General Mathematics Vol. 18, No. 3 (2010), 41-50

Differential subordination for classes of normalized analytic functions¹

Rabha W. Ibrahim, Maslina Darus

Abstract

We determine the sufficient conditions for subordination for new classes of normalized analytic functions with applications in fractional calculus in complex domain.

2010 Mathematics Subject Classification: 34G10, 26A33, 30C45. Key words and phrases: Fractional calculus, Subordination.

1 Introduction and preliminaries.

Let \mathcal{A}^+_{α} be the class of all normalized analytic functions F(z) in the open disk $U := \{z \in \mathbb{C}, |z| < 1\}$, take the form

$$F(z) = z + \sum_{n=2}^{\infty} a_{n,\alpha} z^{n+\alpha-1}, \ 0 < \alpha \le 1,$$

where $a_{0,1} = 0$, $a_{1,1} = 1$ satisfying F(0) = 0 and F'(0) = 1. And let \mathcal{A}_{α}^{-} be the class of all normalized analytic functions F(z) in the open disk U take the form

$$F(z) = z - \sum_{n=2}^{\infty} a_{n,\alpha} z^{n+\alpha-1}, \ a_{n,\alpha} \ge 0; \ n = 2, 3, ...,$$

¹Received 17 February, 2009

Accepted for publication (in revised form) 25 March, 2009

satisfying F(0) = 0 and F'(0) = 1. With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in U. Then we say that the function f is *subordinate* to g if there exists a Schwarz function w(z), analytic in U such that

$$f(z) = g(w(z)), \ z \in U.$$

We denote this subordination by

$$f \prec g \text{ or } f(z) \prec g(z), z \in U.$$

If the function g is univalent in U the above subordination is equivalent to

$$f(0) = g(0)$$
 and $f(U) \subset g(U)$.

Let $\phi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let *h* be univalent in *U*. Assume that p, ϕ are analytic and univalent in *U* if *p* satisfies the differential superordination

(1)
$$h(z) \prec \phi(p(z)), zp'(z), z^2 p''(z); z),$$

then p is called a solution of the differential superordination.(If f is subordinate to g, then g is called to be superordinate to f.)An analytic function q is called a *subordinant* if $q \prec p$ for all p satisfying (1). An univalent function q such that $p \prec q$ for all subordinants p of (1) is said to be the best subordinant.

Let \mathcal{A} be the class of analytic functions of the form $f(z) = z + a_2 z^2 + \dots$. Obradović and Owa [1] obtained sufficient conditions for certain normalized analytic functions $f(z) \in \mathcal{A}$ to satisfy

$$q_1(z) \prec [\frac{f(z)}{z}]^{\mu} \prec q_2(z)$$

where q_1 and q_2 are given univalent functions in U. The main object of the present work is to apply a method based on the differential subordination in order to derive sufficient conditions for functions $F \in \mathcal{A}^+_{\alpha}$ and $F \in \mathcal{A}^-_{\alpha}$ to satisfy

(2)
$$\left[\frac{F(z)}{z}\right]^{\mu} \prec q(z)$$

where q(z) is a given univalent function in U such that $q(z) \neq 0$. Moreover, we give applications for these results in fractional calculus. We shall need the following known results.

Lemma 1 [2] Let q(z) be univalent in the unit disk U and θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set Q(z) := $zq'(z)\phi(q(z)), h(z) := \theta(q(z)) + Q(z)$. Suppose that 1. Q(z) is starlike univalent in U, and 2. $\Re \frac{zh'(z)}{Q(z)} > 0$ for $z \in U$. If $\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$ then $p(z) \prec q(z)$ and q(z)is the best dominant.

Lemma 2 [3] Let q(z) be convex univalent in the unit disk U and ψ and $\gamma \in \mathbb{C}$ with $\Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}\} > 0$. If p(z) is analytic in U and $\psi p(z) + \gamma zp'(z) \prec \psi q(z) + \gamma zq'(z)$, then $p(z) \prec q(z)$ and q is the best dominant.

2 Main results.

In this section, we study sufficient subordination normalized analytic functions in the classes \mathcal{A}^+_{α} and \mathcal{A}^-_{α} .

Theorem 1 Let the function q(z) be univalent in the unit disk U such that $q(z) \neq 0, \frac{zq'(z)}{q(z)}$ is starlike univalent in U and

(3)
$$\Re\{1 + (\frac{a}{bz} + 1)(\frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)})\} > 0, \ b \neq 0, \ z \neq 0, \ q'(z) \neq 0, \ z \in U.$$

If $F \in \mathcal{A}^+_{\alpha}$ satisfies the subordination

$$(a+bz)\frac{\mu}{z}(\frac{zF'(z)}{F(z)}-1) \prec (a+bz)\frac{q'(z)}{q(z)}, \ F(z) \neq 0, \ z \in U.$$

Then

$$(\frac{F(z)}{z})^{\mu} \prec q(z), \quad z \neq 0, \ z \in U,$$

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

$$p(z) := (\frac{F(z)}{z})^{\mu}, \ z \neq 0, \ z \in U.$$

By setting

$$\theta(\omega) := \frac{a\omega'}{\omega} \text{ and } \phi(\omega) := \frac{b}{\omega}, \ b \neq 0,$$

it can easily be observed that $\theta(\omega)$ is analytic in $\mathbb{C} - \{0\}$, $\phi(\omega)$ is analytic in $\mathbb{C} - \{0\}$ and that $\phi(\omega) \neq 0$, $\omega \in \mathbb{C} - \{0\}$. Also we obtain

$$Q(z) = zq'(z)\phi(q(z)) = \frac{bzq'(z)}{q(z)} \text{ and } h(z) = \theta(q(z)) + Q(z) = (a+bz)\frac{q'(z)}{q(z)}.$$

It is clear that Q(z) is starlike univalent in U,

$$\Re\{\frac{zh'(z)}{Q(z)} = \Re\{1 + (\frac{a}{bz} + 1)(\frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)})\} > 0.$$

Straightforward computation, we have

$$(a+bz)\frac{p'(z)}{p(z)} = (a+bz)\frac{\mu}{z}(\frac{zF'(z)}{F(z)}-1)$$
$$\prec (a+bz)\frac{q'(z)}{q(z)}$$

Then by the assumption of the theorem we have that the assertion of the theorem follows by an application of Lemma 1.

Corollary 1 Assume that (3) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$(a+bz)\frac{\mu}{z}(\frac{zF'(z)}{F(z)}-1) \prec \mu(a+bz)\frac{A-B}{(1+Az)(1+Bz)},$$

then

$$(\frac{F(z)}{z})^{\mu} \prec (\frac{1+Az}{1+Bz})^{\mu}, \ -1 \le B < A \le 1$$

and $q(z) = (\frac{1+Az}{1+Bz})^{\mu}$ is the best dominant.

Corollary 2 Assume that (3) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$(a+bz)\frac{\mu}{z}(\frac{zF'(z)}{F(z)}-1) \prec (a+bz)\frac{2\mu}{(1+z)(1-z)},$$

for $z \in U, \mu \neq 0$, then

$$(\frac{F(z)}{z})^{\mu} \prec (\frac{1+z}{1-z})^{\mu}$$

and $q(z) = (\frac{1+z}{1-z})^{\mu}$ is the best dominant.

Corollary 3 Assume that (3) holds and q is convex univalent in U. If $F \in \mathcal{A}^+_{\alpha}$ and

$$(a+bz)\frac{\mu}{z}(\frac{zF'(z)}{F(z)}-1) \prec \mu A(a+bz)$$

for $z \in U, \ \mu \neq 0$, then

$$(\frac{F(z)}{z})^{\mu} \prec e^{\mu A z}$$

and $q(z) = e^{\mu A z}$ is the best dominant.

Theorem 2 Let the function q(z) be convex univalent in the unit disk U such that $q'(z) \neq 0$ and

(4)
$$\Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\gamma}\} > 0, \ \gamma \neq 0.$$

Suppose that $(\frac{F(z)}{z})^{\mu}$ is analytic in U. If $F \in \mathcal{A}_{\alpha}^{-}$ satisfies the subordination

$$\left(\frac{F(z)}{z}\right)^{\mu} \left[1 + \gamma \mu \left(\frac{zF'(z)}{F(z)} - 1\right)\right] \prec q(z) + \gamma z q'(z), \ F(z) \neq 0.$$

Then

$$\left(\frac{F(z)}{z}\right)^{\mu} \prec q(z), \ z \in U, \ z \neq 0$$

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

$$p(z) := (\frac{F(z)}{z})^{\mu}, \ z \neq 0, , z \in U$$

By setting $\psi = 1$, it can easily be observed that

$$p(z) + \gamma z p'(z) = \left(\frac{F(z)}{z}\right)^{\mu} \left[1 + \gamma \mu \left(\frac{zF'(z)}{F(z)} - 1\right)\right]$$
$$\prec q(z) + \gamma z q'(z).$$

Then by the assumption of the theorem we have that the assertion of the theorem follows by an application of Lemma 2.

Corollary 4 Assume that (4) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$ and

$$\left(\frac{F(z)}{z}\right)^{\mu}\left[1+\gamma\mu\left(\frac{zF'(z)}{F(z)}-1\right)\right] \prec \left(\frac{1+Az}{1+Bz}\right)^{\mu}+\mu\gamma z(A-B)\frac{(1+Az)^{\mu-1}}{(1+Bz)^{\mu+1}}$$

then

$$(\frac{F(z)}{z})^{\mu} \prec (\frac{1+Az}{1+Bz})^{\mu}, \ -1 \le B < A \le 1$$

and $q(z) = (\frac{1+Az}{1+Bz})^{\mu}$ is the best dominant.

Corollary 5 Assume that (4) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$ and

$$\left(\frac{F(z)}{z}\right)^{\mu}\left[1+\gamma\mu\left(\frac{zF'(z)}{F(z)}-1\right)\right] \prec \left[\frac{1+z}{1-z}\right]^{\mu}\left\{1+\frac{2\gamma\mu z}{1-z^2}\right\}$$

for $z \in U, \mu \neq 0$, then

$$\left(\frac{F(z)}{z}\right)^{\mu} \prec \left(\frac{1+z}{1-z}\right)^{\mu}$$

and $q(z) = (\frac{1+z}{1-z})^{\mu}$ is the best dominant.

Corollary 6 Assume that (4) holds and q is convex univalent in U. If $F \in \mathcal{A}_{\alpha}^{-}$ and

$$\left(\frac{F(z)}{z}\right)^{\mu}\left[1+\gamma\mu\left(\frac{zF'(z)}{F(z)}-1\right)\right] \prec e^{\mu A z}(1+\mu\gamma A z)$$

for $z \in U, \ \mu \neq 0, \ then$

$$(\frac{F(z)}{z})^{\mu} \prec e^{\mu A z}$$

and $q(z) = e^{\mu A z}$ is the best dominant.

3 Applications.

In this section, we introduce some applications of section (2) containing fractional integral operators. Assume that $f(z) = \sum_{n=2}^{\infty} \varphi_n z^n$ and let us begin with the following definitions

Definition 1 [4] The fractional integral of order α is defined, for a function f, by

$$I_z^{\alpha}f(z) := \frac{1}{\Gamma(\alpha)} \int_0^z f(\zeta)(z-\zeta)^{\alpha-1} d\zeta; \quad \alpha > 0,$$

where the function f(z) is analytic in simply-connected region of the complex z-plane (\mathbb{C}) containing the origin and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta) > 0$.

From Definition 1 and see ([5]), thus $z + I_z^{\alpha} f(z) \in \mathcal{A}_{\alpha}^+$ and $z - I_z^{\alpha} f(z) \in \mathcal{A}_{\alpha}^-$ ($\varphi_n \ge 0$), then we have the following results

Theorem 3 Let the assumptions of Theorem 1 hold, then

$$(\frac{z+I_z^{\alpha}f(z)}{z})^{\mu} \prec q(z),$$

and q(z) is the best dominant.

Proof. Let the function F(z) be defined by

$$F(z) := z + I_z^{\alpha} f(z), \quad z \in U, \ z \neq 0.$$

Theorem 4 Let the assumptions of Theorem 2 hold, then

$$\left(\frac{z-I_z^{\alpha}f(z)}{z}\right)^{\mu} \prec q(z),$$

and q(z) is the best dominant.

Proof. Let the function F(z) be defined by

$$F(z) := z - I_z^{\alpha} f(z), \quad z \in U, \ z \neq 0.$$

Let F(a, b; c; z) be the Gauss hypergeometric function (see [6]) defined, for $z \in U$, by

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} z^n,$$

where is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)\dots(a+n-1), & (n \in \mathbb{N}). \end{cases}$$

We need the following definitions of fractional operators in the Saigo type fractional calculus (see [7], [8]).

Definition 2 For $\alpha > 0$ and $\beta, \eta \in \mathbb{R}$, the fractional integral operator $I_{0,z}^{\alpha,\beta,\eta}$ is defined by

$$I_{0,z}^{\alpha,\beta,\eta}f(z) = \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} F(\alpha+\beta,-\eta;\alpha;1-\frac{\zeta}{z}) f(\zeta) d\zeta$$

where the function f(z) is analytic in a simply-connected region of the z-plane containing the origin, with the order

$$f(z) = O(|z|^{\epsilon})(z \to 0), \ \epsilon > max\{0, \beta - \eta\} - 1$$

and the multiplicity of $(z - \zeta)^{\alpha-1}$ is removed by requiring $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

From Definition 2, with $\beta < 0$, we have

$$\begin{split} I_{0,z}^{\alpha,\beta,\eta}f(z) &= \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} F(\alpha+\beta,-\eta;\alpha;1-\frac{\zeta}{z}) f(\zeta) d\zeta \\ &= \sum_{n=0}^\infty \frac{(\alpha+\beta)_n(-\eta)_n}{(\alpha)_n(1)_n} \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} (1-\frac{\zeta}{z})^n f(\zeta) d\zeta \\ &:= \sum_{n=0}^\infty B_n \frac{z^{-\alpha-\beta-n}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{n+\alpha-1} f(\zeta) d\zeta \\ &= \sum_{n=0}^\infty B_n \frac{z^{-\beta-1}}{\Gamma(\alpha)} f(\zeta) \\ &:= \frac{\overline{B}}{\Gamma(\alpha)} \sum_{n=2}^\infty \varphi_n z^{n-\beta-1} \end{split}$$

where $\overline{B} := \sum_{n=0}^{\infty} B_n$. Denote $a_n := \frac{\overline{B}\varphi_n}{\Gamma(\alpha)}$, $\forall n = 2, 3, ...,$ and let $\alpha = -\beta$ thus $z + I_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{A}^+_{\alpha}$ and $z - I_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{A}^-_{\alpha}$ ($\varphi_n \ge 0$), then we have the following results

Theorem 5 Let the assumptions of Theorem 1 hold, then

$$(\frac{z+I_{0,z}^{\alpha,\beta,\eta}f(z)}{z})^{\mu}\prec q(z),$$

and q(z) is the best dominant.

Proof. Let the function F(z) be defined by

$$F(z) := z + I_{0,z}^{\alpha,\beta,\eta} f(z), \quad z \in U, \, z \neq 0.$$

Theorem 6 Let the assumptions of Theorem 2 hold, then

$$\left(\frac{z-I_{0,z}^{\alpha,\beta,\eta}f(z)}{z}\right)^{\mu} \prec q(z),$$

and q(z) is the best dominant.

Proof. Let the function F(z) be defined by

$$F(z) := z - I_0^{\alpha,\beta,\eta} f(z), \quad z \in U, \ z \neq 0.$$

Acknowledgement The work here is supported by UKM-ST-06-FRGS0107-2009, MOHE, MALAYSIA

References

- M. Obradović, S.Owa, On certain properties for some classes of starlike functions, J.Math. Anal. Appl., 145(2), 1990, 357-364.
- S.S.Miller, P.T.Mocanu, Differential Subordinantions: Theory and Applications. Pure and Applied Mathematics, No.225 Dekker, New York, 2000.
- [3] T.N.Shanmugam, V.Ravichangran, S.Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal.Appl.3(1), 2006,1-11.
- [4] H.M.Srivastava, S.Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
- [5] K.S.Miller, B.Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, John-Wiley and Sons, Inc., 1993.
- [6] H.M.Srivastava, S.Owa(Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [7] R.K.Raina, H.M.Srivastava, A certain subclass of analytic functions associated with operators of fractional calculus, Comut. Math. Appl., 32, 1996, 13-19.

[8] R.K.Raina, On certain class of analytic functions and applications to fractional calculus operator, Integral Transf and Special Function.5, 1997, 247-260.

¹Rabha W. Ibrahim, ²Maslina Darus

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia UKM Bangi 43600, Selangor D. Ehsan,Malaysia e-mail: ¹rabhaibrahim@yahoo.com , ²maslina@ukm.my