Starlikeness of analytic maps satisfying a differential inequality ${ }^{1}$

Sukhwinder Singh, Sushma Gupta, Sukhjit Singh

Abstract

In the present note, the authors present a criterion for starlikeness of analytic maps satisfying a differential inequality in the open unit disc $\mathbb{E}=$ $\{z:|z|<1\}$ and claim that their result unifies a number of previously known results in this direction.

2010 Mathematics Subject Classification: Primary 30C80, Secondary 30C45.
Key words and phrases: Analytic function, Starlike function, α-convex function.

1 Introduction

Let \mathcal{A} be the class of functions f, analytic in $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Denote by $S^{*}(\alpha)$, the class of starlike functions of order α, which is analytically defined as follows:

$$
S^{*}(\alpha)=\left\{f \in \mathcal{A}: \Re \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathbb{E}\right\}
$$

where α is a real number such that $0 \leq \alpha<1$.
We write $S^{*}=S^{*}(0)$. Therefore S^{*} is the class of univalent starlike functions (w.r.t. the origin).

[^0]Obtaining different criteria for starlikeness of an analytic function has always been a subject of interest e.g. Miller, Mocanu and Reade [5] studied the class of α-convex functions and proved that if a function $f \in \mathcal{A}$ satisfies the differential inequality

$$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0, z \in \mathbb{E}
$$

where α is any real number, then f is starlike in \mathbb{E}. Lewandowski et al.[2] proved that for a function $f \in \mathcal{A}$, the differential inequality

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}+\frac{z^{2} f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0, z \in \mathbb{E}
$$

ensures membership for f in the class S^{*}. For more such results, we refer the reader to [3], [6], [7] and [8].

In the present paper, we generalize these sufficient conditions and obtain an interesting criterion for starlikeness. In Section 4, we show that some wellknown results follow as corollaries to our result.

2 Preliminaries

We shall need the following lemma of Miller and Mocanu [4] to prove our result.

Lemma 1 Let Ω be a set in the complex plane \mathbb{C} and let $\psi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$, assume that ψ satisfies the condition $\psi\left(i u_{2}, v_{1} ; z\right) \notin$ Ω, for all $u_{2}, v_{1} \in \mathbb{R}$, with $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$ and for all $z \in \mathbb{E}$. If the function $p, p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$, is analytic in \mathbb{E} and if $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$, then $\Re p(z)>0$ in \mathbb{E}.

3 Main Theorem

Theorem 2 Let α, $\alpha \geq 0, \lambda, 0 \leq \lambda<1$, and $\beta, 0 \leq \beta \leq 1$, be given real numbers.
(i) For $1 / 2 \leq \lambda<1$, if a function $f \in \mathcal{A}, \frac{f(z)}{z} \neq 0$ in \mathbb{E}, satisfies
$\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\alpha \beta\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>M(\alpha, \beta, \lambda)$,
then $f \in S^{*}(\lambda)$.
(ii) For $0 \leq \lambda<1 / 2$, let a function $f \in \mathcal{A}, \frac{f(z)}{z} \neq 0$ in \mathbb{E}, satisfy
(a)
(2)
$\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\alpha \beta\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>M(\alpha, \beta, \lambda)$,
whenever
(3)

$$
\beta\left(2 \lambda-1-3 \lambda^{3}+2 \lambda^{4}\right)+(3-2 \lambda) \lambda^{3} \geq 0
$$

and
(b)
(4) $\Re\left[\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\alpha \beta\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>N(\alpha, \beta, \lambda)$,
whenever

$$
\begin{equation*}
\beta\left(2 \lambda-1-3 \lambda^{3}+2 \lambda^{4}\right)+(3-2 \lambda) \lambda^{3} \leq 0 \tag{5}
\end{equation*}
$$

Then $f \in S^{*}(\lambda)$. Here
(6) $M(\alpha, \beta, \lambda)=[1-\alpha(1-\beta)] \lambda+\alpha(1-\beta) \lambda^{2}-\frac{\alpha(1-\beta)(1-\lambda)}{2}-\frac{\alpha \beta(1-\lambda)}{2 \lambda}$,
and

$$
N(\alpha, \beta, \lambda)=[1-\alpha(1-\beta)] \lambda+\alpha(1-\beta) \lambda^{2}-\frac{\alpha(1-\beta)(1-\lambda)}{2}
$$

$$
\begin{equation*}
-\frac{\alpha}{2(1-\lambda)}\left[2 \sqrt{\beta \lambda(1-2 \lambda)(1-\beta)(3-2 \lambda)}+\beta \lambda-\lambda^{2}(1-\beta)(3-2 \lambda)\right] \tag{7}
\end{equation*}
$$

Proof. Define a function p by

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\lambda+(1-\lambda) p(z) \tag{8}
\end{equation*}
$$

Then p is analytic in \mathbb{E} and $p(0)=1$. A simple calculation yields

$$
\begin{align*}
& \frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\alpha \beta\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \\
& =(1-\alpha+\alpha \beta)[\lambda+(1-\lambda) p(z)]+\alpha(1-\beta)[\lambda+(1-\lambda) p(z)]^{2} \\
& +\alpha(1-\beta)(1-\lambda) z p^{\prime}(z)+\alpha \beta \frac{(1-\lambda) z p^{\prime}(z)}{\lambda+(1-\lambda) p(z)} \\
& =\psi\left(p(z), z p^{\prime}(z) ; z\right) \tag{9}
\end{align*}
$$

$$
\begin{aligned}
& \psi(u, v ; z)=(1-\alpha+\alpha \beta)[\lambda+(1-\lambda) u]+\alpha(1-\beta)[\lambda+(1-\lambda) u]^{2} \\
&+\alpha(1-\beta)(1-\lambda) v+\alpha \beta \frac{(1-\lambda) v}{\lambda+(1-\lambda) u}
\end{aligned}
$$

Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$, where $u_{1}, u_{2}, v_{1}, v_{2}$ are all real with $v_{1} \leq$ $-\left(1+u_{2}^{2}\right) / 2$. Then, we have
$\Re \psi\left(i u_{2}, v_{1} ; z\right)$

$$
\begin{aligned}
& =(1-\alpha+\alpha \beta) \lambda+\alpha(1-\beta)\left[\lambda^{2}-(1-\lambda)^{2} u_{2}^{2}\right]+ \\
& \quad+\alpha(1-\beta)(1-\lambda) v_{1}+\alpha \beta \frac{\lambda(1-\lambda) v_{1}}{\lambda^{2}+(1-\lambda)^{2} u_{2}^{2}} \\
& \leq(1-\alpha+\alpha \beta) \lambda+\alpha(1-\beta)\left[\lambda^{2}-(1-\lambda)^{2} u_{2}^{2}\right]+ \\
& \\
& -\frac{\alpha(1-\beta)(1-\lambda)\left(1+u_{2}^{2}\right)}{2}-\alpha \beta \frac{\lambda(1-\lambda)\left(1+u_{2}^{2}\right)}{2\left(\lambda^{2}+(1-\lambda)^{2} u_{2}^{2}\right)} \\
& =(1-\alpha+\alpha \beta) \lambda+\alpha(1-\beta) \lambda^{2}-\frac{\alpha(1-\beta)(1-\lambda)}{2}- \\
& =\begin{array}{r}
-\alpha(1-\beta)(1-\lambda)\left(\frac{3}{2}-\lambda\right) u_{2}^{2}-\alpha \beta \frac{\lambda(1-\lambda)\left(1+u_{2}^{2}\right)}{2\left(\lambda^{2}+(1-\lambda)^{2} u_{2}^{2}\right)} \\
= \\
\quad-\alpha(1-\beta)(1-\lambda)\left(\frac{3}{2}-\lambda\right) t-\alpha \beta \frac{\lambda(1-\lambda)(1+t)}{2\left(\lambda^{2}+(1-\lambda)^{2} t\right)}
\end{array}
\end{aligned}
$$

$$
=\phi(t) \quad(\text { say }), \quad \text { where } u_{2}^{2}=t
$$

$(10) \leq \max \phi(t)$.

Writing

$$
\begin{gathered}
(1-\alpha+\alpha \beta) \lambda+\alpha(1-\beta) \lambda^{2}-\frac{\alpha(1-\beta)(1-\lambda)}{2}=a \\
(1-\beta)(1-\lambda)\left(\frac{3}{2}-\lambda\right)=b
\end{gathered}
$$

and $\frac{\lambda}{1-\lambda}=c$, we have

$$
\phi(t)=a-\alpha b t-\frac{\alpha \beta c}{2}\left(\frac{1+t}{c^{2}+t}\right)
$$

Clearly, $\phi(t)$ is continuous at $t=0$. A simple calculation gives

$$
\phi^{\prime}(t)=-\alpha b-\frac{\alpha \beta c}{2}\left(\frac{c^{2}-1}{\left(c^{2}+t\right)^{2}}\right)
$$

Case (i). When $1 / 2 \leq \lambda<1$, then $c=\frac{\lambda}{1-\lambda} \geq 1$. Since $\alpha \geq 0,0 \leq \beta \leq 1$, therefore, $b>0$. Hence, $\phi^{\prime}(t) \leq 0$ which implies that ϕ is a decreasing function of $\mathrm{t}(\geq 0)$. Thus

$$
\begin{align*}
\max \phi(t) & =\phi(0) \\
& =M(\alpha, \beta, \lambda) \tag{11}
\end{align*}
$$

Let

$$
\Omega=\{w: \Re w>M(\alpha, \beta, \lambda)\}
$$

Then from (1) and (9), we have $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{E}$, but $\psi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$, in view of (10) and (11). Therefore, by Lemma 1 and (8), we conclude that $f \in S^{*}(\lambda)$.
Case (ii). When $0 \leq \lambda<1 / 2$, we get $c=\frac{\lambda}{1-\lambda}<1$. Now, $\phi^{\prime}(t)=0$ implies

$$
-\alpha b-\frac{\alpha \beta c}{2}\left(\frac{c^{2}-1}{\left(c^{2}+t\right)^{2}}\right)=0
$$

which gives

$$
t=-c^{2} \pm \sqrt{\frac{\beta c\left(1-c^{2}\right)}{2 b}}
$$

Writing $-c^{2}-\sqrt{\frac{\beta c\left(1-c^{2}\right)}{2 b}}=t_{1}$ and $-c^{2}+\sqrt{\frac{\beta c\left(1-c^{2}\right)}{2 b}}=t_{2}$, we observe that $t_{1}<0$ and also, $t_{1}<t_{2}$.

Subcase (i). When $t_{2}<0$, i.e. when (3) holds true. In that case t_{1} and t_{2} both are negative. (Here, t is positive.) It can be easily verified that

$$
\phi^{\prime}(t)=-\frac{\alpha}{2\left(c^{2}+t\right)^{2}}\left(t-t_{1}\right)\left(t-t_{2}\right)<0
$$

Thus ϕ is a decreasing function of t and again

$$
\begin{align*}
\max \phi(t) & =\phi(0) \\
& =M(\alpha, \beta, \lambda) \tag{12}
\end{align*}
$$

Proceeding as in case (i), we obtain the required result.
Subcase (ii). When $t_{2}>0$, i.e. when (5) holds true. In that case, ϕ is a increasing function of $t, t \geq 0$, and therefore,

$$
\begin{align*}
\max \phi(t) & =\phi\left(t_{2}\right) \\
& =N(\alpha, \beta, \lambda) \tag{13}
\end{align*}
$$

Let

$$
\Omega=\{w: \Re w>N(\alpha, \beta, \lambda)\}
$$

Then from (4) and (9), we have $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{E}$, but $\psi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$, in view of (10) and (13). Result now follows by Lemma 1.

4 Applications to Univalent Functions

In this section, we apply Theorem 2 and obtain certain well-known criteria for starlikeness of an analytic function.

Writing $\beta=1$ in Theorem 2, we obtain the following result of Fukui [1] for the class of α-convex functions.

Corollary 3 Let $\alpha, \alpha \geq 0$ be a given real number. For all $z \in \mathbb{E}$, let a function $f \in \mathcal{A}$ satisfy

$$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\left\{\begin{array}{l}
>\lambda-\frac{\alpha \lambda}{2(1-\lambda)}, 0 \leq \lambda<1 / 2 \\
>\lambda-\frac{\alpha(1-\lambda)}{2 \lambda}, 1 / 2 \leq \lambda<1
\end{array}\right.
$$

Then $f \in S^{*}(\lambda)$.
The case, when we write $\beta=0$ in Theorem 2, gives the following result of Ravichandran et al. [9].

Corollary 4 Let α, $\alpha \geq 0$ be a given real number. For a real number $\lambda, 0 \leq$ $\lambda<1$, and for all $z \in \mathbb{E}$, let a function $f \in \mathcal{A}$ satisfy

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right]>\alpha \lambda\left(\lambda-\frac{1}{2}\right)+\lambda-\frac{\alpha}{2}
$$

Then $f \in S^{*}(\lambda)$.
Setting $\beta=0$ and $\lambda=\alpha / 2,0<\alpha<2$ in Theorem 2 , we obtain the following result of Li and Owa [3].

Corollary 5 If a function $f \in \mathcal{A}$ satisfies

$$
\Re\left[\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right]>-\frac{\alpha^{2}}{4}(1-\alpha), \quad 0<\alpha<2
$$

then $f \in S^{*}(\alpha / 2)$.
Setting $\beta=\alpha=1$ in Theorem 2, we obtain the following result.
Corollary 6 For all $z \in \mathbb{E}$, let f in \mathcal{A} satisfy the condition

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\left\{\begin{array}{l}
>\lambda-\frac{\lambda}{2(1-\lambda)}, 0 \leq \lambda<1 / 2 \\
>\lambda-\frac{(1-\lambda)}{2 \lambda}, 1 / 2 \leq \lambda \leq 1
\end{array}\right.
$$

Then $f \in S^{*}(\lambda)$.

References

[1] S. Fukui, On α-convex functions of order β, Internat. J. Math. \& Math. Sci., 20, 4, 1997, 769-772.
[2] Z. Lewandowski, S.S. Miller, E. Zlotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56, 1976, 111-117.
[3] J.-L. Li, S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33, 2002, 313-318.
[4] S. S. Miller, P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Diff. Eqns., 67, 1987, 199-211.
[5] S. S. Miller, P. T. Mocanu, M. O. Reade, All α - convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37, 1973, 553-554.
[6] S. S. Miller, P. T. Mocanu, M. O. Reade, Bazilevic functions and generalized convexity, Rev. Roumaine Math. Pures Appl., 19, 1974, 213-224.
[7] P. T. Mocanu, Alpha-convex integral operators and strongly starlike functions, Studia Univ. Babes-Bolyai Math., 34,2, 1989, 18-24.
[8] K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J.Pure appl. Math., 32,4, 2001, 543-550.
[9] V. Ravichandran, C. Selvaraj, R. Rajalakshmi, Sufficient conditions for starlike functions of order α, J. Inequal. Pure and Appl. Math., 3(5) Art. 81, 2002, 1-6.

Sukhwinder Singh

Department of Applied Sciences
Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib -140407 (Punjab), India
e-mail: ss_billing@yahoo.co.in

Sushma Gupta, Sukhjit Singh

Department of Mathematics
Sant Longowal Institute of Engineering \& Technology
Longowal-148106 (Punjab), India
e-mail: sushmagupta1@yahoo.com, sukhjit_d@yahoo.com

[^0]: ${ }^{1}$ Received 23 February, 2009
 Accepted for publication (in revised form) 17 March, 2009

