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Differential subordination for classes of normalized
analytic functions 1
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Abstract

We determine the sufficient conditions for subordination for new

classes of normalized analytic functions with applications in fractional

calculus in complex domain.
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1 Introduction and preliminaries.

Let A+
α be the class of all normalized analytic functions F (z) in the open disk

U := {z ∈ C, |z| < 1}, take the form

F (z) = z +
∞

∑

n=2

an,αz
n+α−1, 0 < α ≤ 1,

where a0,1 = 0, a1,1 = 1 satisfying F (0) = 0 and F ′(0) = 1. And let A−

α be

the class of all normalized analytic functions F (z) in the open disk U take the

form

F (z) = z −
∞

∑

n=2

an,αz
n+α−1, an,α ≥ 0; n = 2, 3, ...,
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satisfying F (0) = 0 and F ′(0) = 1. With a view to recalling the principle

of subordination between analytic functions, let the functions f and g be

analytic in U. Then we say that the function f is subordinate to g if there

exists a Schwarz function w(z), analytic in U such that

f(z) = g(w(z)), z ∈ U.

We denote this subordination by

f ≺ g or f(z) ≺ g(z), z ∈ U.

If the function g is univalent in U the above subordination is equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

Let φ : C
3 ×U → C and let h be univalent in U. Assume that p, φ are analytic

and univalent in U if p satisfies the differential superordination

(1) h(z) ≺ φ(p(z)), zp′(z), z2p′′(z); z),

then p is called a solution of the differential superordination.(If f is subordinate

to g, then g is called to be superordinate to f. )An analytic function q is called

a subordinant if q ≺ p for all p satisfying (1). An univalent function q such

that p ≺ q for all subordinants p of (1) is said to be the best subordinant.

Let A be the class of analytic functions of the form f(z) = z + a2z
2 + ... .

Obradović and Owa [1] obtained sufficient conditions for certain normalized

analytic functions f(z) ∈ A to satisfy

q1(z) ≺ [
f(z)

z
]µ ≺ q2(z)

where q1 and q2 are given univalent functions in U. The main object of the

present work is to apply a method based on the differential subordination in

order to derive sufficient conditions for functions F ∈ A+
α and F ∈ A−

α to

satisfy

(2) [
F (z)

z
]µ ≺ q(z)

where q(z) is a given univalent function in U such that q(z) 6= 0. Moreover,

we give applications for these results in fractional calculus. We shall need the

following known results.
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Lemma 1 [2] Let q(z) be univalent in the unit disk U and θ and φ be analytic

in a domain D containing q(U) with φ(w) 6= 0 when w ∈ q(U). Set Q(z) :=

zq′(z)φ(q(z)), h(z) := θ(q(z)) +Q(z). Suppose that

1. Q(z) is starlike univalent in U , and

2. < zh′(z)
Q(z) > 0 for z ∈ U.

If θ(p(z))+zp′(z)φ(p(z)) ≺ θ(q(z))+zq′(z)φ(q(z)) then p(z) ≺ q(z) and q(z)

is the best dominant.

Lemma 2 [3] Let q(z) be convex univalent in the unit disk U and ψ and γ ∈ C

with <{1 + zq′′(z)
q′(z) + ψ

γ
} > 0. If p(z) is analytic in U and ψp(z) + γzp′(z) ≺

ψq(z) + γzq′(z), then p(z) ≺ q(z) and q is the best dominant.

2 Main results.

In this section, we study sufficient subordination normalized analytic functions

in the classes A+
α and A−

α .

Theorem 1 Let the function q(z) be univalent in the unit disk U such that

q(z) 6= 0, zq
′(z)
q(z) is starlike univalent in U and

(3) <{1 + (
a

bz
+ 1)(

zq′′(z)

q′(z)
−
zq′(z)

q(z)
)} > 0, b 6= 0, z 6= 0, q′(z) 6= 0, z ∈ U.

If F ∈ A+
α satisfies the subordination

(a+ bz)
µ

z
(
zF ′(z)

F (z)
− 1) ≺ (a+ bz)

q′(z)

q(z)
, F (z) 6= 0, z ∈ U.

Then

(
F (z)

z
)µ ≺ q(z), z 6= 0, z ∈ U,

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

p(z) := (
F (z)

z
)µ, z 6= 0, z ∈ U.

By setting

θ(ω) :=
aω′

ω
and φ(ω) :=

b

ω
, b 6= 0,
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it can easily be observed that θ(ω) is analytic in C − {0}, φ(ω) is analytic in

C − {0} and that φ(ω) 6= 0, ω ∈ C − {0}. Also we obtain

Q(z) = zq′(z)φ(q(z)) =
bzq′(z)

q(z)
and h(z) = θ(q(z)) +Q(z) = (a+ bz)

q′(z)

q(z)
.

It is clear that Q(z) is starlike univalent in U,

<{
zh′(z)

Q(z)
= <{1 + (

a

bz
+ 1)(

zq′′(z)

q′(z)
−
zq′(z)

q(z)
)} > 0.

Straightforward computation, we have

(a+ bz)
p′(z)

p(z)
= (a+ bz)

µ

z
(
zF ′(z)

F (z)
− 1)

≺ (a+ bz)
q′(z)

q(z)

Then by the assumption of the theorem we have that the assertion of the

theorem follows by an application of Lemma 1.

Corollary 1 Assume that (3) holds and q is convex univalent in U. If F ∈ A+
α

and

(a+ bz)
µ

z
(
zF ′(z)

F (z)
− 1) ≺ µ(a+ bz)

A−B

(1 +Az)(1 +Bz)
,

then

(
F (z)

z
)µ ≺ (

1 +Az

1 +Bz
)µ, −1 ≤ B < A ≤ 1

and q(z) = ( 1+Az
1+Bz )

µ is the best dominant.

Corollary 2 Assume that (3) holds and q is convex univalent in U. If F ∈ A+
α

and

(a+ bz)
µ

z
(
zF ′(z)

F (z)
− 1) ≺ (a+ bz)

2µ

(1 + z)(1 − z)
,

for z ∈ U, µ 6= 0, then

(
F (z)

z
)µ ≺ (

1 + z

1 − z
)µ

and q(z) = (1+z
1−z )

µ is the best dominant.
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Corollary 3 Assume that (3) holds and q is convex univalent in U. If F ∈ A+
α

and

(a+ bz)
µ

z
(
zF ′(z)

F (z)
− 1) ≺ µA(a+ bz)

for z ∈ U, µ 6= 0, then

(
F (z)

z
)µ ≺ eµAz

and q(z) = eµAz is the best dominant.

Theorem 2 Let the function q(z) be convex univalent in the unit disk U such

that q′(z) 6= 0 and

(4) <{1 +
zq′′(z)

q′(z)
+

1

γ
} > 0, γ 6= 0.

Suppose that (F (z)
z

)µ is analytic in U. If F ∈ A−

α satisfies the subordination

(
F (z)

z
)µ[1 + γµ(

zF ′(z)

F (z)
− 1)] ≺ q(z) + γzq′(z), F (z) 6= 0.

Then

(
F (z)

z
)µ ≺ q(z), z ∈ U, z 6= 0

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

p(z) := (
F (z)

z
)µ, z 6= 0, , z ∈ U.

By setting ψ = 1, it can easily be observed that

p(z) + γzp′(z) = (
F (z)

z
)µ[1 + γµ(

zF ′(z)

F (z)
− 1)]

≺ q(z) + γzq′(z).

Then by the assumption of the theorem we have that the assertion of the

theorem follows by an application of Lemma 2.
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Corollary 4 Assume that (4) holds and q is convex univalent in U. If F ∈ A−

α

and

(
F (z)

z
)µ[1 + γµ(

zF ′(z)

F (z)
− 1)] ≺ (

1 +Az

1 +Bz
)µ + µγz(A−B)

(1 +Az)µ−1

(1 +Bz)µ+1

then

(
F (z)

z
)µ ≺ (

1 +Az

1 +Bz
)µ, −1 ≤ B < A ≤ 1

and q(z) = ( 1+Az
1+Bz )

µ is the best dominant.

Corollary 5 Assume that (4) holds and q is convex univalent in U. If F ∈ A−

α

and

(
F (z)

z
)µ[1 + γµ(

zF ′(z)

F (z)
− 1)] ≺ [

1 + z

1 − z
]µ{1 +

2γµz

1 − z2
}

for z ∈ U, µ 6= 0, then

(
F (z)

z
)µ ≺ (

1 + z

1 − z
)µ

and q(z) = (1+z
1−z )

µ is the best dominant.

Corollary 6 Assume that (4) holds and q is convex univalent in U. If F ∈ A−

α

and

(
F (z)

z
)µ[1 + γµ(

zF ′(z)

F (z)
− 1)] ≺ eµAz(1 + µγAz)

for z ∈ U, µ 6= 0, then

(
F (z)

z
)µ ≺ eµAz

and q(z) = eµAz is the best dominant.

3 Applications.

In this section, we introduce some applications of section (2) containing frac-

tional integral operators. Assume that f(z) =
∑

∞

n=2 ϕnz
n and let us begin

with the following definitions

Definition 1 [4] The fractional integral of order α is defined, for a function

f, by

Iαz f(z) :=
1

Γ(α)

∫ z

0
f(ζ)(z − ζ)α−1dζ; α > 0,



Differential subordination... 47

where the function f(z) is analytic in simply-connected region of the complex

z-plane (C) containing the origin and the multiplicity of (z− ζ)α−1 is removed

by requiring log(z − ζ) to be real when(z − ζ) > 0.

From Definition 1 and see ([5]), thus z + Iαz f(z) ∈ A+
α and z − Iαz f(z) ∈

A−

α (ϕn ≥ 0), then we have the following results

Theorem 3 Let the assumptions of Theorem 1 hold, then

(
z + Iαz f(z)

z
)µ ≺ q(z),

and q(z) is the best dominant.

Proof. Let the function F (z) be defined by

F (z) := z + Iαz f(z), z ∈ U, z 6= 0.

Theorem 4 Let the assumptions of Theorem 2 hold, then

(
z − Iαz f(z)

z
)µ ≺ q(z),

and q(z) is the best dominant.

Proof. Let the function F (z) be defined by

F (z) := z − Iαz f(z), z ∈ U, z 6= 0.

Let F (a, b; c; z) be the Gauss hypergeometric function (see [6]) defined, for

z ∈ U, by

F (a, b; c; z) =
∞

∑

n=0

(a)n(b)n
(c)n(1)n

zn,

where is the Pochhammer symbol defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

{

1, (n = 0);

a(a+ 1)(a+ 2)...(a+ n− 1), (n ∈ N).

We need the following definitions of fractional operators in the Saigo type

fractional calculus (see [7],[8]).
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Definition 2 For α > 0 and β, η ∈ R, the fractional integral operator Iα,β,η0,z

is defined by

I
α,β,η
0,z f(z) =

z−α−β

Γ(α)

∫ z

0
(z − ζ)α−1F (α+ β,−η;α; 1 −

ζ

z
)f(ζ)dζ

where the function f(z) is analytic in a simply-connected region of the z−plane

containing the origin, with the order

f(z) = O(|z|ε)(z → 0), ε > max{0, β − η} − 1

and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to be real

when z − ζ > 0.

From Definition 2, with β < 0, we have

I
α,β,η
0,z f(z) =

z−α−β

Γ(α)

∫ z

0
(z − ζ)α−1F (α+ β,−η;α; 1 −

ζ

z
)f(ζ)dζ

=

∞
∑

n=0

(α+ β)n(−η)n
(α)n(1)n

z−α−β

Γ(α)

∫ z

0
(z − ζ)α−1(1 −

ζ

z
)nf(ζ)dζ

:=

∞
∑

n=0

Bn
z−α−β−n

Γ(α)

∫ z

0
(z − ζ)n+α−1f(ζ)dζ

=

∞
∑

n=0

Bn
z−β−1

Γ(α)
f(ζ)

:=
B

Γ(α)

∞
∑

n=2

ϕnz
n−β−1

where B :=
∑

∞

n=0Bn. Denote an := Bϕn

Γ(α) , ∀n = 2, 3, ..., and let α = −β thus

z + I
α,β,η
0,z f(z) ∈ A+

α and z − I
α,β,η
0,z f(z) ∈ A−

α (ϕn ≥ 0), then we have the

following results

Theorem 5 Let the assumptions of Theorem 1 hold, then

(
z + I

α,β,η
0,z f(z)

z
)µ ≺ q(z),

and q(z) is the best dominant.
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Proof. Let the function F (z) be defined by

F (z) := z + I
α,β,η
0,z f(z), z ∈ U, z 6= 0.

Theorem 6 Let the assumptions of Theorem 2 hold, then

(
z − I

α,β,η
0,z f(z)

z
)µ ≺ q(z),

and q(z) is the best dominant.

Proof. Let the function F (z) be defined by

F (z) := z − I
α,β,η
0,z f(z), z ∈ U, z 6= 0.
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