General Mathematics Vol. 18, No. 3 (2010), 35-39

On sufficient condition for starlikeness ¹

D. O. Makinde, T. O. Opoola

Abstract

In this paper, we give a condition for starlikeness of the integral operator of the form $F(z) = \int_0^z \prod_{i=1}^k \left(\frac{f_i(s)}{s}\right)^{\frac{1}{\alpha}} ds.$

2000 Mathematics Subject Classification: 30C45 Key words and phrases: Starlike, Convex, Briot-Bouquet subordination.

1 Introduction

Let A be the class of all analytic functions f(z) defined in the open unit disk $U = \{z \in C : |z| < 1\}$ and S the subclass of A consisting of univalent functions

(1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

$$S^* = \{ f \in S : Re(\frac{zf'(z)}{f(z)}) > 0, z \in U \},$$
$$M_{\alpha} = \{ f \in S : \frac{f(z)f'(z)}{z} \neq 0, ReJ(\alpha, f; z) > 0, z \in U \}$$

¹Received 14 February, 2009

Accepted for publication (in revised form) 17 March, 2009

where $J(\alpha, f; z) = (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha (1 + \frac{zf''(z)}{f'(z)})$ be the class of starlike and $\alpha - convex$ functions respectively.

Let p(z) be the class of functions that are regular in U and of the form :

(2)
$$p(z) = 1 + \sum_{k=1}^{\infty} b_k z^k$$

Furthermore, let $h(z) = \frac{1+z}{1-z}$.

Let T be the univalent [5] subclass of A consisting of functions f(z) satisfying $\left|\frac{z^{2}f'(z)}{f(z)^{2}} - 1\right| < 1, (z \in U)$

Let T_n be the subclass of T for which $f^k(0) = 0$ (k = 2, 3, ..., n).

Let $T_{n,\mu}$ be the subclass of T_n consisting of functions of the form $\int_0^z \prod_{i=1}^k (\frac{f_i(s)}{s})^{\frac{1}{\alpha}} ds$ satisfying: $|\frac{z^2 f'(z)}{f(z)^2} - 1| < \mu, (z \in U)$ for some $\mu(0 < \mu \le 1)$.

$\mathbf{2}$ Preliminaries

Theorem 1 [1] Let M and N be analytic in U with M(0) = N(0) = 0. If N(z)maps onto a many sheeted region which is starlike with respect to the origin and $Re\{\frac{M'(z)}{N'(z)}\} > 0$ in U, then $Re\{\frac{M(z)}{N(z)}\} > 0$ in U.

Theorem 2 [6] Let $f_i \in T_{n,\mu_i}$ $(i = 1, 2, ..., k; k \in N^*)$ be defined by

(3)
$$f_i(z) = z + \sum_{n=2}^{\infty} a_n^i z^n$$

for all $i = 1, 2, ..., k; \alpha, \beta \in \mathcal{C}; R\{\beta\} \ge \gamma$ and $\gamma = \sum_{i=1}^{k} \frac{1 + (1 + \mu_i)M}{|\alpha|} (M \ge 1, 0 < \mu_i < 1, k \in N^*)$. If $|f_i(z)| \le M(z \in U), i = 1, 2, ..., k$ then, the integral

operator

(4)
$$F_{\alpha,\beta}(z) = \{\beta \int_0^z t^{\beta-1} \prod_{i=1}^{\kappa} (\frac{f_i(t)}{t})^{\frac{1}{\alpha}} dt\}^{\frac{1}{\beta}}$$

is univalent.

Theorem 3 [2] Let h be convex in U and $Re\{\beta h(z) + \gamma\} > 0, z \in U.$ If $p \in$ H(U) where H(U) is the class of functions which are analytic in the unit disk, with p(0) = h(0) and p satisfies the Briot-Bouquet differential subordinations: $p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z), z \in U.$ Then, $p(z) \prec h(z), z \in U.$

3 Main Results

We now give the proof of the following results:

Theorem 4 Let $F_{\alpha}(z)$ be the function in U defined by

(5)
$$F_{\alpha}(z) = \int_0^z \prod_{i=1}^k (\frac{f_i(s)}{s})^{\frac{1}{\alpha}} ds, \alpha \in C$$

If $f_i \in S^*$ then, $F(z) \in S^*$ where f_i is as in equation (3) above.

Proof. By differentiating (5), we obtain: $F'(z) = \prod_{i=1}^{k} (\frac{f_i(z)}{z})^{\frac{1}{\alpha}}$. Thus, $\frac{zF'(z)}{F(z)} = \frac{\prod_{i=1}^{k} (\frac{f_i(z)}{z})^{\frac{1}{\alpha}}}{\int_0^z \prod_{i=1}^{k} (\frac{f_i(s)}{s})^{\frac{1}{\alpha}} ds}.$ Let

(6)
$$M = zF'(z), N(z) = F(z)$$

From (5) and (6) we have:

$$\frac{M'(z)}{N'(z)} = 1 + \frac{zF''(z)}{F'(z)}, \ \frac{M'(z)}{N'(z)} = 1 + \frac{\sum_{i=1}^{k} \frac{1}{\alpha} (\frac{zf_i'(z)}{f(z)} - 1)}{\prod_{i=1}^{k} (\frac{f_i(z)}{z})^{\frac{1}{\alpha}}}$$
$$|\frac{M'(z)}{N'(z)} - 1| = \frac{|\sum_{i=1}^{k} \frac{1}{\alpha} (\frac{zf_i'(z)}{f(z)} - 1)|}{|\prod_{i=1}^{k} (\frac{f_i(z)}{z})^{\frac{1}{\alpha}}|} \le \frac{\sum_{i=1}^{k} |\frac{1}{\alpha}| |\frac{zf_i'(z)}{f(z)} - 1|}{|\prod_{i=1}^{k} (\frac{f_i(z)}{z})^{\frac{1}{\alpha}}|}$$

By hypothesis $f_i \in S^*$. This means that $\left|\frac{zf'_i(z)}{f(z)} - 1\right| < 1$, which implies that $\left|\frac{M'(z)}{N'(z)} - 1\right| < 1$. Thus $Re\{\frac{M'(z)}{N'(z)}\} > 0$ and by Theorem 1, $Re\{\frac{M(z)}{N(z)}\} > 0$. This implies that $Re\{\frac{zF'(z)}{F(z)}\} > 0$. Hence $F \in S^*$.

Remark 1 The integral in (5) is equivalent to that in (4) of section 2 with $\beta = 1$.

Let $S = \{f : U \to C\} \cap S$. Let $F(z) \in U$ be defined by

(7)
$$F(z) = \int_0^z \prod_{i=1}^k (\frac{f_i(s)}{s})^{\frac{1}{\alpha}} ds$$

Theorem 5 Let $z \in U, \alpha \in C$, $Re\alpha > 0$ and $m_\alpha = M_\alpha \cap s$. If $F \in m_\alpha$, then $F \in S^*$ that is $m_\alpha \subset S^*$.

Proof. From (6) above, we have $\frac{F(z)F'(z)}{z} \neq 0$ and for $F \in m_{\alpha}$, we have

(8)
$$ReJ(\alpha, f; z) = Re\{(1-\alpha)\frac{zF'(z)}{F(z)} + \alpha(1 + \frac{zF'(z)}{F(z)})\}$$

for $p(z) = \frac{zF'(z)}{F(z)}, \frac{zp'(z)}{p(z)} = 1 + \frac{zF''(z)}{F'(z)} - p(z)$. This implies that

(9)
$$1 + \frac{zF''(z)}{F'(z)} = \frac{zp'(z)}{p(z)} + p(z)$$

using (7) and (9) in (8), we obtain

(10)
$$ReJ(\alpha, f; z) = Re\{(1 - \alpha)p(z) + \alpha(\frac{zp'(z)}{p(z)} + p(z))\}.$$

Simplifying (10), we obtain $ReJ(\alpha, f; z) = Re\{p(z) + \alpha(\frac{zp'(z)}{p(z)})\}$ $p(0) + \frac{\alpha zp'(0)}{p(0)} = 1$ and p(0) = h(0) = 1. Thus, using Theorem 3 with $\beta = 1$ and $\gamma = 0$, we have $p(z) + \frac{\alpha zp'(z)}{p(z)} < h(z) = \frac{1+z}{1-z}$. This implies that $p(z) \prec h(z)$. That is $Re\{p(z)\} > 0$. Thus, $Re\{\frac{zF'(z)}{F(z)}\} > 0$. Hence, $F \in S^*$.

References

- S.A. Halim, On a class of Analytic Functions involing, Tamkang, Journal of Mathematics vol.23 Number 1, Spring 1992.
- [2] M. Acu and S. Owa, On some subclasses of univalent function, Journal of inequalities in pure and applied mathematics, vol. 6,(3) art 70, 2005.
- [3] S. Kanas and F. Ronning, Uniformly Starlike and convex functions and other related classes of univalent functions, Ann University, Marie Curie-Sklodowska Section A, 53, 1999, 95-105.
- [4] S.S. Miller and P.T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, Journal of Differential equations, 56, 1985, 297-309.
- [5] S. Ozaki and M.Nunokawa, The Schwarzian derivative and Univalent functions,, Pro. Ameri.Math. Soc., 33, 1972, 302-394.

[6] N. Seenivasagan, Sufficient Conditions for Univalence, Applied Mathematics E-Notes, 8, 2008, 30-35.

D. O. Makinde

Department of Mathematics Obafemi Awolowo University Ile Ife 220005, Nigeria e-mail: dmakinde@oauife.edu.ng, makindemyiuv@yahoo.com

Timothy O. Opoola

University of Ilorin Mathematics Department of Mathematics, University of Ilorin, Ilorin,Nigeria e-mail: opoolato@unilorin.edu.ng