General Mathematics Vol. 18, No. 3 (2010), 91-108

On integral operators of meromorphic functions ¹

Alina Totoi

Abstract

Let $p \in \mathbb{N}^*, \Phi, \varphi \in H[1, p], \Phi(z)\varphi(z) \neq 0, z \in U, \alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, and let Σ_p denote the class of meromorphic functions of the form $g(z) = \frac{a_{-p}}{z^p} + a_0 + a_1 z + \cdots, z \in \dot{U}, a_{-p} \neq 0.$ We consider the integral operator $J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi} : K \subset \Sigma_p \to \Sigma_p$ defined by

$$J^{\Phi,\varphi}_{p,\alpha,\beta,\gamma,\delta}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}, g \in K, z \in \dot{U}.$$

The first result of this paper gives us the conditions for which $J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi}$ has some important properties. Furthermore, we study the image of the set $\Sigma_p^*(\alpha, \delta)$ through the operator $J_{p,\beta,\gamma} = J_{p,\beta,\beta,\gamma,\gamma}^{1,1}$ and the image of the sets $\Sigma K_p(\alpha, \delta)$, $\Sigma C_{p,0}(\alpha, \delta; \varphi)$ through the operator $J_{p,\gamma} = J_{p,1,\gamma}$.

2010 Mathematics Subject Classification: 30C45 **Key words and phrases:** Meromorphic functions, Integral operators.

1 Introduction and preliminaries

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane, $\dot{U} = U \setminus \{0\}$, $H(U) = \{f : U \to \mathbb{C} : f \text{ is holomorphic in } U\}, \mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.

¹Received 2 March, 2010

Accepted for publication (in revised form) 26 April, 2010

⁹¹

For $p \in \mathbb{N}^*$, let Σ_p denote the class of meromorphic functions of the form

$$g(z) = \frac{a_{-p}}{z^p} + a_0 + a_1 z + \cdots, \ z \in \dot{U}, \ a_{-p} \neq 0$$

We will also use the following notations:

$$\begin{split} \Sigma_{p,0} &= \left\{g \in \Sigma_p : a_{-p} = 1\right\}, \ \Sigma_0 = \left\{g \in \Sigma_{p,0} : g(z) \neq 0, \ z \in \dot{U}\right\}, \\ \Sigma_p^*(\alpha) &= \left\{g \in \Sigma_p : \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] > \alpha, \ z \in U\right\}, \ \text{where } \alpha < p, \\ \Sigma_p^*(\alpha, \delta) &= \left\{g \in \Sigma_p : \alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] < \delta, \ z \in U\right\}, \ \text{where } \alpha < p < \delta, \\ \Sigma K_p(\alpha) &= \left\{g \in \Sigma_p : \operatorname{Re}\left[1 + \frac{zg''(z)}{g'(z)}\right] < -\alpha, \ z \in U\right\}, \ \text{where } \alpha < p, \\ \Sigma K_{p,0}(\alpha) &= \Sigma K_p(\alpha) \cap \Sigma_{p,0}, \\ \Sigma K_p(\alpha, \delta) &= \left\{g \in \Sigma_p : \alpha < \operatorname{Re}\left[-1 - \frac{zg''(z)}{g'(z)}\right] < \delta, \ z \in U\right\}, \ \text{where } \alpha < p < \delta, \\ \Sigma K_{p,0}(\alpha, \delta) &= \Sigma K_p(\alpha, \delta) \cap \Sigma_{p,0}, \\ \Sigma \mathcal{L}_{p,0}(\alpha, \delta; \varphi) &= \left\{g \in \Sigma_{p,0} : \alpha < \operatorname{Re}\left[\frac{g'(z)}{\varphi'(z)}\right] < \delta, \ z \in U\right\}, \ \text{where } \alpha < 1 \le p < \delta, \\ \varphi \in \Sigma K_{p,0}(\alpha, \delta). \end{split}$$

We remark that $\Sigma_1^*(\alpha)$, $0 \leq \alpha < 1$, is the classes of meromorphic starlike functions of order α and $\Sigma K_{1,0}(\alpha) \cap \Sigma_0$ is the classes of meromorphic convex functions of order α . These classes are classes of univalent functions.

 $H[a,n] = \{f \in H(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots\} \text{ for } a \in \mathbb{C}, \\ n \in \mathbb{N}^*, \\ A_n = \{f \in H(U) : f(z) = z + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \ldots\}, n \in \mathbb{N}^*, \text{ and for } \\ n = 1 \text{ we denote } A_1 \text{ by } A \text{ and this set is called the class of analytic functions } \\ normalized at the origin.$

Definition 1. [3, p.4], [4, p.45] Let $f, g \in H(U)$. We say that the function f is subordinate to the function g, and we denote this by $f(z) \prec g(z)$, if there is a function $w \in H(U)$, with w(0) = 0 and |w(z)| < 1, $z \in U$, such that

$$f(z) = g[w(z)], \ z \in U.$$

Remark 1. If $f(z) \prec g(z)$, then f(0) = g(0) and $f(U) \subseteq g(U)$.

Theorem 1. [3, p.4], [4, p.46] Let $f, g \in H(U)$ and let g be a univalent function in U. Then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

Theorem 2. [3, Theorem 2.4f.], [4, p.212] Let $p \in H[a, n]$ with $\operatorname{Re} a > 0$ and let $P: U \to \mathbb{C}$ be a function with $\operatorname{Re} P(z) > 0$, $z \in U$. If

$$\operatorname{Re}\left[p(z) + P(z)zp'(z)\right] > 0, \ z \in U,$$

then $\operatorname{Re} p(z) > 0, z \in U$.

Definition 2. [3, p.46], [4, p.228] Let $c \in \mathbb{C}$ with $\operatorname{Re} c > 0$ and $n \in \mathbb{N}^*$. We consider

$$C_n = C_n(c) = \frac{n}{\operatorname{Re} c} \left[|c| \sqrt{1 + \frac{2\operatorname{Re} c}{n}} + \operatorname{Im} c \right]$$

If the univalent function $R: U \to \mathbb{C}$ is given by $R(z) = \frac{2C_n z}{1-z^2}$, then we will denote by $R_{c,n}$ the "Open Door" function, defined as

$$R_{c,n}(z) = R\left(\frac{z+b}{1+\bar{b}z}\right) = 2C_n \frac{(z+b)(1+\bar{b}z)}{(1+\bar{b}z)^2 - (z+b)^2} ,$$

where $b = R^{-1}(c)$.

Lemma 1. [3, p.35], [4, pg. 209] Let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be a function that satisfies the condition

$$\begin{split} &\operatorname{Re}\psi(\rho i,\sigma;z)\leq 0\,,\\ &when\ \rho,\sigma\in\mathbb{R}, \sigma\leq -\frac{n}{2}(1+\rho^2),\ z\in U,n\geq 1.\\ & \text{ If }p\in H[1,n]\ and \end{split}$$

$$\operatorname{Re}\psi(p(z), zp'(z); z) > 0, \quad z \in U,$$

then

$$\operatorname{Re} p(z) > 0, \quad z \in U$$

Theorem 3. [3, Theorem 2.5c.] Let $\Phi, \varphi \in H[1, n]$ with $\Phi(z) \neq 0, \varphi(z) \neq 0$, for $z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\alpha + \delta) > 0$. Let the function $f(z) = z + a_{n+1}z^{n+1} + \cdots \in A_n$ and suppose that

$$\alpha \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\alpha+\delta,n}(z).$$

If $F = I^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(f)$ is defined by

(1)
$$F(z) = I^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(f)(z) = \left[\frac{\beta+\gamma}{z^{\gamma}\Phi(z)}\int_{0}^{z}f^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}},$$

A. Totoi

then
$$F \in A_n$$
 with $\frac{F(z)}{z} \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta \frac{zF'(z)}{F(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, z \in U$$

All powers in (1) are principal ones.

Theorem 4. [3, Lemma 1.2c.] Let $n \ge 0$ be an integer and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma > -n$. If $f(z) = \sum_{m \ge n} a_m z^m$ is analytic in U and F is defined by

$$F(z) = I[f](z) = \frac{1}{z^{\gamma}} \int_0^z f(\zeta) \zeta^{\gamma - 1} d\zeta = \int_0^1 f(tz) t^{\gamma - 1} dt,$$

then $F(z) = \sum_{m \ge n} \frac{a_m z^m}{m + \gamma}$ is analytic in U.

2 Main results

Theorem 5. Let $p \in \mathbb{N}^*$, $\Phi, \varphi \in H[1, p]$ with $\Phi(z)\varphi(z) \neq 0, z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \delta + p\beta = \gamma + p\alpha$ and $\operatorname{Re}(\gamma - p\beta) > 0$. Let $g \in \Sigma_p$ and suppose that

$$\alpha \frac{zg'(z)}{g(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\delta - p\alpha, p}(z), \ z \in U.$$

If $G = J^{\Phi,\varphi}_{p,\alpha,\beta,\gamma,\delta}(g)$ is defined by

(2)
$$G(z) = J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}},$$

then $G \in \Sigma_p$ with $z^p G(z) \neq 0, z \in U$, and

Re
$$\left[\beta \frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

All powers in (2) are principal ones.

Proof. Let $g \in \Sigma_p$ be of the form $g(z) = \frac{a_{-p}}{z^p} + \sum_{k=0}^{\infty} a_k z^k$, $z \in \dot{U}$, $a_{-p} \neq 0$. It's easy to see that the function $f(z) = \frac{z^{p+1}g(z)}{a_{-p}}$ belongs to the class A_p .

After a simple computation we have

$$\alpha \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{\varphi(z)} = \alpha \frac{zg'(z)}{g(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \alpha(p+1),$$

hence

$$\alpha \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta - \alpha(p+1) \prec R_{\delta - p\alpha, p}(z).$$

By denoting $\delta - \alpha(p+1) = \delta_1$ and $\gamma - \beta(p+1) = \gamma_1$, after using the fact that $\delta + p\beta = \gamma + p\alpha$ and $\operatorname{Re}(\gamma - p\beta) > 0$, we obtain that $\alpha + \delta_1 = \beta + \gamma_1$ and $\operatorname{Re}(\beta + \gamma_1) > 0$.

Now we remark that the conditions of Theorem 3 are satisfied for the functions f, Φ, φ and the numbers $\alpha, \beta, \gamma_1, \delta_1$, so, we obtain that

$$F(z) = I^{\Phi,\varphi}_{\alpha,\beta,\gamma_1,\delta_1}(f)(z) = \left[\frac{\beta + \gamma_1}{z^{\gamma_1}\Phi(z)} \int_0^z f^{\alpha}(t)\varphi(t)t^{\delta_1 - 1}dt\right]^{\frac{1}{\beta}} \in A_p,$$

with $\frac{F(z)}{z} \neq 0, z \in U$, and

(3)
$$\operatorname{Re}\left[\beta \frac{zF'(z)}{F(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma_1\right] > 0, \ z \in U.$$

It's not difficult to see that

(4)
$$F^{\beta}(z)(a_{-p})^{\alpha} = G^{\beta}(z)z^{\beta(p+1)}$$

where

$$G(z) = J_{p,\alpha,\beta,\gamma,\delta}^{\Phi,\varphi}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}\Phi(z)} \int_{0}^{z} g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}.$$

Since $\frac{F(z)}{z} \neq 0$, $z \in U$, we have from (4), $z^p G(z) \neq 0$, $z \in U$. Using the logharitmic differential and the multiplying with z for (4), we obtain

$$\beta \frac{zF'(z)}{F(z)} = \beta \frac{zG'(z)}{G(z)} + \beta(p+1), \ z \in U.$$

From this last equality and (3), we get

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

Taking $\alpha = \beta$ and $\gamma = \delta$ in the above theorem and using the notation $J_{p,\beta,\gamma}^{\Phi,\varphi}$ instead of $J_{p,\beta,\beta,\gamma,\gamma}^{\Phi,\varphi}$, we obtain the next corollary:

Corollary 1. Let $p \in \mathbb{N}^*$, $\Phi, \varphi \in H[1,p]$ with $\Phi(z)\varphi(z) \neq 0, z \in U$. Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma - p\beta) > 0$. If $g \in \Sigma_p$ and

$$\beta \frac{zg'(z)}{g(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \gamma \prec R_{\gamma - p\beta, p}(z),$$

then

$$G(z) = J_{p,\beta,\gamma}^{\Phi,\varphi}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\beta}(t)\varphi(t)t^{\gamma-1}dt\right]^{\frac{1}{\beta}} \in \Sigma_{p},$$

with $z^p G(z) \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

Considering $\Phi = \varphi \equiv 1$ in Corollary 1, and using the notation $J_{p,\beta,\gamma}$ instead of $J_{p,\beta,\beta,\gamma,\gamma}^{1,1}$, we obtain:

Corollary 2. Let $p \in \mathbb{N}^*$, $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma - p\beta) > 0$. If $g \in \Sigma_p$ and

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z),$$

then

$$G(z) = J_{p,\beta,\gamma}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}} \int_0^z g^{\beta}(t) t^{\gamma - 1} dt\right]^{\frac{1}{\beta}} \in \Sigma_p,$$

with $z^p G(z) \neq 0, z \in U$, and

Re
$$\left[\beta \frac{zG'(z)}{G(z)} + \gamma\right] > 0, \ z \in U.$$

Let $p \in \mathbb{N}^*$, $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0, g \in \Sigma_p, G = J_{p,\beta,\gamma}(g)$ and let us denote $P(z) = -\frac{zG'(z)}{G(z)}, z \in U$. If we suppose that $P \in H(U)$, we obtain from

$$G(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}} \int_0^z t^{\gamma - 1} g^{\beta}(t) dt\right]^{\frac{1}{\beta}}, \ z \in \dot{U},$$

that

(5)
$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \ z \in U.$$

Theorem 6. Let $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$. If $g \in \Sigma_p$, then $J_{p,\lambda}(g) \in \Sigma_p$, where $J_{p,\lambda}(g)(z) = J_{p,1,\lambda}(g)(z) = \frac{\lambda - 1}{z^{\lambda}} \int_0^z g(t) t^{\lambda - 1} dt$.

Proof. Let g be of the form $g(z) = \frac{a_{-p}}{z^p} + a_0 + a_1 z + \cdots, z \in \dot{U}, a_{-p} \neq 0.$ Since $g \in \Sigma_p$ we have $z^p g \in H[a_{-p}, p]$. Let us denote $f(z) = z^p g(z), z \in U$, and $\gamma = \lambda - p$.

We know that $\operatorname{Re} \lambda > p$, so, $\operatorname{Re} \gamma > 0$, and using Theorem 4 for f and γ we get that

$$F(z) = \frac{1}{z^{\gamma}} \int_0^z f(t) t^{\gamma - 1} dt$$

is analytic in U, so $F\in H\left[\frac{a_{-p}}{\gamma},p\right].$ It's easy to see that

$$F(z) = \frac{1}{z^{\lambda-p}} \int_0^z g(t) t^{\lambda-1} dt = z^p \frac{1}{\lambda-1} J_{p,\lambda}(g)(z),$$

therefore $J_{p,\lambda}(g) \in \Sigma_p$.

Remark 2. Let $p \in \mathbb{N}^*$, $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > p$. From the above theorem, it's easy to see that we have $J_{p,\lambda}(g) \in \Sigma_{p,0}$, when $g \in \Sigma_{p,0}$.

For the next results we need the following lemmas:

Lemma 2. Let $n \in \mathbb{N}^*$, $\alpha, \beta \in \mathbb{R}$, $\gamma \in \mathbb{C}$ with $\operatorname{Re}[\gamma - \alpha\beta] \geq 0$. If $P \in H[P(0), n]$ with $P(0) \in \mathbb{R}$ and $P(0) > \alpha$, then we have

$$\operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] > \alpha \Rightarrow \operatorname{Re}P(z) > \alpha, \ z \in U.$$

Proof. If we take $R(z) = \frac{P(z) - \alpha}{P(0) - \alpha}$, we have $R(z) \in H[1, 1]$ and from

Re
$$\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] > \alpha, \ z \in U$$

since $P(0) - \alpha > 0$, we obtain

$$\operatorname{Re}\left[R(z) + \frac{zR'(z)}{\gamma - \beta\alpha - \beta(P(0) - \alpha)R(z)}\right] > 0, \ z \in U.$$

Now let us put

$$\psi(R(z), zR'(z); z) = R(z) + \frac{zR'(z)}{\gamma - \beta\alpha - \beta(P(0) - \alpha)R(z)}.$$

We have $\operatorname{Re} \psi(R(z), zR'(z); z) > 0, z \in U$.

To apply Lemma 1 we need to show that $\operatorname{Re} \psi(\rho i, \sigma; z) \leq 0$, when $\rho \in \mathbb{R}$, $\sigma \leq -\frac{1+\rho^2}{2}$, $z \in U$. We have

$$\operatorname{Re}\psi(\rho i,\sigma;z) = \operatorname{Re}\frac{\sigma}{\gamma - \beta\alpha - \beta(P(0) - \alpha)\rho i} = \operatorname{Re}\frac{\sigma}{\gamma_1 + i\gamma_2 - \beta\alpha - \beta(P(0) - \alpha)\rho i} = \frac{\sigma(\gamma_1 - \beta\alpha)}{(\gamma_1 - \beta\alpha)^2 + (\gamma_2 - \beta(P(0) - \alpha)\rho)^2} \le 0, \ z \in U, \ \rho \in \mathbb{R}, \ \sigma \le -\frac{1 + \rho^2}{2}, \ \gamma_1 = \operatorname{Re}\gamma \ge \alpha\beta$$

Applying now Lemma 1 we obtain $\operatorname{Re} R(z) > 0$, $z \in U$, hence $\operatorname{Re} P(z) > \alpha$.

Lemma 3. Let $n \in \mathbb{N}^*$, $\delta, \beta \in \mathbb{R}$, $\gamma \in \mathbb{C}$ with $\operatorname{Re}[\gamma - \delta\beta] \ge 0$. If $P \in H[P(0), n]$ with $P(0) \in \mathbb{R}$ and $P(0) < \delta$, then we have

$$\operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] < \delta \Rightarrow \operatorname{Re}P(z) < \delta, \ z \in U.$$

Proof. Let us denote R(z) = -P(z), $\alpha = -\delta$, $\beta_1 = -\beta$. It is easy to see that the conditions from Lemma 2 holds for the function R and the numbers α, β_1, γ , so we obtain $\operatorname{Re} R(z) > \alpha, z \in U$, which is equivalent to $\operatorname{Re} P(z) < \delta, z \in U$.

Next we will study the properties of the image of a function $g \in \Sigma_p^*(\alpha, \delta)$ through the integral operator $J_{p,\beta,\gamma}$ defined by

(6)
$$J_{p,\beta,\gamma}(g)(z) = \left[\frac{\gamma - p\beta}{z^{\gamma}} \int_0^z g^{\beta}(t) t^{\gamma - 1} dt\right]^{\frac{1}{\beta}}.$$

Theorem 7. Let $p \in \mathbb{N}^*$, $\beta > 0, \gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha, \delta)$, then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha, \delta)$.

Proof. We know that $g \in \Sigma_p^*(\alpha, \delta)$ is equivalent to

(7)
$$\alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] < \delta, \ z \in U,$$

 $\mathrm{so},$

$$\operatorname{Re} \gamma - \beta \delta < \operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] < \operatorname{Re} \gamma - \beta \alpha, \ z \in U, \quad \text{when} \quad \beta > 0.$$

Because $\delta \leq \frac{\operatorname{Re} \gamma}{\beta}$, we have $\operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] > 0, \ z \in U$, and using Corollary 2, we obtain that $G = J_{p,\beta,\gamma}(g) \in \Sigma_p, \ z^p G(z) \neq 0, \ z \in U$, and $\operatorname{Re} \left[\gamma + \beta \frac{zG'(z)}{G(z)} \right] > 0, \ z \in U$.

From (5) we know that

$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \quad \text{where} \quad P(z) = -\frac{zG'(z)}{G(z)} \text{ is analytic in } U.$$

Using (7) we get

(8)
$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] < \delta, \ z \in U.$$

Since $\alpha < P(0) = p < \delta$ and $0 \leq \operatorname{Re} \gamma - \beta \delta < \operatorname{Re} \gamma - \beta \alpha$, we obtain from (8), after applying Lemma 2 and Lemma 3, that

$$\alpha < \operatorname{Re} P(z) < \delta, \ z \in U,$$

which is equivalent to

(9)
$$\alpha < \operatorname{Re}\left[-\frac{zG'(z)}{G(z)}\right] < \delta, z \in U.$$

Since $G \in \Sigma_p$ we get from (9) that $G \in \Sigma_p^*(\alpha, \delta)$.

We remark that for p = 1 all members of the class $\Sigma_1^*(\alpha, \delta)$ are univalent functions, when $0 \le \alpha < 1 < \delta$, so $G = J_{1,\beta,\gamma}(g)$ is an univalent function when $g \in \Sigma_1^*(\alpha, \delta)$ and $0 \le \alpha < 1 < \delta \le \frac{\operatorname{Re} \gamma}{\beta}, \beta > 0.$

Taking $\beta = 1$ in the above theorem and using the notation $J_{p,\gamma}$ instead of $J_{p,1,\gamma}$, we obtain:

Corollary 3. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ and $\alpha . If <math>g \in \Sigma_p^*(\alpha, \delta)$, then

$$G = J_{p,\gamma}(g) = \frac{\gamma - p}{z^{\gamma}} \int_0^z t^{\gamma - 1} g(t) dt \in \Sigma_p^*(\alpha, \delta).$$

The properties of the integral operator $J_{1,\gamma}$, were studied by many authors in different papers, from which we remember [1], [2], [5], [6], [7]. **Theorem 8.** Let $p \in \mathbb{N}^*$, $\beta > 0, \gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha, \delta)$, with

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z), \ z \in U,$$

then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha,\delta).$

Proof. Because $\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-p\beta,p}(z), z \in U$, we obtain from Corollary 2 that $G \in \Sigma_p$, with $z^p G(z) \neq 0, z \in U$, and

Since $\frac{\operatorname{Re} \gamma}{\beta} \leq \delta$, we get from (10),

(11)
$$\operatorname{Re} \frac{zG'(z)}{G(z)} + \delta > 0, \ z \in U$$

From (5) we know that

(12)
$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \text{ where } P(z) = -\frac{zG'(z)}{G(z)}.$$

Since $g \in \Sigma_p^*(\alpha, \delta)$, we obtain from (12) that

(13)
$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] < \delta, \ z \in U.$$

Because we know from (11) that $\operatorname{Re} P(z) < \delta, z \in U$, we have only to verify that $\operatorname{Re} P(z) > \alpha$. To show this we will use Lemma 2.

We know that P is analytic in U with $P(0) = p > \alpha$. We also have Re $\gamma - \alpha\beta > 0$. Since the conditions from Lemma 2 are met, we obtain Re $P(z) > \alpha$, which is equivalent to

(14)
$$-\operatorname{Re}\frac{zG'(z)}{G(z)} > \alpha.$$

Since $G \in \Sigma_p$, from (11) and (14) we have $G \in \Sigma_p^*(\alpha, \delta)$.

If we consider $\delta \to \infty$, in the above theorem, we obtain the next corollary:

Corollary 4. Let $p \in \mathbb{N}^*$, $\beta > 0, \gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha)$, with

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z), \ z \in U,$$

then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha)$.

We make the remark that we can obtain a similar result, without the condition $\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-p\beta,p}(z), z \in U$, as it follows:

Theorem 9. Let $p \in \mathbb{N}^*$, $\beta > 0, \gamma \in \mathbb{C}$, $\alpha and <math>g \in \Sigma_p^*(\alpha)$. Let $G = J_{p,\beta,\gamma}(g)$. If $G \in \Sigma_p$ and $z^p G(z) \neq 0, z \in U$, then $G \in \Sigma_p^*(\alpha)$.

Proof. Let us denote $P(z) = -\frac{zG'(z)}{G(z)}$, $z \in U$. Because $G \in \Sigma_p$ and $z^pG(z) \neq 0$, $z \in U$, we have that P analytic in U, hence from $G = J_{p,\beta,\gamma}(g)$ and (5) we have that

(15)
$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \ z \in U.$$

Since $g \in \Sigma_p^*(\alpha)$, we obtain from (15) that

We have to verify that $\operatorname{Re} P(z) > \alpha$. To show this we will use Lemma 2.

We have P analytic in U with $P(0) = p > \alpha$ and $\operatorname{Re} \gamma - \alpha\beta > 0$. Since the conditions from Lemma 2 are met, we obtain $\operatorname{Re} P(z) > \alpha$, which is equivalent to

(17)
$$-\operatorname{Re}\frac{zG'(z)}{G(z)} > \alpha, \ z \in U.$$

Because $G \in \Sigma_p$, from (17), we get $G \in \Sigma_p^*(\alpha)$.

Since we know from Theorem 6 that for $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > p$, we have $J_{p,\gamma}(g) \in \Sigma_p$ when $g \in \Sigma_p$, we obtain for the above theorem, taking $\beta = 1$, the next corollary:

Corollary 5. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha)$ with $z^p J_{p,\gamma}(g)(z) \neq 0$, $z \in U$, then $G = J_{p,\gamma}(g) \in \Sigma_p^*(\alpha)$. Taking $\beta = 1$ in Theorem 8, we get:

Corollary 6. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ and $\alpha .$ $If <math>g \in \Sigma_p^*(\alpha, \delta)$, with

$$\frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-p,p}(z), \ z \in U,$$

then $G = J_{p,\gamma}(g) \in \Sigma_p^*(\alpha, \delta).$

Theorem 10. Let $p \in \mathbb{N}^*$, $\beta < 0$, $\gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha .$ $If <math>g \in \Sigma_p^*(\alpha, \delta)$, then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha, \delta)$.

Proof. We know that $g \in \Sigma_p^*(\alpha, \delta)$ is equivalent to

(18)
$$\alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] < \delta, \ z \in U,$$

 $\mathrm{so},$

$$\operatorname{Re} \gamma - \beta \alpha < \operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] < \operatorname{Re} \gamma - \beta \delta, \ z \in U, \quad \text{when} \quad \beta < 0.$$

Because $\alpha \geq \frac{\operatorname{Re} \gamma}{\beta}$, we have $\operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] > 0, \ z \in U$, and using Corollary 2, we obtain that $G = J_{p,\beta,\gamma}(g) \in \Sigma_p, \ z^p G(z) \neq 0, \ z \in U$ and $\operatorname{Re} \left[\gamma + \beta \frac{zG'(z)}{G(z)} \right] > 0, \ z \in U$.

From (5) we know that

$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \quad \text{where} \quad P(z) = -\frac{zG'(z)}{G(z)} \text{ is analytic in } U.$$

We will use the same idea as at the proof of Theorem 7. Using (18) we get

(19)
$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] < \delta, \ z \in U.$$

Since $\alpha < P(0) = p < \delta$ and $\operatorname{Re} \gamma - \beta \delta > \operatorname{Re} \gamma - \beta \alpha \ge 0$, we obtain from (19), after applying Lemma 2 and Lemma 3, that

$$\alpha < \operatorname{Re} P(z) < \delta, \ z \in U,$$

which is equivalent to

(20)
$$\alpha < \operatorname{Re}\left[-\frac{zG'(z)}{G(z)}\right] < \delta, \ z \in U.$$

Since $G \in \Sigma_p$ we have from (20) that $G \in \Sigma_p^*(\alpha, \delta)$.

If we consider $\delta \to \infty$, in the above theorem, we obtain the next corollary:

Corollary 7. Let $p \in \mathbb{N}^*$, $\beta < 0$, $\gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha < p$. Then we have

$$g \in \Sigma_p^*(\alpha) \Rightarrow G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha).$$

Theorem 11. Let $p \in \mathbb{N}^*$, $\beta < 0, \gamma \in \mathbb{C}$ and $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta} .$ $If <math>g \in \Sigma_p^*(\alpha, \delta)$, with

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z), \ z \in U,$$

then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha,\delta).$

Proof. Because $\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-p\beta,p}(z), z \in U$, we obtain from Corollary 2 that $G \in \Sigma_p$ with $z^p G(z) \neq 0, z \in U$, and

Since $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta}$, and $\beta < 0$, we get from (21) that

(22)
$$\operatorname{Re}\frac{zG'(z)}{G(z)} + \alpha < 0, \ z \in U.$$

From (5) we know that

(23)
$$P(z) + \frac{zP'(z)}{\gamma - \beta P(z)} = -\frac{zg'(z)}{g(z)}, \text{ where } P(z) = -\frac{zG'(z)}{G(z)}.$$

Since $g \in \Sigma_p^*(\alpha, \delta)$, we obtain from (23) that

(24)
$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - \beta P(z)}\right] < \delta.$$

Because we know from (22) that $\operatorname{Re} P(z) > \alpha$, $z \in U$, we have only to verify that $\operatorname{Re} P(z) < \delta$.

To show this we will use Lemma 3.

We know that P is analytic in U with $P(0) = p < \delta$. Also we have $\operatorname{Re} \gamma - \delta\beta > 0$. Since the conditions from Lemma 3 are met, we obtain $\operatorname{Re} P(z) < \delta$, which is equivalent to

(25)
$$-\operatorname{Re}\frac{zG'(z)}{G(z)} < \delta.$$

From (22) and (25), since $G \in \Sigma_p$, we have $G \in \Sigma_p^*(\alpha, \delta)$.

If we consider $\delta \to \infty$, in the above theorem, we obtain the next corollary:

Corollary 8. Let $p \in \mathbb{N}^*$, $\beta < 0, \gamma \in \mathbb{C}$ and $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta} < p$. If $g \in \Sigma_p^*(\alpha)$, with

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma - p\beta, p}(z), \, z \in U,$$

then $G = J_{p,\beta,\gamma}(g) \in \Sigma_p^*(\alpha)$.

We make the remark that we can obtain a similar result, without the condition $\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-p\beta,p}(z), z \in U$, as it follows:

Theorem 12. Let $p \in \mathbb{N}^*$, $\beta < 0, \gamma \in \mathbb{C}$, $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta} < p$ and $g \in \Sigma_p^*(\alpha)$. Let $G = J_{p,\beta,\gamma}(g)$. If $G \in \Sigma_p$ and $z^p G(z) \neq 0$, $z \in U$, then $G \in \Sigma_p^*(\alpha)$.

We omit the proof because it is similar to that of Theorem 9.

The next results concern the sets $\Sigma K_p(\alpha, \delta)$, $\Sigma C_{p,0}(\alpha, \delta; \varphi)$ and the operator $J_{p,\gamma} = J_{p,1,\gamma}$.

Theorem 13. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > p$ and let $\alpha . If <math>g \in \Sigma K_p(\alpha, \delta)$ and $z^{p+1} J'_{p,\gamma}(g)(z) \neq 0, z \in U$, then

$$J_{p,\gamma}(g) \in \Sigma K_p(\alpha, \delta).$$

Proof. Let us denote $G = J_{p,\gamma}(g)$. We know from Theorem 6 that $G \in \Sigma_p$. Let $P(z) = -1 - \frac{zG''(z)}{G'(z)}$, $z \in U$. Since $G \in \Sigma_p$ and $z^{p+1}G'(z) \neq 0$, $z \in U$, we have $P \in H(U)$. Using the definition of the operator $J_{p,\gamma}$ and the logharitmic differential, two times, we obtain

(26)
$$P(z) + \frac{zP'(z)}{\gamma - P(z)} = -1 - \frac{zg''(z)}{g'(z)}, \ z \in U.$$

From $g \in \Sigma K_p(\alpha, \delta)$, we have

$$\alpha < \operatorname{Re}\left[-1 - \frac{zg''(z)}{g'(z)}\right] < \delta, \ z \in U,$$

so, using (26), we obtain

(27)
$$\alpha < \operatorname{Re}\left[P(z) + \frac{zP'(z)}{\gamma - P(z)}\right] < \delta, \ z \in U.$$

Since $\alpha < P(0) = p < \delta$ and $0 \leq \operatorname{Re} \gamma - \delta < \operatorname{Re} \gamma - \alpha$, we obtain from (27), after applying Lemma 2 and Lemma 3 (in the case $\beta = 1$), that

$$\alpha < \operatorname{Re} P(z) < \delta, \ z \in U,$$

which is equivalent to

(28)
$$\alpha < \operatorname{Re}\left[-1 - \frac{zG''(z)}{G'(z)}\right] < \delta, \ z \in U.$$

Since $G = J_{p,\gamma}(g) \in \Sigma_p$, we have from (28), that $J_{p,\gamma}(g) \in \Sigma K_p(\alpha, \delta)$.

From the proof of the above theorem we remark that we also have the next result.

Theorem 14. Let $p \in \mathbb{N}^*$, $\alpha \in \mathbb{R}$, $\gamma \in \mathbb{C}$ with $\alpha . If <math>g \in \Sigma K_p(\alpha)$ and $z^{p+1}J'_{p,\gamma}(g)(z) \neq 0$, $z \in U$, then

$$J_{p,\gamma}(g) \in \Sigma K_p(\alpha).$$

Theorem 15. Let $p \in \mathbb{N}^*$, $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > p$, and $\alpha < 1 \leq p < \delta \leq \operatorname{Re} \gamma$. Let φ be a function in $\Sigma K_{p,0}(\alpha, \delta)$ and $g \in \Sigma C_{p,0}(\alpha, \delta; \varphi)$ such that $z^{p+1}J'_{p,\gamma}(\varphi) \neq 0, z \in U$, then

$$J_{p,\gamma}(g) \in \Sigma \mathcal{C}_{p,0}(\alpha, \delta; \Phi),$$

where $\Phi = J_{p,\gamma}(\varphi)$.

A. Totoi

Proof. From $g \in \Sigma C_{p,0}(\alpha, \delta; \varphi)$, we have

(29)
$$\alpha < \operatorname{Re} \frac{g'(z)}{\varphi'(z)} < \delta, \ z \in U.$$

Let $G = J_{p,\gamma}(g)$. We know from Remark 2 that $G, \Phi \in \Sigma_{p,0}$. From $G = J_{p,\gamma}(g)$ and $\Phi = J_{p,\gamma}(\varphi)$, we get

$$\gamma G(z) + zG'(z) = (\gamma - p)g(z) \text{ and } \gamma \Phi(z) + z\Phi'(z) = (\gamma - p)\varphi(z), z \in \dot{U},$$

hence

$$(\gamma+1)G'(z) + zG''(z) = (\gamma-p)g'(z)$$
 and $(\gamma+1)\Phi'(z) + z\Phi''(z) = (\gamma-p)\varphi'(z)$.

Let us denote

$$p(z) = \frac{G'(z)}{\Phi'(z)}, \ z \in U.$$

Since $G, \Phi \in \Sigma_{p,0}$ and $z^{p+1}\Phi'(z) \neq 0, z \in U$, we have $p \in H(U)$. Of course, p(0) = 1.

From $p(z)\Phi'(z) = G'(z)$, we get $G''(z) = p'(z)\Phi'(z) + p(z)\Phi''(z)$, so, the equality

$$(\gamma + 1)G'(z) + zG''(z) = (\gamma - p)g'(z), z \in U,$$

can be rewritten as

(30)
$$(\gamma + 1)p(z)\Phi'(z) + z[p'(z)\Phi'(z) + p(z)\Phi''(z)] = (\gamma - p)g'(z).$$

Using the equality $(\gamma + 1)\Phi'(z) + z\Phi''(z) = (\gamma - p)\varphi'(z)$, we obtain from (30) that

$$p(z) + \frac{zp'(z)}{\gamma + 1 + \frac{z\Phi''(z)}{\Phi'(z)}} = \frac{g'(z)}{\varphi'(z)}, \ z \in U,$$

which is equivalent to

$$p(z) + \frac{zp'(z)}{P(z)} = \frac{g'(z)}{\varphi'(z)}$$
, where $P(z) = \gamma + 1 + \frac{z\Phi''(z)}{\Phi'(z)}$.

Since $\alpha < \operatorname{Re} \frac{g'(z)}{\varphi'(z)} < \delta, \ z \in U$, we obtain

(31)
$$\alpha < \operatorname{Re}\left[p(z) + \frac{zp'(z)}{P(z)}\right] < \delta, \ z \in U.$$

106

Let us denote $p_1(z) = p(z) - \alpha$ and $p_2(z) = \delta - p(z)$. Using now (31), we have

It is easy to see that $p_k(0) > 0$, so, to apply Theorem 2 we need only to verify that $\operatorname{Re} P(z) > 0$, $z \in U$, where $P(z) = \gamma + 1 + \frac{z\Phi''(z)}{\Phi'(z)}$. As we know that $\varphi \in \Sigma K_{p,0}(\alpha, \delta)$ with $z^{p+1}J'_{p,\gamma}(\varphi)(z) \neq 0$, $z \in U$, we obtain from Theorem 13 that

$$\Phi = J_{p,\gamma}(\varphi) \in \Sigma K_{p,0}(\alpha,\delta),$$

which is equivalent to

$$\alpha < {\rm Re} \, \left[-1 - \frac{z \Phi''(z)}{\Phi'(z)} \right] < \delta, \, z \in U,$$

hence

$$\operatorname{Re} \gamma - \delta < \operatorname{Re} P(z) < \operatorname{Re} \gamma - \alpha, \ z \in U.$$

Since $\operatorname{Re} \gamma \geq \delta$, we get $\operatorname{Re} P(z) > 0$, $z \in U$, and we can now apply Theorem 2 to obtain $\operatorname{Re} p_k(z) > 0$, $z \in U$, k = 1, 2. Therefore, we have

(33)
$$\alpha < \operatorname{Re} \frac{G'(z)}{\Phi'(z)} < \delta, \ z \in U.$$

Since we know that $G \in \Sigma_{p,0}$ and $\Phi \in \Sigma K_{p,0}(\alpha, \delta)$, we have from (33) that $G = J_{p,\gamma}(g) \in \Sigma C_{p,0}(\alpha, \delta; \Phi)$.

References

- S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22, 1977, 295-297.
- [2] R. M. Goel, N. S. Sohi, On a class of meromorphic functions, Glas. Mat. Ser. III, 17(37), 1981, 19-28.
- [3] S. S. Miller, P. T. Mocanu, *Differential subordinations. Theory and applications*, Marcel Dekker Inc. New York, Basel, 2000.

- [4] P. T. Mocanu, T. Bulboacă, Gr. Şt. Sălăgean, The geometric theory of univalent functions, Casa Cărții de Știință, Cluj-Napoca, 2006 (in Romanian).
- [5] P. T. Mocanu, Gr. Şt. Sălăgean, Integral operators and meromorphic starlike functions, Mathematica (Cluj), 32(55), 2, 1990, 147-152.
- [6] T. R. Reddy, O. P. Juneja, Integral operators on a class of meromorphic functions, C. R. Acad. Bulgare Sci., 40, 1987, 21-23.
- [7] Gr. Şt. Sălăgean, Meromorphic starlike univalent functions, Babeş Bolyai Univ., Fac. Math. and Phys. Res. Sem., Itinerant Seminar on Functional Equations, Approximations and Convexity, Preprint 7, 1986, 261-266.

Alina Totoi

"Lucian Blaga" University of Sibiu Department of Mathematics Sibiu, Romania e-mail: totoialina@yahoo.com