com

[^0]: ${ }^{1}$ Received 1 February, 2009
 Accepted for publication (in revised form) 5 April, 2009

