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A certain class of quadratures with cubic B-spline
as a weight function '

Zlatko Udovicié

Abstract

We consider the quadrature rules of “practical type” (with five knots)
for approximately computation of the integral

| 22 B(a)f (x)dz,

where B(-) denotes centered cubic B-spline. We proved that maximal
algebraic degree of exactness for this type of formulas is equal to five. At
the end we gave numerical result.
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1 Introduction

Cardinal B-splines play very important role in the approximation theory (dif-
ferent methods for solving initial and boundary value problems, multiresolu-
tion approximation, spline interpolation, etc). Cardinal B-spline of order one
is the characteristic function of the interval [0,1). Cardinal B-spline of order
m,m € N,m > 2, is a function with the following properties:

e its support is interval [0, m];
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e it belongs to the class C™~2[0, m];

e at each interval [k, k + 1],k € {0,1,...,m — 1}, it is a polynomial of
degree m — 1.

The most often used in practice is a cardinal B-spline of order four (cubic
B-spline). Approximation obtained by using this spline is relatively good, and
on the other hand, this spline is still simple for manipulation. Centered cubic

B-spline is defined in the following way:

§lz+2)3 zel-2,-1),
(=323 —62% +4), z€[-1,0),
B(z) = t(32% — 622 +4), z€[0,1),

%(—l’ + 2)3’ T e [172]7
0, otherwise.

Thereat, the problem of calculation of the integral

2
/ B(x)f(x)dz
-2

is unavoidable. In this paper we are investigating a certain class of quadratures
(the so called quadratures of “practical type”) for approximate computation of
the previous integral. The paper was motivated by results recently published
in [1] and [2], where the same class of quadratures was considered, but without
weight function. Similar problem (with hat function as a weight function) was
considered in [4].

We say that quadrature formula

2 5
(1) / B(@)f(a)ds = 3 Aifai) + RIS
- =1

is of “practical type” if the following conditions hold:
1. Al = A5 and A2 = A4;

2. nodes zp,1 < k < 5 are symmetric and rational numbers from the
interval [—2,2], i.e. x1 = —r1,29 = —7r9,23 = 0,24 = 79 and x5 = 11, for
some r1,79 € (0,2] NQ,r2 < 71 (as usuall, Q denotes the set of rational

numbers).
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Hence, quadratures of “practical type” have the following form:

2
/_ B@f()ds = A(f(=r) + () +
(2) B(f(—r2) + f(r2)) + CF(0) + R[],

for some r1,72 € (0,2] NQ,ry < rq.

Quadrature rule (1) has algebraic degree of exactness equal to m, m € N, if
and only if R[p] = 0 whenever p(-) is a polynomial of degree not greater than m
and there exists the polynomial ¢(-), of degree m + 1, such that R[g] # 0. Our
aim is construction of the quadrature rules of “practical type” with maximal
algebraic degree of exactness.

We will finish this section with some well known facts from the theory of
numerical integration.

Lemma 1 Quadrature rule (1) (i.e. (2)) has algebraic degree of exactness
equal to m,m € N if and only if R[z*] = 0 for all k € {0,1,...,m}.

Lemma 2 Quadrature rule (2) is exact for every odd function f(-) (i.e. R[f] =
0 for every odd function f(-)).

From the previous lemmas follows that algebraic degree of exactness of the
formula (2) has to be odd.
Finally, with the choice

r3 —

14315 £+ /70203301
T1245 =

11886 ’

(expressions for the coefficients Ay, 1 < k < 5, are much more complicated, so
we omit them here) formula (1) attains maximal algebraic degree of exactness
(which is equal to nine), but this formula obviously is not of “practical type”.
Hence, algebraic degree of exactness of the formula (2) can not be greater than
seven.

2 Main result

Let us determine the coefficients A, B and C such that formula (2) has maximal
algebraic degree of exactness.
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From the condition that formula is exact for f(z) = 1 (i.e. exact for any
polynomial of zero degree) simply follows

C=1-2A+B).

Then formula (2) becomes

2
[ B@)f@ide = AG(=r) = 2£0)+ f(r) +
B(f(=r2) —2f(0) + f(r2)) +
(3) f(0) + R[f]
and in accordance with the previous, this formula has algebraic degree of

exactness equal to one. Furthermore, conditions that the last formula is exact
for f(x) = 2% and f(x) = 2* give the following system of linear equations

1
2r2A+2riB = §
2rtA+2riB = —.

riA+ 2ry 10
which has the solution
9 — 1072 9 — 10r?
(4) A= 2 andB=——p 51
6077 (r{ —r3) 6075 (ry —17)

Hence, with this choice of the coefficients A and B formula (3) has algebraic
degree of exactness equal to five. Therein (in formula (3))

17 972 — 107373 + 9r2
42 30 '

R[a:ﬁ] =

It is natural to ask is it possible to choose rational nodes r; and r9 such
that formula (3) has algebraic degree of exactness equal to six, i.e. seven.
Negative answer to this question gives the following lemma.

Lemma 3 There is no numbers ri,7m9 € (0,2] NQ such that

5) 9rf —10rfry + 975 17
30 42
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Proof. Let us assume contrary, i.e. that r; = 7 and ro = 7, for some
a,b,c,d € N such that (a,b) = 1 and (¢,d) = 1. Putting this in equality (5),
after simplification, gives

(6) 7(9a%d? — 10a%c* + 9b*c?) = 85b%d?,

from which follows that b2d? = 0(mod 7), i.e. bd = 0(mod 7).
Let b = Tk for some k € N. After simplification, equality (6) becomes

a*(9d? — 10¢?) = Tk*(85d* — 63c?).

It can not be a® = 0(mod 7) (because of (a,b) = 1), so it has to be 9d? —10c? =
0(mod 7). Furthermore, because of 9d% — 10c¢? = 7(d? — 2¢2) + 2(d? + 2¢?), it
also has to be d? + 2¢? = 0(mod 7). Direct checking verify that this relation
is impossible unless ¢ = 0(mod 7) and d = 0(mod 7), which together with an
assumption (c¢,d) = 1 gives the contradiction.

The case d = Tk, for some k € N, because of symmetry of the relation (6)
can be proved analogue. This completes the proof.

Let us estimate the error of the formula (3), under assumption that the
coefficients A and B are given by the equalities (4). Let H5(-) be Hermite’s in-
terpolating polynomial which interpolates the function f(-) through the points
+ry, £79 and 0, where the node 0 has multiplicity two. Then (see for example

3], p. 55),

i) (£(
(@) — Hsta) = TSy,

and the error of the formula (3) is given by

2 (i) (¢( g
rf = [ @l e - e - e

1 .
= mf(“)(n)(n2 —r)(n* —13),

for some 7 € [~2,2], assuming f(-) € C%[—2,2]. Let
o(n) = (> — ) (" —13).
It is easy to check that

r%—i—r%)
2

,@(2)!}

_2\2
= max {1 B -y

d(n)| = ®(0
né?ffz}‘ (n)] maX{\ )1,
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so the error of the formula (3) can be estimated in the following way

7,.2 _ 2
@ IR g {rnd CEE a-ha-)

where Mg = max,e[_2 9] ‘f(”i) (x)} .

3 Numerical result

Estimation (7) naturally imposes the following problem

2

2 2 (T%_T2)2 2 2 .
(8) F(ri,ry) = max<riry, ————, (4 —r{)(4 —r5) p — min.,

4
where 71,72 € (0,2]NQ, r2 < r1. It is obvious that, for fixed r; € (0,2]NQ, the
function F'(-,-) attains its minimum in one of the intersection points among

2 9\2
three curves 7273, w and (4 —r})(4 —r3).

2 .2\2
1. Curves 7?72 and w (r1 is fixed) intersect each other at ro = £(1 £

v/2)ry, and since 75 ¢ Q we will not consider this case.

o (ri-r3)? 2V (4 g2 : :
2. Similarly, curves =<2~ and (4 —r{)(4 —r3) (r1 is fixed) intersect each

other at ro = :l:\/?)r% — 84 2v/2(r} — 1), and again because of o ¢ Q
we will not consider this case.

3. Finally, curves r2r3 and (4 — 72)(4 — r2) (r is still fixed) intersect each

other at ro = /4 — r%, and we will look for the nodes r; and ro among
“rational points” from the centered circle with radius equal to two.

In the Table 1 we give some admissible values of the nodes r1 and 7o
for which the function F(-,-) attains its local minimums. The corresponding
rational numbers are round off to the five decimal places.

At the end, let us say that, by using any of the given choices for the nodes
r1 and 72, the error (7) can be estimated in the following way

IR[f]] <0.2-1072 - M.
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Table 1: Some admissible values of the nodes

" ro F(r1,r9)
8 6
5= 1.60000 5= 1.20000 3.68640
;1—3 = 1.44828 421_8 = 1.37931 3.99049
% = 1.50685 % = 1.31507 3.92678
gi;l = 1.48454 193—70 = 1.34021 3.95845
% = 1.49307 % = 1.33069 3.94744
% = 1.48981 % =1.33434 | 3.95180
% = 1.49106 % =1.33295 | 3.95016
% = 1.49058 % =1.33348 | 3.95079
% = 1.49076 % = 1.33328 | 3.95055
;l?% = 1.49069 % = 1.33335 | 3.95064
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