On integral operators of meromorphic functions

Alina Totoi

Abstract

Let $p \in \mathbb{N}^{*}, \Phi, \varphi \in H[1, p], \Phi(z) \varphi(z) \neq 0, z \in U, \alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, and let Σ_{p} denote the class of meromorphic functions of the form $g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\cdots, z \in \dot{U}, a_{-p} \neq 0$. We consider the integral operator $J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}: K \subset \Sigma_{p} \rightarrow \Sigma_{p}$ defined by $$
J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma} \Phi(z)} \int_{0}^{z} g^{\alpha}(t) \varphi(t) t^{\delta-1} d t\right]^{\frac{1}{\beta}}, g \in K, z \in \dot{U}
$$

The first result of this paper gives us the conditions for which $J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}$ has some important properties. Furthermore, we study the image of the set $\Sigma_{p}^{*}(\alpha, \delta)$ through the operator $J_{p, \beta, \gamma}=J_{p, \beta, \beta, \gamma, \gamma}^{1,1}$ and the image of the sets $\Sigma K_{p}(\alpha, \delta), \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \varphi)$ through the operator $J_{p, \gamma}=J_{p, 1, \gamma}$.

2010 Mathematics Subject Classification: 30C45

Key words and phrases: Meromorphic functions, Integral operators.

1 Introduction and preliminaries

Let $U=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane, $\dot{U}=U \backslash\{0\}$, $H(U)=\{f: U \rightarrow \mathbb{C}: f$ is holomorphic in $U\}, \mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{*}=$ $\mathbb{N} \backslash\{0\}$.

[^0]For $p \in \mathbb{N}^{*}$, let Σ_{p} denote the class of meromorphic functions of the form

$$
g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\cdots, z \in \dot{U}, a_{-p} \neq 0
$$

We will also use the following notations:
$\Sigma_{p, 0}=\left\{g \in \Sigma_{p}: a_{-p}=1\right\}, \Sigma_{0}=\left\{g \in \Sigma_{p, 0}: g(z) \neq 0, z \in \dot{U}\right\}$, $\Sigma_{p}^{*}(\alpha)=\left\{g \in \Sigma_{p}: \operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]>\alpha, z \in U\right\}$, where $\alpha<p$,
$\Sigma_{p}^{*}(\alpha, \delta)=\left\{g \in \Sigma_{p}: \alpha<\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\delta, z \in U\right\}$, where $\alpha<p<\delta$,
$\Sigma K_{p}(\alpha)=\left\{g \in \Sigma_{p}: \operatorname{Re}\left[1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]<-\alpha, z \in U\right\}$, where $\alpha<p$,
$\Sigma K_{p, 0}(\alpha)=\Sigma K_{p}(\alpha) \cap \Sigma_{p, 0}$,
$\Sigma K_{p}(\alpha, \delta)=\left\{g \in \Sigma_{p}: \alpha<\operatorname{Re}\left[-1-\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]<\delta, z \in U\right\}$, where $\alpha<p<\delta$,
$\Sigma K_{p, 0}(\alpha, \delta)=\Sigma K_{p}(\alpha, \delta) \cap \Sigma_{p, 0}$,
$\Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \varphi)=\left\{g \in \Sigma_{p, 0}: \alpha<\operatorname{Re}\left[\frac{g^{\prime}(z)}{\varphi^{\prime}(z)}\right]<\delta, z \in U\right\}$, where $\alpha<1 \leq p<\delta$, $\varphi \in \Sigma K_{p, 0}(\alpha, \delta)$.

We remark that $\Sigma_{1}^{*}(\alpha), 0 \leq \alpha<1$, is the classes of meromorphic starlike functions of order α and $\Sigma K_{1,0}(\alpha) \cap \Sigma_{0}$ is the classes of meromorphic convex functions of order α. These classes are classes of univalent functions.

$$
H[a, n]=\left\{f \in H(U): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots\right\} \text { for } a \in \mathbb{C}
$$ $n \in \mathbb{N}^{*}$,

$A_{n}=\left\{f \in H(U): f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots\right\}, n \in \mathbb{N}^{*}$, and for $n=1$ we denote A_{1} by A and this set is called the class of analytic functions normalized at the origin.

Definition 1. [3, p.4], [4, p.45] Let $f, g \in H(U)$. We say that the function f is subordinate to the function g, and we denote this by $f(z) \prec g(z)$, if there is a function $w \in H(U)$, with $w(0)=0$ and $|w(z)|<1, z \in U$, such that

$$
f(z)=g[w(z)], z \in U
$$

Remark 1. If $f(z) \prec g(z)$, then $f(0)=g(0)$ and $f(U) \subseteq g(U)$.
Theorem 1. [3, p.4], [4, p.46] Let $f, g \in H(U)$ and let g be a univalent function in U. Then $f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

Theorem 2. [3, Theorem 2.4f.], [4, p.212] Let $p \in H[a, n]$ with $\operatorname{Re} a>0$ and let $P: U \rightarrow \mathbb{C}$ be a function with $\operatorname{Re} P(z)>0, z \in U$. If

$$
\operatorname{Re}\left[p(z)+P(z) z p^{\prime}(z)\right]>0, z \in U
$$

then $\operatorname{Re} p(z)>0, z \in U$.
Definition 2. [3, p.46], [4, p.228] Let $c \in \mathbb{C}$ with $\operatorname{Re} c>0$ and $n \in \mathbb{N}^{*}$. We consider

$$
C_{n}=C_{n}(c)=\frac{n}{\operatorname{Re} c}\left[|c| \sqrt{1+\frac{2 \operatorname{Re} c}{n}}+\operatorname{Im} c\right]
$$

If the univalent function $R: U \rightarrow \mathbb{C}$ is given by $R(z)=\frac{2 C_{n} z}{1-z^{2}}$, then we will denote by $R_{c, n}$ the "Open Door" function, defined as

$$
R_{c, n}(z)=R\left(\frac{z+b}{1+\bar{b} z}\right)=2 C_{n} \frac{(z+b)(1+\bar{b} z)}{(1+\bar{b} z)^{2}-(z+b)^{2}}
$$

where $b=R^{-1}(c)$.
Lemma 1. [3, p.35], [4, pg. 209] Let $\psi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ be a function that satisfies the condition

$$
\operatorname{Re} \psi(\rho i, \sigma ; z) \leq 0
$$

when $\rho, \sigma \in \mathbb{R}, \sigma \leq-\frac{n}{2}\left(1+\rho^{2}\right), z \in U, n \geq 1$.
If $p \in H[1, n]$ and

$$
\operatorname{Re} \psi\left(p(z), z p^{\prime}(z) ; z\right)>0, \quad z \in U
$$

then

$$
\operatorname{Re} p(z)>0, \quad z \in U
$$

Theorem 3. [3, Theorem 2.5c.] Let $\Phi, \varphi \in H[1, n]$ with $\Phi(z) \neq 0, \varphi(z) \neq 0$, for $z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha+\delta=\beta+\gamma$ and $\operatorname{Re}(\alpha+\delta)>0$. Let the function $f(z)=z+a_{n+1} z^{n+1}+\cdots \in A_{n}$ and suppose that

$$
\alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}+\delta \prec R_{\alpha+\delta, n}(z)
$$

If $F=I_{\alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(f)$ is defined by

$$
\begin{equation*}
F(z)=I_{\alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma} \Phi(z)} \int_{0}^{z} f^{\alpha}(t) \varphi(t) t^{\delta-1} d t\right]^{\frac{1}{\beta}} \tag{1}
\end{equation*}
$$

then $F \in A_{n}$ with $\frac{F(z)}{z} \neq 0, z \in U$, and

$$
\operatorname{Re}\left[\beta \frac{z F^{\prime}(z)}{F(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in U
$$

All powers in (1) are principal ones.
Theorem 4. [3, Lemma 1.2c.] Let $n \geq 0$ be an integer and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma>-n$. If $f(z)=\sum_{m \geq n} a_{m} z^{m}$ is analytic in U and F is defined by

$$
F(z)=I[f](z)=\frac{1}{z^{\gamma}} \int_{0}^{z} f(\zeta) \zeta^{\gamma-1} d \zeta=\int_{0}^{1} f(t z) t^{\gamma-1} d t
$$

then $F(z)=\sum_{m \geq n} \frac{a_{m} z^{m}}{m+\gamma}$ is analytic in U.

2 Main results

Theorem 5. Let $p \in \mathbb{N}^{*}, \Phi, \varphi \in H[1, p]$ with $\Phi(z) \varphi(z) \neq 0, z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \delta+p \beta=\gamma+p \alpha$ and $\operatorname{Re}(\gamma-p \beta)>0$. Let $g \in \Sigma_{p}$ and suppose that

$$
\alpha \frac{z g^{\prime}(z)}{g(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}+\delta \prec R_{\delta-p \alpha, p}(z), z \in U
$$

If $G=J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(g)$ is defined by

$$
\begin{equation*}
G(z)=J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma} \Phi(z)} \int_{0}^{z} g^{\alpha}(t) \varphi(t) t^{\delta-1} d t\right]^{\frac{1}{\beta}} \tag{2}
\end{equation*}
$$

then $G \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$, and

$$
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in U
$$

All powers in (2) are principal ones.
Proof. Let $g \in \Sigma_{p}$ be of the form $g(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k}, z \in \dot{U}, a_{-p} \neq 0$. It's easy to see that the function $f(z)=\frac{z^{p+1} g(z)}{a_{-p}}$ belongs to the class A_{p}.

After a simple computation we have

$$
\alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}=\alpha \frac{z g^{\prime}(z)}{g(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}+\alpha(p+1)
$$

hence

$$
\alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}+\delta-\alpha(p+1) \prec R_{\delta-p \alpha, p}(z)
$$

By denoting $\delta-\alpha(p+1)=\delta_{1}$ and $\gamma-\beta(p+1)=\gamma_{1}$, after using the fact that $\delta+p \beta=\gamma+p \alpha$ and $\operatorname{Re}(\gamma-p \beta)>0$, we obtain that $\alpha+\delta_{1}=\beta+\gamma_{1}$ and $\operatorname{Re}\left(\beta+\gamma_{1}\right)>0$.

Now we remark that the conditions of Theorem 3 are satisfied for the functions f, Φ, φ and the numbers $\alpha, \beta, \gamma_{1}, \delta_{1}$, so, we obtain that

$$
F(z)=I_{\alpha, \beta, \gamma_{1}, \delta_{1}}^{\Phi, \varphi}(f)(z)=\left[\frac{\beta+\gamma_{1}}{z^{\gamma_{1}} \Phi(z)} \int_{0}^{z} f^{\alpha}(t) \varphi(t) t^{\delta_{1}-1} d t\right]^{\frac{1}{\beta}} \in A_{p}
$$

with $\frac{F(z)}{z} \neq 0, z \in U$, and

$$
\begin{equation*}
\operatorname{Re}\left[\beta \frac{z F^{\prime}(z)}{F(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma_{1}\right]>0, z \in U \tag{3}
\end{equation*}
$$

It's not difficult to see that

$$
\begin{equation*}
F^{\beta}(z)\left(a_{-p}\right)^{\alpha}=G^{\beta}(z) z^{\beta(p+1)} \tag{4}
\end{equation*}
$$

where

$$
G(z)=J_{p, \alpha, \beta, \gamma, \delta}^{\Phi, \varphi}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma} \Phi(z)} \int_{0}^{z} g^{\alpha}(t) \varphi(t) t^{\delta-1} d t\right]^{\frac{1}{\beta}}
$$

Since $\frac{F(z)}{z} \neq 0, z \in U$, we have from $(4), z^{p} G(z) \neq 0, z \in U$.
Using the logharitmic differential and the multiplying with z for (4), we obtain

$$
\beta \frac{z F^{\prime}(z)}{F(z)}=\beta \frac{z G^{\prime}(z)}{G(z)}+\beta(p+1), z \in U
$$

From this last equality and (3), we get

$$
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in U
$$

Taking $\alpha=\beta$ and $\gamma=\delta$ in the above theorem and using the notation $J_{p, \beta, \gamma}^{\Phi, \varphi}$ instead of $J_{p, \beta, \beta, \gamma, \gamma}^{\Phi, \varphi}$, we obtain the next corollary:

Corollary 1. Let $p \in \mathbb{N}^{*}, \Phi, \varphi \in H[1, p]$ with $\Phi(z) \varphi(z) \neq 0, z \in U$. Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. If $g \in \Sigma_{p}$ and

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\frac{z \varphi^{\prime}(z)}{\varphi(z)}+\gamma \prec R_{\gamma-p \beta, p}(z)
$$

then

$$
G(z)=J_{p, \beta, \gamma}^{\Phi, \varphi}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma} \Phi(z)} \int_{0}^{z} g^{\beta}(t) \varphi(t) t^{\gamma-1} d t\right]^{\frac{1}{\beta}} \in \Sigma_{p}
$$

with $z^{p} G(z) \neq 0, z \in U$, and

$$
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in U
$$

Considering $\Phi=\varphi \equiv 1$ in Corollary 1, and using the notation $J_{p, \beta, \gamma}$ instead of $J_{p, \beta, \beta, \gamma, \gamma}^{1,1}$, we obtain:
Corollary 2. Let $p \in \mathbb{N}^{*}, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma-p \beta)>0$. If $g \in \Sigma_{p}$ and

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z),
$$

then

$$
G(z)=J_{p, \beta, \gamma}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} g^{\beta}(t) t^{\gamma-1} d t\right]^{\frac{1}{\beta}} \in \Sigma_{p}
$$

with $z^{p} G(z) \neq 0, z \in U$, and

$$
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right]>0, z \in U .
$$

Let $p \in \mathbb{N}^{*}, \beta, \gamma \in \mathbb{C}$ with $\beta \neq 0, g \in \Sigma_{p}, G=J_{p, \beta, \gamma}(g)$ and let us denote $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$. If we suppose that $P \in H(U)$, we obtain from

$$
G(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} g^{\beta}(t) d t\right]^{\frac{1}{\beta}}, z \in \dot{U},
$$

that

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, z \in U . \tag{5}
\end{equation*}
$$

Theorem 6. Let $p \in \mathbb{N}^{*}, \lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>p$. If $g \in \Sigma_{p}$, then $J_{p, \lambda}(g) \in \Sigma_{p}$, where $J_{p, \lambda}(g)(z)=J_{p, 1, \lambda}(g)(z)=\frac{\lambda-1}{z^{\lambda}} \int_{0}^{z} g(t) t^{\lambda-1} d t$.

Proof. Let g be of the form $g(z)=\frac{a_{-p}}{z^{p}}+a_{0}+a_{1} z+\cdots, z \in \dot{U}, a_{-p} \neq 0$. Since $g \in \Sigma_{p}$ we have $z^{p} g \in H\left[a_{-p}, p\right]$. Let us denote $f(z)=z^{p} g(z), z \in U$, and $\gamma=\lambda-p$.

We know that $\operatorname{Re} \lambda>p$, so, $\operatorname{Re} \gamma>0$, and using Theorem 4 for f and γ we get that

$$
F(z)=\frac{1}{z^{\gamma}} \int_{0}^{z} f(t) t^{\gamma-1} d t
$$

is analytic in U, so $F \in H\left[\frac{a_{-p}}{\gamma}, p\right]$. It's easy to see that

$$
F(z)=\frac{1}{z^{\lambda-p}} \int_{0}^{z} g(t) t^{\lambda-1} d t=z^{p} \frac{1}{\lambda-1} J_{p, \lambda}(g)(z),
$$

therefore $J_{p, \lambda}(g) \in \Sigma_{p}$.
Remark 2. Let $p \in \mathbb{N}^{*}, \lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>p$. From the above theorem, it's easy to see that we have $J_{p, \lambda}(g) \in \Sigma_{p, 0}$, when $g \in \Sigma_{p, 0}$.

For the next results we need the following lemmas:
Lemma 2. Let $n \in \mathbb{N}^{*}, \alpha, \beta \in \mathbb{R}, \gamma \in \mathbb{C}$ with $\operatorname{Re}[\gamma-\alpha \beta] \geq 0$. If $P \in$ $H[P(0), n]$ with $P(0) \in \mathbb{R}$ and $P(0)>\alpha$, then we have

$$
\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]>\alpha \Rightarrow \operatorname{Re} P(z)>\alpha, z \in U
$$

Proof. If we take $R(z)=\frac{P(z)-\alpha}{P(0)-\alpha}$, we have $R(z) \in H[1,1]$ and from

$$
\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]>\alpha, z \in U
$$

since $P(0)-\alpha>0$, we obtain

$$
\operatorname{Re}\left[R(z)+\frac{z R^{\prime}(z)}{\gamma-\beta \alpha-\beta(P(0)-\alpha) R(z)}\right]>0, z \in U
$$

Now let us put

$$
\psi\left(R(z), z R^{\prime}(z) ; z\right)=R(z)+\frac{z R^{\prime}(z)}{\gamma-\beta \alpha-\beta(P(0)-\alpha) R(z)} .
$$

We have $\operatorname{Re} \psi\left(R(z), z R^{\prime}(z) ; z\right)>0, z \in U$.

To apply Lemma 1 we need to show that $\operatorname{Re} \psi(\rho i, \sigma ; z) \leq 0$, when $\rho \in$ $\mathbb{R}, \sigma \leq-\frac{1+\rho^{2}}{2}, z \in U$. We have
$\operatorname{Re} \psi(\rho i, \sigma ; z)=\operatorname{Re} \frac{\sigma}{\gamma-\beta \alpha-\beta(P(0)-\alpha) \rho i}=\operatorname{Re} \frac{\sigma}{\gamma_{1}+i \gamma_{2}-\beta \alpha-\beta(P(0)-\alpha) \rho i}=$ $\frac{\sigma\left(\gamma_{1}-\beta \alpha\right)}{\left(\gamma_{1}-\beta \alpha\right)^{2}+\left(\gamma_{2}-\beta(P(0)-\alpha) \rho\right)^{2}} \leq 0, z \in U, \rho \in \mathbb{R}, \sigma \leq-\frac{1+\rho^{2}}{2}, \gamma_{1}=\operatorname{Re} \gamma \geq \alpha \beta$.

Applying now Lemma 1 we obtain $\operatorname{Re} R(z)>0, z \in U$, hence $\operatorname{Re} P(z)>\alpha$.
Lemma 3. Let $n \in \mathbb{N}^{*}, \delta, \beta \in \mathbb{R}, \gamma \in \mathbb{C}$ with $\operatorname{Re}[\gamma-\delta \beta] \geq 0$. If $P \in H[P(0), n]$ with $P(0) \in \mathbb{R}$ and $P(0)<\delta$, then we have

$$
\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]<\delta \Rightarrow \operatorname{Re} P(z)<\delta, z \in U
$$

Proof. Let us denote $R(z)=-P(z), \alpha=-\delta, \beta_{1}=-\beta$. It is easy to see that the conditions from Lemma 2 holds for the function R and the numbers $\alpha, \beta_{1}, \gamma$, so we obtain $\operatorname{Re} R(z)>\alpha, z \in U$, which is equivalent to $\operatorname{Re} P(z)<$ $\delta, z \in U$.

Next we will study the properties of the image of a function $g \in \Sigma_{p}^{*}(\alpha, \delta)$ through the integral operator $J_{p, \beta, \gamma}$ defined by

$$
\begin{equation*}
J_{p, \beta, \gamma}(g)(z)=\left[\frac{\gamma-p \beta}{z^{\gamma}} \int_{0}^{z} g^{\beta}(t) t^{\gamma-1} d t\right]^{\frac{1}{\beta}} \tag{6}
\end{equation*}
$$

Theorem 7. Let $p \in \mathbb{N}^{*}, \beta>0, \gamma \in \mathbb{C}$ and $\alpha<p<\delta \leq \frac{\operatorname{Re} \gamma}{\beta}$. If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha, \delta)$.

Proof. We know that $g \in \Sigma_{p}^{*}(\alpha, \delta)$ is equivalent to

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\delta, z \in U \tag{7}
\end{equation*}
$$

so,

$$
\operatorname{Re} \gamma-\beta \delta<\operatorname{Re}\left[\gamma+\beta \frac{z g^{\prime}(z)}{g(z)}\right]<\operatorname{Re} \gamma-\beta \alpha, z \in U, \quad \text { when } \quad \beta>0
$$

Because $\delta \leq \frac{\operatorname{Re} \gamma}{\beta}$, we have $\operatorname{Re}\left[\gamma+\beta \frac{z g^{\prime}(z)}{g(z)}\right]>0, z \in U$, and using Corollary 2, we obtain that $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}, z^{p} G(z) \neq 0, z \in U$, and $\operatorname{Re}\left[\gamma+\beta \frac{z G^{\prime}(z)}{G(z)}\right]$ $>0, z \in U$.

From (5) we know that

$$
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad \text { where } \quad P(z)=-\frac{z G^{\prime}(z)}{G(z)} \text { is analytic in } U
$$

Using (7) we get

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]<\delta, z \in U \tag{8}
\end{equation*}
$$

Since $\alpha<P(0)=p<\delta$ and $0 \leq \operatorname{Re} \gamma-\beta \delta<\operatorname{Re} \gamma-\beta \alpha$, we obtain from (8), after applying Lemma 2 and Lemma 3, that

$$
\alpha<\operatorname{Re} P(z)<\delta, z \in U
$$

which is equivalent to

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[-\frac{z G^{\prime}(z)}{G(z)}\right]<\delta, z \in U \tag{9}
\end{equation*}
$$

Since $G \in \Sigma_{p}$ we get from (9) that $G \in \Sigma_{p}^{*}(\alpha, \delta)$.
We remark that for $p=1$ all members of the class $\Sigma_{1}^{*}(\alpha, \delta)$ are univalent functions, when $0 \leq \alpha<1<\delta$, so $G=J_{1, \beta, \gamma}(g)$ is an univalent function when $g \in \Sigma_{1}^{*}(\alpha, \delta)$ and $0 \leq \alpha<1<\delta \leq \frac{\operatorname{Re} \gamma}{\beta}, \beta>0$.

Taking $\beta=1$ in the above theorem and using the notation $J_{p, \gamma}$ instead of $J_{p, 1, \gamma}$, we obtain:

Corollary 3. Let $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ and $\alpha<p<\delta \leq \operatorname{Re} \gamma$. If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, then

$$
G=J_{p, \gamma}(g)=\frac{\gamma-p}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} g(t) d t \in \Sigma_{p}^{*}(\alpha, \delta)
$$

The properties of the integral operator $J_{1, \gamma}$, were studied by many authors in different papers, from which we remember [1], [2], [5], [6], [7].

Theorem 8. Let $p \in \mathbb{N}^{*}, \beta>0, \gamma \in \mathbb{C}$ and $\alpha<p<\frac{\operatorname{Re} \gamma}{\beta} \leq \delta$.
If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, with

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U
$$

then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha, \delta)$.
Proof. Because $\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U$, we obtain from Corollary 2 that $G \in \Sigma_{p}$, with $z^{p} G(z) \neq 0, z \in U$, and

$$
\begin{equation*}
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right]>0, z \in U, \text { where } G=J_{p, \beta, \gamma}(g) \tag{10}
\end{equation*}
$$

Since $\frac{\operatorname{Re} \gamma}{\beta} \leq \delta$, we get from (10),

$$
\begin{equation*}
\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}+\delta>0, z \in U \tag{11}
\end{equation*}
$$

From (5) we know that
(12) $P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad$ where $\quad P(z)=-\frac{z G^{\prime}(z)}{G(z)}$.

Since $g \in \Sigma_{p}^{*}(\alpha, \delta)$, we obtain from (12) that

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]<\delta, z \in U \tag{13}
\end{equation*}
$$

Because we know from (11) that $\operatorname{Re} P(z)<\delta, z \in U$, we have only to verify that $\operatorname{Re} P(z)>\alpha$. To show this we will use Lemma 2.

We know that P is analytic in U with $P(0)=p>\alpha$. We also have $\operatorname{Re} \gamma-\alpha \beta>0$. Since the conditions from Lemma 2 are met, we obtain $\operatorname{Re} P(z)>\alpha$, which is equivalent to

$$
\begin{equation*}
-\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}>\alpha \tag{14}
\end{equation*}
$$

Since $G \in \Sigma_{p}$, from (11) and (14) we have $G \in \Sigma_{p}^{*}(\alpha, \delta)$.
If we consider $\delta \rightarrow \infty$, in the above theorem, we obtain the next corollary:

Corollary 4. Let $p \in \mathbb{N}^{*}, \beta>0, \gamma \in \mathbb{C}$ and $\alpha<p<\frac{\operatorname{Re} \gamma}{\beta}$.
If $g \in \Sigma_{p}^{*}(\alpha)$, with

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U
$$

then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha)$.
We make the remark that we can obtain a similar result, without the condition $\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U$, as it follows:

Theorem 9. Let $p \in \mathbb{N}^{*}, \beta>0, \gamma \in \mathbb{C}, \alpha<p<\frac{\operatorname{Re} \gamma}{\beta}$ and $g \in \Sigma_{p}^{*}(\alpha)$. Let $G=J_{p, \beta, \gamma}(g)$. If $G \in \Sigma_{p}$ and $z^{p} G(z) \neq 0, z \in U$, then $G \in \Sigma_{p}^{*}(\alpha)$.

Proof. Let us denote $P(z)=-\frac{z G^{\prime}(z)}{G(z)}, z \in U$. Because $G \in \Sigma_{p}$ and $z^{p} G(z) \neq$ $0, z \in U$, we have that P analytic in U, hence from $G=J_{p, \beta, \gamma}(g)$ and (5) we have that

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, z \in U \tag{15}
\end{equation*}
$$

Since $g \in \Sigma_{p}^{*}(\alpha)$, we obtain from (15) that

$$
\begin{equation*}
\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]>\alpha, z \in U \tag{16}
\end{equation*}
$$

We have to verify that $\operatorname{Re} P(z)>\alpha$. To show this we will use Lemma 2.
We have P analytic in U with $P(0)=p>\alpha$ and $\operatorname{Re} \gamma-\alpha \beta>0$. Since the conditions from Lemma 2 are met, we obtain $\operatorname{Re} P(z)>\alpha$, which is equivalent to

$$
\begin{equation*}
-\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}>\alpha, z \in U \tag{17}
\end{equation*}
$$

Because $G \in \Sigma_{p}$, from (17), we get $G \in \Sigma_{p}^{*}(\alpha)$.
Since we know from Theorem 6 that for $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>p$, we have $J_{p, \gamma}(g) \in \Sigma_{p}$ when $g \in \Sigma_{p}$, we obtain for the above theorem, taking $\beta=1$, the next corollary:

Corollary 5. Let $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ and $\alpha<p<\operatorname{Re} \gamma$.
If $g \in \Sigma_{p}^{*}(\alpha)$ with $z^{p} J_{p, \gamma}(g)(z) \neq 0, z \in U$, then $G=J_{p, \gamma}(g) \in \Sigma_{p}^{*}(\alpha)$.

Taking $\beta=1$ in Theorem 8, we get:
Corollary 6. Let $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ and $\alpha<p<\operatorname{Re} \gamma \leq \delta$. If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, with

$$
\frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p, p}(z), z \in U
$$

then $G=J_{p, \gamma}(g) \in \Sigma_{p}^{*}(\alpha, \delta)$.
Theorem 10. Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha<p<\delta$. If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha, \delta)$.

Proof. We know that $g \in \Sigma_{p}^{*}(\alpha, \delta)$ is equivalent to

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[-\frac{z g^{\prime}(z)}{g(z)}\right]<\delta, z \in U \tag{18}
\end{equation*}
$$

so,

$$
\operatorname{Re} \gamma-\beta \alpha<\operatorname{Re}\left[\gamma+\beta \frac{z g^{\prime}(z)}{g(z)}\right]<\operatorname{Re} \gamma-\beta \delta, z \in U, \quad \text { when } \quad \beta<0
$$

Because $\alpha \geq \frac{\operatorname{Re} \gamma}{\beta}$, we have $\operatorname{Re}\left[\gamma+\beta \frac{z g^{\prime}(z)}{g(z)}\right]>0, z \in U$, and using Corollary 2, we obtain that $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}, z^{p} G(z) \neq 0, z \in U$ and $\operatorname{Re}\left[\gamma+\beta \frac{z G^{\prime}(z)}{G(z)}\right]$ $>0, z \in U$.

From (5) we know that
$P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad$ where $\quad P(z)=-\frac{z G^{\prime}(z)}{G(z)}$ is analytic in U.
We will use the same idea as at the proof of Theorem 7.
Using (18) we get

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]<\delta, z \in U \tag{19}
\end{equation*}
$$

Since $\alpha<P(0)=p<\delta$ and $\operatorname{Re} \gamma-\beta \delta>\operatorname{Re} \gamma-\beta \alpha \geq 0$, we obtain from (19), after applying Lemma 2 and Lemma 3, that

$$
\alpha<\operatorname{Re} P(z)<\delta, z \in U
$$

which is equivalent to

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[-\frac{z G^{\prime}(z)}{G(z)}\right]<\delta, z \in U \tag{20}
\end{equation*}
$$

Since $G \in \Sigma_{p}$ we have from (20) that $G \in \Sigma_{p}^{*}(\alpha, \delta)$.
If we consider $\delta \rightarrow \infty$, in the above theorem, we obtain the next corollary:
Corollary 7. Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha<p$. Then we have

$$
g \in \Sigma_{p}^{*}(\alpha) \Rightarrow G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha)
$$

Theorem 11. Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}$ and $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta}<p<\delta$.
If $g \in \Sigma_{p}^{*}(\alpha, \delta)$, with

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U
$$

then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha, \delta)$.
Proof. Because $\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U$, we obtain from Corollary 2 that $G \in \Sigma_{p}$ with $z^{p} G(z) \neq 0, z \in U$, and

$$
\begin{equation*}
\operatorname{Re}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right]>0, z \in U, \text { where } G=J_{p, \beta, \gamma}(g) \tag{21}
\end{equation*}
$$

Since $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta}$, and $\beta<0$, we get from (21) that

$$
\begin{equation*}
\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}+\alpha<0, z \in U \tag{22}
\end{equation*}
$$

From (5) we know that

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}=-\frac{z g^{\prime}(z)}{g(z)}, \quad \text { where } \quad P(z)=-\frac{z G^{\prime}(z)}{G(z)} \tag{23}
\end{equation*}
$$

Since $g \in \Sigma_{p}^{*}(\alpha, \delta)$, we obtain from (23) that

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-\beta P(z)}\right]<\delta \tag{24}
\end{equation*}
$$

Because we know from (22) that $\operatorname{Re} P(z)>\alpha, z \in U$, we have only to verify that $\operatorname{Re} P(z)<\delta$.

To show this we will use Lemma 3.
We know that P is analytic in U with $P(0)=p<\delta$. Also we have $\operatorname{Re} \gamma-$ $\delta \beta>0$. Since the conditions from Lemma 3 are met, we obtain $\operatorname{Re} P(z)<\delta$, which is equivalent to

$$
\begin{equation*}
-\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)}<\delta . \tag{25}
\end{equation*}
$$

From (22) and (25), since $G \in \Sigma_{p}$, we have $G \in \Sigma_{p}^{*}(\alpha, \delta)$.
If we consider $\delta \rightarrow \infty$, in the above theorem, we obtain the next corollary:
Corollary 8. Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}$ and $\alpha \leq \frac{\operatorname{Re} \gamma}{\beta}<p$.
If $g \in \Sigma_{p}^{*}(\alpha)$, with

$$
\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U,
$$

then $G=J_{p, \beta, \gamma}(g) \in \Sigma_{p}^{*}(\alpha)$.
We make the remark that we can obtain a similar result, without the condition $\beta \frac{z g^{\prime}(z)}{g(z)}+\gamma \prec R_{\gamma-p \beta, p}(z), z \in U$, as it follows:
Theorem 12. Let $p \in \mathbb{N}^{*}, \beta<0, \gamma \in \mathbb{C}, \alpha \leq \frac{\operatorname{Re} \gamma}{\beta}<p$ and $g \in \Sigma_{p}^{*}(\alpha)$. Let $G=J_{p, \beta, \gamma}(g)$. If $G \in \Sigma_{p}$ and $z^{p} G(z) \neq 0, z \in U$, then $G \in \Sigma_{p}^{*}(\alpha)$.

We omit the proof because it is similar to that of Theorem 9.
The next results concern the sets $\Sigma K_{p}(\alpha, \delta), \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \varphi)$ and the operator $J_{p, \gamma}=J_{p, 1, \gamma}$.

Theorem 13. Let $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>p$ and let $\alpha<p<\delta \leq \operatorname{Re} \gamma$. If $g \in \Sigma K_{p}(\alpha, \delta)$ and $z^{p+1} J_{p, \gamma}^{\prime}(g)(z) \neq 0, z \in U$, then

$$
J_{p, \gamma}(g) \in \Sigma K_{p}(\alpha, \delta) .
$$

Proof. Let us denote $G=J_{p, \gamma}(g)$. We know from Theorem 6 that $G \in \Sigma_{p}$. Let $P(z)=-1-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}, z \in U$. Since $G \in \Sigma_{p}$ and $z^{p+1} G^{\prime}(z) \neq 0, z \in U$, we have $P \in H(U)$.

Using the definition of the operator $J_{p, \gamma}$ and the logharitmic differential, two times, we obtain

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{\gamma-P(z)}=-1-\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}, z \in U \tag{26}
\end{equation*}
$$

From $g \in \Sigma K_{p}(\alpha, \delta)$, we have

$$
\alpha<\operatorname{Re}\left[-1-\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]<\delta, z \in U
$$

so, using (26), we obtain

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{\gamma-P(z)}\right]<\delta, z \in U \tag{27}
\end{equation*}
$$

Since $\alpha<P(0)=p<\delta$ and $0 \leq \operatorname{Re} \gamma-\delta<\operatorname{Re} \gamma-\alpha$, we obtain from (27), after applying Lemma 2 and Lemma 3 (in the case $\beta=1$), that

$$
\alpha<\operatorname{Re} P(z)<\delta, z \in U
$$

which is equivalent to

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[-1-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right]<\delta, z \in U \tag{28}
\end{equation*}
$$

Since $G=J_{p, \gamma}(g) \in \Sigma_{p}$, we have from (28), that $J_{p, \gamma}(g) \in \Sigma K_{p}(\alpha, \delta)$.
From the proof of the above theorem we remark that we also have the next result.

Theorem 14. Let $p \in \mathbb{N}^{*}, \alpha \in \mathbb{R}, \gamma \in \mathbb{C}$ with $\alpha<p<\operatorname{Re} \gamma$. If $g \in \Sigma K_{p}(\alpha)$ and $z^{p+1} J_{p, \gamma}^{\prime}(g)(z) \neq 0, z \in U$, then

$$
J_{p, \gamma}(g) \in \Sigma K_{p}(\alpha)
$$

Theorem 15. Let $p \in \mathbb{N}^{*}, \gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>p$, and $\alpha<1 \leq p<\delta \leq$ $\operatorname{Re} \gamma$. Let φ be a function in $\Sigma K_{p, 0}(\alpha, \delta)$ and $g \in \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \varphi)$ such that $z^{p+1} J_{p, \gamma}^{\prime}(\varphi) \neq 0, z \in U$, then

$$
J_{p, \gamma}(g) \in \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \Phi)
$$

where $\Phi=J_{p, \gamma}(\varphi)$.

Proof. From $g \in \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \varphi)$, we have

$$
\begin{equation*}
\alpha<\operatorname{Re} \frac{g^{\prime}(z)}{\varphi^{\prime}(z)}<\delta, z \in U \tag{29}
\end{equation*}
$$

Let $G=J_{p, \gamma}(g)$. We know from Remark 2 that $G, \Phi \in \Sigma_{p, 0}$.
From $G=J_{p, \gamma}(g)$ and $\Phi=J_{p, \gamma}(\varphi)$, we get

$$
\gamma G(z)+z G^{\prime}(z)=(\gamma-p) g(z) \text { and } \gamma \Phi(z)+z \Phi^{\prime}(z)=(\gamma-p) \varphi(z), z \in \dot{U}
$$

hence
$(\gamma+1) G^{\prime}(z)+z G^{\prime \prime}(z)=(\gamma-p) g^{\prime}(z)$ and $(\gamma+1) \Phi^{\prime}(z)+z \Phi^{\prime \prime}(z)=(\gamma-p) \varphi^{\prime}(z)$.
Let us denote

$$
p(z)=\frac{G^{\prime}(z)}{\Phi^{\prime}(z)}, z \in U
$$

Since $G, \Phi \in \Sigma_{p, 0}$ and $z^{p+1} \Phi^{\prime}(z) \neq 0, z \in U$, we have $p \in H(U)$. Of course, $p(0)=1$.
From $p(z) \Phi^{\prime}(z)=G^{\prime}(z)$, we get $G^{\prime \prime}(z)=p^{\prime}(z) \Phi^{\prime}(z)+p(z) \Phi^{\prime \prime}(z)$, so, the equality

$$
(\gamma+1) G^{\prime}(z)+z G^{\prime \prime}(z)=(\gamma-p) g^{\prime}(z), z \in U
$$

can be rewritten as

$$
\begin{equation*}
(\gamma+1) p(z) \Phi^{\prime}(z)+z\left[p^{\prime}(z) \Phi^{\prime}(z)+p(z) \Phi^{\prime \prime}(z)\right]=(\gamma-p) g^{\prime}(z) \tag{30}
\end{equation*}
$$

Using the equality $(\gamma+1) \Phi^{\prime}(z)+z \Phi^{\prime \prime}(z)=(\gamma-p) \varphi^{\prime}(z)$, we obtain from (30) that

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma+1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}}=\frac{g^{\prime}(z)}{\varphi^{\prime}(z)}, z \in U
$$

which is equivalent to

$$
p(z)+\frac{z p^{\prime}(z)}{P(z)}=\frac{g^{\prime}(z)}{\varphi^{\prime}(z)}, \text { where } P(z)=\gamma+1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}
$$

Since $\alpha<\operatorname{Re} \frac{g^{\prime}(z)}{\varphi^{\prime}(z)}<\delta, z \in U$, we obtain

$$
\begin{equation*}
\alpha<\operatorname{Re}\left[p(z)+\frac{z p^{\prime}(z)}{P(z)}\right]<\delta, z \in U \tag{31}
\end{equation*}
$$

Let us denote $p_{1}(z)=p(z)-\alpha$ and $p_{2}(z)=\delta-p(z)$. Using now (31), we have

$$
\begin{equation*}
\operatorname{Re}\left[p_{k}(z)+\frac{z p_{k}^{\prime}(z)}{P(z)}\right]>0, z \in U, k=1,2 \tag{32}
\end{equation*}
$$

It is easy to see that $p_{k}(0)>0$, so, to apply Theorem 2 we need only to verify that $\operatorname{Re} P(z)>0, z \in U$, where $P(z)=\gamma+1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}$.
As we know that $\varphi \in \Sigma K_{p, 0}(\alpha, \delta)$ with $z^{p+1} J_{p, \gamma}^{\prime}(\varphi)(z) \neq 0, z \in U$, we obtain from Theorem 13 that

$$
\Phi=J_{p, \gamma}(\varphi) \in \Sigma K_{p, 0}(\alpha, \delta)
$$

which is equivalent to

$$
\alpha<\operatorname{Re}\left[-1-\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]<\delta, z \in U
$$

hence

$$
\operatorname{Re} \gamma-\delta<\operatorname{Re} P(z)<\operatorname{Re} \gamma-\alpha, z \in U
$$

Since $\operatorname{Re} \gamma \geq \delta$, we get $\operatorname{Re} P(z)>0, z \in U$, and we can now apply Theorem 2 to obtain $\operatorname{Re} p_{k}(z)>0, z \in U, k=1,2$. Therefore, we have

$$
\begin{equation*}
\alpha<\operatorname{Re} \frac{G^{\prime}(z)}{\Phi^{\prime}(z)}<\delta, z \in U \tag{33}
\end{equation*}
$$

Since we know that $G \in \Sigma_{p, 0}$ and $\Phi \in \Sigma K_{p, 0}(\alpha, \delta)$, we have from (33) that $G=J_{p, \gamma}(g) \in \Sigma \mathcal{C}_{p, 0}(\alpha, \delta ; \Phi)$.

References

[1] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22, 1977, 295-297.
[2] R. M. Goel, N. S. Sohi, On a class of meromorphic functions, Glas. Mat. Ser. III, 17(37), 1981, 19-28.
[3] S. S. Miller, P. T. Mocanu, Differential subordinations. Theory and applications, Marcel Dekker Inc. New York, Basel, 2000.
[4] P. T. Mocanu, T. Bulboacă, Gr. Şt. Sălăgean, The geometric theory of univalent functions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2006 (in Romanian).
[5] P. T. Mocanu, Gr. Şt. Sălăgean, Integral operators and meromorphic starlike functions, Mathematica (Cluj), 32(55), 2, 1990, 147-152.
[6] T. R. Reddy, O. P. Juneja, Integral operators on a class of meromorphic functions, C. R. Acad. Bulgare Sci., 40, 1987, 21-23.
[7] Gr. Şt. Sălăgean, Meromorphic starlike univalent functions, Babeş Bolyai Univ., Fac. Math. and Phys. Res. Sem., Itinerant Seminar on Functional Equations, Approximations and Convexity, Preprint 7, 1986, 261-266.

Alina Totoi
"Lucian Blaga" University of Sibiu Department of Mathematics
Sibiu, Romania
e-mail: totoialina@yahoo.com

[^0]: ${ }^{1}$ Received 2 March, 2010
 Accepted for publication (in revised form) 26 April, 2010

