Convolution of the subclass of Salagean-type harmonic univalent functions with negative coefficients ${ }^{1}$

K. K. Dixit, Saurabh Porwal

Abstract

A recent result of Sibel Yalcin et al. [4] appeared in "Journal of Inequalities in Pure and Applied Mathematics"(2007) concerning the convolution of two harmonic univalent functions in the class $\overline{R S}_{H}(k, \gamma)$ is improved.

2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Harmonic, Univalent, Salagean-derivative, Convolution.

1 Introduction

A continuous complex-valued function $f=u+i v$ is said to be harmonic in a simply connected domain D if both u and v are real harmonic in D. In any simply connected domain we can write $f=h+\bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|, z \in D$. See Clunie and Sheil-Small [1].

Denote by S_{H} the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $U=\{z:|z|<1\}$ for which $f(0)=$

[^0]$f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in S_{H}$ we may express the analytic functions h and g as
\[

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=1}^{\infty} b_{n} z^{n},\left|b_{1}\right|<1 \tag{1}
\end{equation*}
$$

\]

For $f=h+\bar{g}$ given by (1), Jahangiri et al. [2] defined the modified Salagean operator of f as

$$
\begin{equation*}
D^{k} f(z)=D^{k} h(z)+(-1)^{k} \overline{D^{k} g(z)} \tag{2}
\end{equation*}
$$

where $D^{k} h(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}$ and $D^{k} g(z)=\sum_{n=1}^{\infty} n^{k} b_{n} z^{n}$,
where D^{k} stands for the differential operator introduced by Salagean [3].
We let $R S_{H}(k, \gamma)$ denote the family of harmonic functions f of the form (1) such that
(3) $\quad \operatorname{Re}\left\{\left(1+e^{i \alpha}\right) \frac{D^{k+1} f(z)}{D^{k} f(z)}-e^{i \alpha}\right\} \geq \gamma, 0 \leq \gamma<1, \alpha \in R \quad$ and $\quad k \in N_{0}$
where $D^{k} f$ is defined by (2).
Also, we let the subclass $\overline{R S}_{H}(k, \gamma)$ consist of harmonic functions $f_{k}=$ $h+\overline{g_{k}}$ in $R S_{H}(k, \gamma)$ so that h and g_{k} are of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, g_{k}(z)=(-1)^{k} \sum_{n=1}^{\infty}\left|b_{n}\right| z^{n} \tag{4}
\end{equation*}
$$

Let us define the convolution of two harmonic functions of the form

$$
f_{k}(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+(-1)^{k} \sum_{n=1}^{\infty}\left|b_{n}\right| \bar{z}^{n}
$$

and

$$
F_{k}(z)=z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}+(-1)^{k} \sum_{n=1}^{\infty}\left|B_{n}\right| \bar{z}^{n}
$$

as
(5) $\left(f_{k} * F_{k}\right)(z)=f_{k}(z) * F_{k}(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right|\left|A_{n}\right| z^{n}+(-1)^{k} \sum_{n=1}^{\infty}\left|b_{n}\right|\left|B_{n}\right| \bar{z}^{n}$.

Recently, Yalcin et al. [4, Theorem 2.6] has obtained the following result for the convolution of two harmonic univalent functions in class $\overline{R S}_{H}(k, \gamma)$.
Theorem A. For $0 \leq \beta \leq \gamma<1$, let $f_{k} \in \overline{R S}_{H}(k, \gamma)$ and $F_{k} \in \overline{R S}_{H}(k, \beta)$. Then the convolution $f_{k} * F_{k} \in \overline{R S}_{H}(k, \gamma) \subseteq \overline{R S}_{H}(k, \beta)$.

In the present paper we prove the following theorem and then we critically observe that it improves the above stated theorem of Yalcin et al. [4].

Theorem 1 Let the functions

$$
f_{k}(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+(-1)^{k} \sum_{n=1}^{\infty}\left|b_{n}\right| \bar{z}^{n}
$$

and

$$
F_{k}(z)=z-\sum_{n=2}^{\infty}\left|A_{n}\right| z^{n}+(-1)^{k} \sum_{n=1}^{\infty}\left|B_{n}\right| \bar{z}^{n}
$$

belong to the classes $\overline{R S}_{H}(k, \gamma)$ and $\overline{R S}_{H}(k, \beta)$ respectively. Then
$\left(f_{k} * F_{k}\right)(z) \in \overline{R S}_{H}(2 k+1, \gamma)$ (If k is an odd integer),
$\left(f_{k} * F_{k}\right)(z) \in \overline{R S}_{H}(2 k, \gamma)$ (If k is an even integer) where $0 \leq \beta \leq \gamma<1$.
To prove this theorem, we require the following lemmas. Lemma1 and 2 are due to Yalcin et al.[4].

Lemma 1 [4, Theorem2.2] Let $f_{k}=h+\overline{g_{k}}$ be given by (4). Then $f_{k} \in$ $\overline{R S}_{H}(k, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \leq 1, \tag{6}
\end{equation*}
$$

where $0 \leq \gamma<1, k \in N_{0}$.
Lemma $2 \overline{R S}_{H}(k, \gamma) \subseteq \overline{R S}_{H}(k, \beta)$ if $0 \leq \beta \leq \gamma<1$.
Lemma 3 (i). $\overline{R S}_{H}(2 k+1, \gamma) \subseteq \overline{R S}_{H}(k, \gamma)$ (if k is an odd integer)
(ii) $\overline{R S}_{H}(2 k, \gamma) \subseteq \overline{R S}_{H}(k, \gamma)$ (if k is an even integer)

Proof. (i). Let $f_{2 k+1}(z) \in \overline{R S}_{H}(2 k+1, \gamma)$ then by Lemma1 we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{2 k+1}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{2 k+1}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \leq 1 . \tag{7}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \\
\leq & \sum_{n=2}^{\infty} \frac{n^{2 k+1}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{2 k+1}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right|
\end{aligned}
$$

≤ 1. (Using (7))
Thus $f_{2 k+1}(z) \in \overline{R S}_{H}(2 k+1, \gamma)$.
The proof of Lemma 3 (i) is established.
(ii). The proof of Lemma 3 (ii) is similar to that of Lemma 3 (i), hence it is omitted.

2 Proof of the Theorem 1

Here we only prove the Theorem 1 for the case when k is an odd integer. For the case when k is an even integer one can prove the theorem in similar way. Therefore it is omitted.

Since $f_{k}(z) \in \overline{R S}_{H}(k, \gamma)$, then by Lemma1 we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \leq 1 \tag{8}
\end{equation*}
$$

Similarly $F_{k}(z) \in \overline{R S}_{H}(k, \beta)$ we have

$$
\sum_{n=2}^{\infty} \frac{n^{k}(2 n-\beta-1)}{1-\beta}\left|A_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\beta+1)}{1-\beta}\left|B_{n}\right| \leq 1
$$

Therefore $\frac{n^{k}(2 n-\beta-1)}{1-\beta}\left|A_{n}\right| \leq 1 \forall n=2,3, \ldots$ and $\frac{n^{k}(2 n+\beta+1)}{1-\beta}\left|B_{n}\right| \leq 1 \forall n=$ $1,2,3, \ldots$

Now for the convolution function $f_{k} * F_{k}$ we obtain

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n^{2 k+1}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|\left|A_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{2 k+1}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right|\left|B_{n}\right| \\
= & \sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right| n^{k+1}\left|A_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| n^{k+1}\left|B_{n}\right| \\
\leq & \sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right| \frac{n^{k}(2 n-\beta-1)}{1-\beta}\left|A_{n}\right| \\
+ & \sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \frac{n^{k}(2 n+\beta+1)}{1-\beta}\left|B_{n}\right| \\
\leq & \sum_{n=2}^{\infty} \frac{n^{k}(2 n-\gamma-1)}{1-\gamma}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n^{k}(2 n+\gamma+1)}{1-\gamma}\left|b_{n}\right| \leq 1 \quad \quad \text { (using (8)). }
\end{aligned}
$$

Therefore we have
$\left(f_{k} * F_{k}\right)(z) \in \overline{R S}_{H}(2 k+1, \gamma)$ (if k is an odd integer)
Similarly
$\left(f_{k} * F_{k}\right)(z) \in \overline{R S}_{H}(2 k, \gamma)$ (if k is an even integer)

3 Improvement on the result of Theorem A

In this section we consider the following two cases and, in each case, we observe that our result improves the result of Yalcin et al.[4,Theorem2.6].

Case(i) When k is an odd integer
Case(ii) When k is an even integer
Here we discuss these cases one by one.
Case(i) When k is an odd integer our Theorem states that $f_{k} * F_{k} \in \overline{R S}_{H}(2 k+1, \gamma)$, whereas result of Yalcin et al. gives $f_{k} * F_{k} \in \overline{R S}_{H}(k, \gamma)$. But by Lemma 2 and 3(i) we have $\overline{R S}_{H}(2 k+1, \gamma) \subseteq \overline{R S}_{H}(k, \gamma) \subseteq \overline{R S}_{H}(k, \beta)$. Therefore our result provides smaller class in comparison to the class given by Yalcin et al. to which $\left(f_{k} * F_{k}\right)(z)$ belongs.
Case (ii) When k is an even integer we use our result $\left(f_{k} * F_{k}\right)(z) \in \overline{R S}_{H}(2 k, \gamma)$
. Since $\overline{R S}_{H}(2 k, \gamma) \subseteq \overline{R S}_{H}(k, \gamma) \subseteq \overline{R S}_{H}(k, \beta)$ (by Lemma2 and 3(ii)). Our result provides better estimate in this case also.

Hence we conclude that for all values of $k \in N_{0}=\{0,1,2,3 \ldots .$.$\} our result$ improves the result of Yalcin et al.[4,Theorem2.6].
Acknowledgement: The present investigation was supported by the University grant commission under grant No. F. 11-12/2006(SA-I).

References

[1] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 1984, 3-25.
[2] J.M. Jahangri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl. Math., 2, 2002, 77-82.
[3] G.S. Salagean, Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1, 1983, 362-372.
[4] S. Yalcin, M. Öztürk, M. Yamankaradeniz, On the subclass of Salageantype harmonic univalent functions, J. Inequal. Pure Appl. Math., 8 (2), 2007, Art. 54, 1-17.
K. K. Dixit, Saurabh Porwal

Department of Mathematics
Janta College, Bakewar
Etawah-206124 (U.P.) India
e-mail: saurabh.840@rediffmail.com

[^0]: ${ }^{1}$ Received 26 February, 2009
 Accepted for publication (in revised form) 14 April, 2009

