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A certain class of quadratures with cubic B-spline
as a weight function 1

Zlatko Udovičić

Abstract

We consider the quadrature rules of “practical type” (with five knots)

for approximately computation of the integral

∫
2

−2

B(x)f(x)dx,

where B(·) denotes centered cubic B-spline. We proved that maximal

algebraic degree of exactness for this type of formulas is equal to five. At

the end we gave numerical result.
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1 Introduction

Cardinal B-splines play very important role in the approximation theory (dif-

ferent methods for solving initial and boundary value problems, multiresolu-

tion approximation, spline interpolation, etc). Cardinal B-spline of order one

is the characteristic function of the interval [0, 1). Cardinal B-spline of order

m, m ∈ N, m ≥ 2, is a function with the following properties:

• its support is interval [0, m];

1Received 16 December, 2009

Accepted for publication (in revised form) 11 January, 2010

83



84 Z. Udovičić

• it belongs to the class Cm−2[0, m];

• at each interval [k, k + 1], k ∈ {0, 1, . . . , m − 1}, it is a polynomial of

degree m − 1.

The most often used in practice is a cardinal B-spline of order four (cubic

B-spline). Approximation obtained by using this spline is relatively good, and

on the other hand, this spline is still simple for manipulation. Centered cubic

B-spline is defined in the following way:

B(x) =



























1
6(x + 2)3, x ∈ [−2,−1),

1
6(−3x3 − 6x2 + 4), x ∈ [−1, 0),

1
6(3x3 − 6x2 + 4), x ∈ [0, 1),

1
6(−x + 2)3, x ∈ [1, 2],

0, otherwise.

Thereat, the problem of calculation of the integral

∫ 2

−2
B(x)f(x)dx

is unavoidable. In this paper we are investigating a certain class of quadratures

(the so called quadratures of “practical type”) for approximate computation of

the previous integral. The paper was motivated by results recently published

in [1] and [2], where the same class of quadratures was considered, but without

weight function. Similar problem (with hat function as a weight function) was

considered in [4].

We say that quadrature formula

(1)

∫ 2

−2
B(x)f(x)dx =

5
∑

i=1

Aif(xi) + R[f ]

is of “practical type” if the following conditions hold:

1. A1 = A5 and A2 = A4;

2. nodes xk, 1 ≤ k ≤ 5 are symmetric and rational numbers from the

interval [−2, 2], i.e. x1 = −r1, x2 = −r2, x3 = 0, x4 = r2 and x5 = r1, for

some r1, r2 ∈ (0, 2] ∩ Q, r2 < r1 (as usuall, Q denotes the set of rational

numbers).
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Hence, quadratures of “practical type” have the following form:

∫ 2

−2
B(x)f(x)dx = A(f(−r1) + f(r1)) +

B(f(−r2) + f(r2)) + Cf(0) + R[f ],(2)

for some r1, r2 ∈ (0, 2] ∩ Q, r2 < r1.

Quadrature rule (1) has algebraic degree of exactness equal to m, m ∈ N, if

and only if R[p] = 0 whenever p(·) is a polynomial of degree not greater than m

and there exists the polynomial q(·), of degree m + 1, such that R[q] 6= 0. Our

aim is construction of the quadrature rules of “practical type” with maximal

algebraic degree of exactness.

We will finish this section with some well known facts from the theory of

numerical integration.

Lemma 1 Quadrature rule (1) (i.e. (2)) has algebraic degree of exactness

equal to m, m ∈ N if and only if R[xk] = 0 for all k ∈ {0, 1, . . . , m}.

Lemma 2 Quadrature rule (2) is exact for every odd function f(·) (i.e. R[f ] =

0 for every odd function f(·)).

From the previous lemmas follows that algebraic degree of exactness of the

formula (2) has to be odd.

Finally, with the choice

x1245 = ±

√

14315 ±
√

70203301

11886
, x3 = 0

(expressions for the coefficients Ak, 1 ≤ k ≤ 5, are much more complicated, so

we omit them here) formula (1) attains maximal algebraic degree of exactness

(which is equal to nine), but this formula obviously is not of “practical type”.

Hence, algebraic degree of exactness of the formula (2) can not be greater than

seven.

2 Main result

Let us determine the coefficients A, B and C such that formula (2) has maximal

algebraic degree of exactness.
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From the condition that formula is exact for f(x) = 1 (i.e. exact for any

polynomial of zero degree) simply follows

C = 1 − 2(A + B).

Then formula (2) becomes

∫ 2

−2
B(x)f(x)dx = A (f(−r1) − 2f(0) + f(r1)) +

B (f(−r2) − 2f(0) + f(r2)) +

f(0) + R[f ](3)

and in accordance with the previous, this formula has algebraic degree of

exactness equal to one. Furthermore, conditions that the last formula is exact

for f(x) = x2 and f(x) = x4 give the following system of linear equations

2r2
1A + 2r2

2B =
1

3

2r4
1A + 2r4

2B =
3

10
.

which has the solution

(4) A =
9 − 10r2

2

60r2
1(r

2
1 − r2

2)
and B =

9 − 10r2
1

60r2
2(r

2
2 − r2

1)
.

Hence, with this choice of the coefficients A and B formula (3) has algebraic

degree of exactness equal to five. Therein (in formula (3))

R[x6] =
17

42
− 9r2

1 − 10r2
1r

2
2 + 9r2

2

30
.

It is natural to ask is it possible to choose rational nodes r1 and r2 such

that formula (3) has algebraic degree of exactness equal to six, i.e. seven.

Negative answer to this question gives the following lemma.

Lemma 3 There is no numbers r1, r2 ∈ (0, 2] ∩ Q such that

(5)
9r2

1 − 10r2
1r

2
2 + 9r2

2

30
=

17

42
.
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Proof. Let us assume contrary, i.e. that r1 = a
b

and r2 = c
d
, for some

a, b, c, d ∈ N such that (a, b) = 1 and (c, d) = 1. Putting this in equality (5),

after simplification, gives

(6) 7(9a2d2 − 10a2c2 + 9b2c2) = 85b2d2,

from which follows that b2d2 ≡ 0(mod 7), i.e. bd ≡ 0(mod 7).

Let b = 7k for some k ∈ N. After simplification, equality (6) becomes

a2(9d2 − 10c2) = 7k2(85d2 − 63c2).

It can not be a2 ≡ 0(mod 7) (because of (a, b) = 1), so it has to be 9d2−10c2 ≡
0(mod 7). Furthermore, because of 9d2 − 10c2 = 7(d2 − 2c2) + 2(d2 + 2c2), it

also has to be d2 + 2c2 ≡ 0(mod 7). Direct checking verify that this relation

is impossible unless c ≡ 0(mod 7) and d ≡ 0(mod 7), which together with an

assumption (c, d) = 1 gives the contradiction.

The case d = 7k, for some k ∈ N, because of symmetry of the relation (6)

can be proved analogue. This completes the proof.

Let us estimate the error of the formula (3), under assumption that the

coefficients A and B are given by the equalities (4). Let H5(·) be Hermite’s in-

terpolating polynomial which interpolates the function f(·) through the points

±r1,±r2 and 0, where the node 0 has multiplicity two. Then (see for example

[3], p. 55),

f(x) − H5(x) =
f (vi)(ξ(x))

6!
x2(x2 − r2

1)(x
2 − r2

2),

and the error of the formula (3) is given by

R[f ] =

∫ 2

−2
B(x)

f (vi)(ξ(x))

6!
x2(x2 − r2

1)(x
2 − r2

2)dx

=
1

3 · 6!f
(vi)(η)(η2 − r2

1)(η
2 − r2

2),

for some η ∈ [−2, 2], assuming f(·) ∈ C6[−2, 2]. Let

Φ(η) = (η2 − r2
1)(η

2 − r2
2).

It is easy to check that

max
η∈[−2,2]

|Φ(η)| = max

{

|Φ(0)| ,
∣

∣

∣

∣

∣

Φ(

√

r2
1 + r2

2

2
)

∣

∣

∣

∣

∣

, |Φ(2)|
}

= max

{

r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (4 − r2

1)(4 − r2
2)

}

,
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so the error of the formula (3) can be estimated in the following way

(7) |R[f ]| ≤ M6

3 · 6! max

{

r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (4 − r2

1)(4 − r2
2)

}

,

where M6 = maxx∈[−2,2]

∣

∣f (vi)(x)
∣

∣ .

3 Numerical result

Estimation (7) naturally imposes the following problem

(8) F (r1, r2) = max

{

r2
1r

2
2,

(r2
1 − r2

2)
2

4
, (4 − r2

1)(4 − r2
2)

}

→ min .,

where r1, r2 ∈ (0, 2]∩Q, r2 < r1. It is obvious that, for fixed r1 ∈ (0, 2]∩Q, the

function F (·, ·) attains its minimum in one of the intersection points among

three curves r2
1r

2
2,

(r2

1
−r2

2
)2

4 and (4 − r2
1)(4 − r2

2).

1. Curves r2
1r

2
2 and

(r2

1
−r2

2
)2

4 (r1 is fixed) intersect each other at r2 = ±(1±√
2)r1, and since r2 /∈ Q we will not consider this case.

2. Similarly, curves
(r2

1
−r2

2
)2

4 and (4− r2
1)(4− r2

2) (r1 is fixed) intersect each

other at r2 = ±
√

3r2
1 − 8 ± 2

√
2(r2

1 − 1), and again because of r2 /∈ Q

we will not consider this case.

3. Finally, curves r2
1r

2
2 and (4 − r2

1)(4 − r2
2) (r1 is still fixed) intersect each

other at r2 =
√

4 − r2
1, and we will look for the nodes r1 and r2 among

“rational points” from the centered circle with radius equal to two.

In the Table 1 we give some admissible values of the nodes r1 and r2

for which the function F (·, ·) attains its local minimums. The corresponding

rational numbers are round off to the five decimal places.

At the end, let us say that, by using any of the given choices for the nodes

r1 and r2, the error (7) can be estimated in the following way

|R[f ]| ≤ 0.2 · 10−2 · M6.
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Table 1: Some admissible values of the nodes
r1 r2 F (r1, r2)

8

5
= 1.60000

6

5
= 1.20000 3.68640

42

29
= 1.44828

40

29
= 1.37931 3.99049

110

73
= 1.50685

96

73
= 1.31507 3.92678

144

97
= 1.48454

130

97
= 1.34021 3.95845

754

505
= 1.49307

672

505
= 1.33069 3.94744

1974

1325
= 1.48981

1768

1325
= 1.33434 3.95180

2584

1733
= 1.49106

2310

1733
= 1.33295 3.95016

13530

9077
= 1.49058

12104

9077
= 1.33348 3.95079

35422

23761
= 1.49076

31680

23761
= 1.33328 3.95055

46368

31105
= 1.49069

41474

31105
= 1.33335 3.95064
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