General Mathematics Vol. 18, No. 3 (2010), 59-64

Convolution of the subclass of Salagean-type harmonic univalent functions with negative coefficients ¹

K. K. Dixit, Saurabh Porwal

Abstract

A recent result of Sibel Yalcin et al. [4] appeared in "Journal of Inequalities in Pure and Applied Mathematics" (2007) concerning the convolution of two harmonic univalent functions in the class $\overline{RS}_{H}(k,\gamma)$ is improved.

2010 Mathematics Subject Classification: 30C45. Key words and phrases: Harmonic, Univalent, Salagean-derivative, Convolution.

1 Introduction

A continuous complex-valued function f = u + iv is said to be harmonic in a simply connected domain D if both u and v are real harmonic in D. In any simply connected domain we can write $f = h + \overline{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|, z \in D$. See Clunie and Sheil-Small [1]. Denote by S_H the class of functions $f = h + \overline{g}$ that are harmonic univalent

Denote by S'_H the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense-preserving in the unit disk $U = \{z : |z| < 1\}$ for which f(0) =

¹Received 26 February, 2009

Accepted for publication (in revised form) 14 April, 2009

⁵⁹

 $f_{z}\left(0\right)-1=0$. Then for $f=h+\overline{g}\in S_{H}$ we may express the analytic functions h and g as

(1)
$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, g(z) = \sum_{n=1}^{\infty} b_n z^n, |b_1| < 1.$$

For $f = h + \overline{g}$ given by (1), Jahangiri et al. [2] defined the modified Salagean operator of f as

(2)
$$D^{k}f(z) = D^{k}h(z) + (-1)^{k}\overline{D^{k}g(z)}$$

where
$$D^k h(z) = z + \sum_{n=2}^{\infty} n^k a_n z^n$$
 and $D^k g(z) = \sum_{n=1}^{\infty} n^k b_n z^n$,

where D^k stands for the differential operator introduced by Salagean [3].

We let $RS_{H}(k,\gamma)$ denote the family of harmonic functions f of the form (1) such that

(3)
$$Re\left\{\left(1+e^{i\alpha}\right)\frac{D^{k+1}f(z)}{D^{k}f(z)}-e^{i\alpha}\right\} \ge \gamma, 0 \le \gamma < 1, \alpha \in \mathbb{R} \text{ and } k \in N_{0}$$

where $D^k f$ is defined by (2).

Also, we let the subclass $\overline{RS}_{H}(k,\gamma)$ consist of harmonic functions $f_{k} = h + \overline{g_{k}}$ in $RS_{H}(k,\gamma)$ so that h and g_{k} are of the form

(4)
$$h(z) = z - \sum_{n=2}^{\infty} |a_n| \, z^n, g_k(z) = (-1)^k \sum_{n=1}^{\infty} |b_n| \, z^n.$$

Let us define the convolution of two harmonic functions of the form

$$f_k(z) = z - \sum_{n=2}^{\infty} |a_n| \, z^n + (-1)^k \sum_{n=1}^{\infty} |b_n| \, \bar{z}^n$$

and

$$F_k(z) = z - \sum_{n=2}^{\infty} |A_n| \, z^n + (-1)^k \sum_{n=1}^{\infty} |B_n| \, \bar{z}^n$$

as

(5)
$$(f_k * F_k)(z) = f_k(z) * F_k(z) = z - \sum_{n=2}^{\infty} |a_n| |A_n| z^n + (-1)^k \sum_{n=1}^{\infty} |b_n| |B_n| \overline{z}^n.$$

Recently, Yalcin et al. [4, Theorem 2.6] has obtained the following result for the convolution of two harmonic univalent functions in class $\overline{RS}_H(k,\gamma)$. **Theorem A.** For $0 \leq \beta \leq \gamma < 1$, let $f_k \in \overline{RS}_H(k,\gamma)$ and $F_k \in \overline{RS}_H(k,\beta)$. Then the convolution $f_k * F_k \in \overline{RS}_H(k,\gamma) \subseteq \overline{RS}_H(k,\beta)$.

In the present paper we prove the following theorem and then we critically observe that it improves the above stated theorem of Yalcin et al. [4].

Theorem 1 Let the functions

$$f_k(z) = z - \sum_{n=2}^{\infty} |a_n| \, z^n + (-1)^k \sum_{n=1}^{\infty} |b_n| \, \bar{z}^n$$

and

$$F_k(z) = z - \sum_{n=2}^{\infty} |A_n| \, z^n + (-1)^k \sum_{n=1}^{\infty} |B_n| \, \bar{z}^n$$

belong to the classes $\overline{RS}_H(k,\gamma)$ and $\overline{RS}_H(k,\beta)$ respectively. Then $(f_k * F_k)(z) \in \overline{RS}_H(2k+1,\gamma)$ (If k is an odd integer), $(f_k * F_k)(z) \in \overline{RS}_H(2k,\gamma)$ (If k is an even integer) where $0 \le \beta \le \gamma < 1$.

To prove this theorem, we require the following lemmas. Lemma1 and 2 are due to Yalcin et al.[4].

Lemma 1 [4, Theorem 2.2] Let $f_k = h + \overline{g_k}$ be given by (4). Then $f_k \in \overline{RS}_H(k,\gamma)$ if and only if

(6)
$$\sum_{n=2}^{\infty} \frac{n^k (2n - \gamma - 1)}{1 - \gamma} |a_n| + \sum_{n=1}^{\infty} \frac{n^k (2n + \gamma + 1)}{1 - \gamma} |b_n| \le 1,$$

where $0 \leq \gamma < 1$, $k \in N_0$.

Lemma 2 $\overline{RS}_{H}(k,\gamma) \subseteq \overline{RS}_{H}(k,\beta)$ if $0 \le \beta \le \gamma < 1$.

Lemma 3 (i). $\overline{RS}_H(2k+1,\gamma) \subseteq \overline{RS}_H(k,\gamma)$ (if k is an odd integer) (ii) $\overline{RS}_H(2k,\gamma) \subseteq \overline{RS}_H(k,\gamma)$ (if k is an even integer)

Proof. (i). Let $f_{2k+1}(z) \in \overline{RS}_H(2k+1,\gamma)$ then by Lemma1 we have

(7)
$$\sum_{n=2}^{\infty} \frac{n^{2k+1} \left(2n-\gamma-1\right)}{1-\gamma} \left|a_n\right| + \sum_{n=1}^{\infty} \frac{n^{2k+1} \left(2n+\gamma+1\right)}{1-\gamma} \left|b_n\right| \le 1.$$

Now

$$\sum_{n=2}^{\infty} \frac{n^k \left(2n - \gamma - 1\right)}{1 - \gamma} \left|a_n\right| + \sum_{n=1}^{\infty} \frac{n^k \left(2n + \gamma + 1\right)}{1 - \gamma} \left|b_n\right|$$
$$\leq \sum_{n=2}^{\infty} \frac{n^{2k+1} \left(2n - \gamma - 1\right)}{1 - \gamma} \left|a_n\right| + \sum_{n=1}^{\infty} \frac{n^{2k+1} \left(2n + \gamma + 1\right)}{1 - \gamma} \left|b_n\right|$$

 $\leq 1.$ (Using (7))

Thus $f_{2k+1}(z) \in \overline{RS}_H(2k+1,\gamma)$.

The proof of Lemma 3 (i) is established.

(ii). The proof of Lemma 3 (ii) is similar to that of Lemma 3 (i), hence it is omitted.

2 Proof of the Theorem 1

Here we only prove the Theorem 1 for the case when k is an odd integer. For the case when k is an even integer one can prove the theorem in similar way. Therefore it is omitted.

Since $f_{k}(z) \in \overline{RS}_{H}(k, \gamma)$, then by Lemma1 we have

(8)
$$\sum_{n=2}^{\infty} \frac{n^k (2n - \gamma - 1)}{1 - \gamma} |a_n| + \sum_{n=1}^{\infty} \frac{n^k (2n + \gamma + 1)}{1 - \gamma} |b_n| \le 1.$$

Similarly $F_k(z) \in \overline{RS}_H(k,\beta)$ we have

$$\sum_{n=2}^{\infty} \frac{n^k \left(2n - \beta - 1\right)}{1 - \beta} \left|A_n\right| + \sum_{n=1}^{\infty} \frac{n^k \left(2n + \beta + 1\right)}{1 - \beta} \left|B_n\right| \le 1.$$

Therefore $\frac{n^k(2n-\beta-1)}{1-\beta} |A_n| \le 1 \ \forall n = 2, 3, \dots$ and $\frac{n^k(2n+\beta+1)}{1-\beta} |B_n| \le 1 \ \forall n = 1, 2, 3, \dots$

Now for the convolution function $f_k * F_k$ we obtain

$$\sum_{n=2}^{\infty} \frac{n^{2k+1} (2n-\gamma-1)}{1-\gamma} |a_n| |A_n| + \sum_{n=1}^{\infty} \frac{n^{2k+1} (2n+\gamma+1)}{1-\gamma} |b_n| |B_n|$$

$$= \sum_{n=2}^{\infty} \frac{n^k (2n-\gamma-1)}{1-\gamma} |a_n| n^{k+1} |A_n| + \sum_{n=1}^{\infty} \frac{n^k (2n+\gamma+1)}{1-\gamma} |b_n| n^{k+1} |B_n|$$

$$\leq \sum_{n=2}^{\infty} \frac{n^k (2n-\gamma-1)}{1-\gamma} |a_n| \frac{n^k (2n-\beta-1)}{1-\beta} |A_n|$$

$$+ \sum_{n=1}^{\infty} \frac{n^k (2n+\gamma+1)}{1-\gamma} |b_n| \frac{n^k (2n+\beta+1)}{1-\beta} |B_n|$$

$$\leq \sum_{n=2}^{\infty} \frac{n^k (2n-\gamma-1)}{1-\gamma} |a_n| + \sum_{n=1}^{\infty} \frac{n^k (2n+\gamma+1)}{1-\gamma} |b_n| \le 1 \quad (using (8)).$$

Therefore we have $(f_k * F_k)(z) \in \overline{RS}_H(2k+1,\gamma)$ (if k is an odd integer) Similarly $(f_k * F_k)(z) \in \overline{RS}_H(2k,\gamma)$ (if k is an even integer)

3 Improvement on the result of Theorem A

In this section we consider the following two cases and, in each case, we observe that our result improves the result of Yalcin et al.[4,Theorem2.6].

Case(i) When k is an odd integer

Case(ii) When k is an even integer

Here we discuss these cases one by one.

Case(i) When k is an odd integer our Theorem states that $f_{k} F_{k} \in \overline{RS}_{H}(2k+1,\gamma)$, whereas result of Yalcin et al. gives $f_{k} * F_{k} \in \overline{RS}_{H}(k,\gamma)$. But by Lemma 2 and 3(i) we have $\overline{RS}_{H}(2k+1,\gamma) \subseteq \overline{RS}_{H}(k,\gamma) \subseteq \overline{RS}_{H}(k,\beta)$. Therefore our result provides smaller class in comparison to the class given by Yalcin et al. to which $(f_{k} * F_{k})(z)$ belongs.

Case (ii) When k is an even integer we use our result $(f_k * F_k)(z) \in \overline{RS}_H(2k, \gamma)$

. Since $\overline{RS}_H(2k,\gamma) \subseteq \overline{RS}_H(k,\gamma) \subseteq \overline{RS}_H(k,\beta)$ (by Lemma2 and 3(ii)). Our result provides better estimate in this case also.

Hence we conclude that for all values of $k \in N_0 = \{0, 1, 2, 3,\}$ our result improves the result of Yalcin et al.[4,Theorem2.6].

Acknowledgement: The present investigation was supported by the University grant commission under grant No. F. 11-12/2006(SA-I).

References

- J. Clunie, T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 1984, 3-25.
- [2] J.M. Jahangri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl. Math., 2, 2002, 77-82.
- [3] G.S. Salagean, *Subclass of univalent functions*, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1, 1983, 362-372.
- [4] S. Yalcin, M. Öztürk, M. Yamankaradeniz, On the subclass of Salageantype harmonic univalent functions, J. Inequal. Pure Appl. Math., 8 (2), 2007, Art. 54, 1-17.

K. K. Dixit, Saurabh Porwal

Department of Mathematics Janta College, Bakewar Etawah-206124 (U.P.) India e-mail: saurabh.840@rediffmail.com