General Mathematics Vol. 19, No. 1 (2011), 19-26

pr - Homeomorphisms On Quotient Spaces ¹

S.Nandini and I.Arockiarani

Abstract

This paper is aimed to introduce pr - homeomorphisms a new weaker form of g-homeomorphisms. Further the notion of pr^* - homeomorphisms is defined. Different characterizations of the introduced concept are found to develop a good insight into the spaces. Some properties of pr - homeomorphisms and pr^* - homeomorphisms from quotient space to other spaces are obtained.

2000 Mathematics Subject Classification : 54C05, 54C10. Key words and phrases: pr - homeomorphisms, pr^* - homeomorphisms.

1 Introduction

Crossley and Hildebrand [2] studied semi-homeomorphisms which are generalizations of homeomorphisms. Maki et al [6] introduced the notions of generalized homeomorphisms and gc - homeomorphisms. In this paper we introduce a new classes of homeomorphisms namely pr - homeomorphisms and pr^* homeomorphisms which are weaker than g - homeomorphisms. Further we investigate the notions of pr - homeomorphisms and pr^* - homeomorphisms on quotient spaces. Some properties of them with pr - compactness are also studied. Throughout the paper X, Y and Z denotes the topological spaces (X, τ) , (Y, σ) and (Z, μ) .

¹Received 23 March, 2009

Accepted for publication (in revised form) 6 April, 2009

¹⁹

2 Preliminaries

Definition 1 A subset A of (X, τ) is called

(i) a preclosed set [7] if $cl(int(A)) \subset A$.

(ii) a regular open set [11] if A = int(cl(A)) and a regular closed set if A = cl(int(A)).

(iii) a regular semiopen set [4] if there exit a regular open set U such that $U \subset A \subset cl(U)$. The family of all regular semiopen sets of X is denoted by RSO(X).

(iv) pr - closed set [8] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular semiopen in (X, τ) . The family of all pr - closed subsets of the space (X, τ) is denoted by $PRC(X, \tau)$.

Definition 2 Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a map. f is said to be

(i) pr - continuous [8] if $f^{-1}(V)$ is pr - closed in X for every closed set V of Y.

(*ii*) pr - irresolute [8] if the inverse image of every pr - closed set in Y is pr - closed in X.

3 Characterizations Of *pr* - Homeomorphisms On Quotient Spaces

Definition 3 A bijection $f : (X, \tau) \longrightarrow (Y, \sigma)$ is called pr - homeomorphism if f is both pr - continuous and pr - open.

Definition 4 A map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is pr-closed if the image f(A) is pr-closed in Y for every closed set A in X.

Definition 5 A map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is pr^* -closed map if the image f(A) of every pr-closed set A in X is pr - closed in Y.

Definition 6 A map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is pr-regular semiclosed if the image of every preclosed set in X is regular semiclosed in Y.

Definition 7 A function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is called regular semi pr-closed if the inverse image of every preclosed set in Y is regular semiclosed in X.

Proposition 1 If a map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is injective pr-regular semiclosed and regular semi pr - closed, then $RSO(X, \tau) = \tau$. Proof: Let A be closed in (X, τ) . As f is pr - regular semiclosed, f(A) is regular semiclosed in (Y, σ) . Since f(A) is preclosed and f is injective regular semi pr - closed $f^{-1}(f(A)) = A$ is regular semiclosed in X. Thus every closed set is regular semiclosed. Hence $RSO(X, \tau) = \tau$.

Proposition 2 Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be regular semi continuous and prclosed. Then for every pr - closed set $A \subset X$, f(A) is pr - closed in Y. Proof : Let A be pr - closed in X and $f(A) \subset R$ where R is regular semiopen in Y. Then $A \subset f^{-1}(R)$. Since A is pr - closed, $pcl(A) \subset f^{-1}(R)$ that is $f(pcl(A)) \subset R$. Since f is pr - closed, $pcl(f(pcl(A))) \subset R$ and so $pcl(f(A)) \subset$ R. Thus f(A) is pr - closed.

Corollary 1 If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is a pr-regular semiclosed and regular semi pr-closed map then f is pr-irresolute and pr^* -closed. Proof : The proof is obvious.

Proposition 3 (*i*) Suppose the canonical projection $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is pr-closed and $RSO(X, \tau) = \tau$. If for a subset F of (X^*, τ^*) the inverse $p^{-1}(F)$ is pr-closed in (X, τ) , then the set F is pr-closed in (X^*, τ^*) .

(ii) Suppose that p is injective pr-regular semiclosed and regular semi prclosed. Then a subset F is pr-closed in (X^*, τ^*) if and only if the inverse image $p^{-1}(F)$ is pr-closed in (X, τ) .

Proof: (i) Since p is continuous and $RSO(X, \tau) = \tau$ it is regular semi continuous. Also it is pr- closed. Thus the image $p(p^{-1}(F)) = F$ of the pr-closed set $p^{-1}(F)$ is pr-closed in (X, τ) by Proposition 2.

(*ii*) (Necessity) Suppose F is pr-closed in (X^*, τ^*) . By Corollary 1 $p^{-1}(F)$ is pr-closed in (X, τ) . (Sufficiency) Suppose $p^{-1}(F)$ is pr-closed in (X, τ) . By Proposition 1 RSO $(X, \tau) = \tau$. By Corollary 1, p is pr*-closed and thus pr-closed. By (*i*), F is pr-closed in (X^*, τ^*) .

Remark 1 Suppose p is injective pr-regular semiclosed and regular semi prclosed. Then a subset V is pr-open in (X^*, τ^*) if and only if the inverse image $p^{-1}(V)$ is pr-open in (X, τ) .

Remark 2 Given any partition X^* of X, there is exactly one equivalence relation on X from which it is derived. Suppose a map $f : (X, \tau) \longrightarrow (Y, \sigma)$ satisfies the condition that if xRy for $x, y \in X$, then f(x) = f(y). Then the induced map $f^{\perp} : (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is well defined by $f^{\perp}([x]) = f(x)$ for every $x \in X$ where [x] is the equivalence class of x or the set containing x. **Theorem 1** Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a map satisfying the condition if xRy for $x, y \in X$, then f(x) = f(y). Suppose that the canonical projection $p : (X, \tau) \longrightarrow (X^*, \tau^*)$ is a pr-closed map and $RSO(X, \tau) = \tau$. If f is pr-continuous (resp. pr-irresolute) then the induced map $f^{\perp} : (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is pr-continuous (resp. pr-irresolute).

Proof : Let V be a closed set (resp. pr-closed set) in (Y,σ) . Since $p^{-1}((f^{\perp})^{-1}(V)) = f^{-1}(V)$ and f is pr-continuous (resp. pr-irresolute) the set $p^{-1}((f^{\perp})^{-1}(V))$ is pr-closed in (X,τ) . $(f^{\perp})^{-1}(V)$ is pr-closed in (X^*,τ^*) by Proposition 3 (i). That is f^{\perp} is pr-continuous (resp. pr-irresolute).

Theorem 2 Suppose that $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is injective pr-regular semiclosed and regular semi pr-closed, then the following statements are equivalent. (i) f is pr-continuous(resp. pr-irresolute).

(ii) The induced map $f^{\perp} : (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is pr-continuous (resp. pr-irresolute).

 $Proof: (i) \Rightarrow (ii)$

Let U be closed(pr-closed) in (Y, σ) . As f is pr-continuous, $f^{-1}(U)$ is pr-closed in (X, τ) . By definition of f^{\perp} , $f^{-1}(U) = p^{-1}((f^{\perp})^{-1}(V))$. So $p^{-1}((f^{\perp})^{-1}(U))$ is pr-closed in (X, τ) . By Corollary 1 and Proposition 3 (i), $(f^{\perp})^{-1}(U)$ is pr-closed in (X^*, τ^*) and hence f^{\perp} is pr-continuous (resp. pr-irresolute).

$$(ii) \Rightarrow (i)$$

Let U be closed(pr -closed) in (Y, σ). By hypothesis $(f^{\perp})^{-1}(U)$ is pr-closed in (X^*, τ^*) . By Proposition 3(ii), $p^{-1}((f^{\perp})^{-1}(V))$ is pr-closed in (X, τ) . By definition of $f^{\perp}, p^{-1}((f^{\perp})^{-1}(V)) = f^{-1}(V)$. Thus f is pr-continuous (resp. pr-irresolute).

Theorem 3 Suppose $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is a injective pr-regular semiclosed and regular semi pr-closed map. If $f: (X, \tau) \longrightarrow (Y, \sigma)$ is pr-continuous, onto and pr-closed, and satisfies the condition $(\Theta)xRy$ for $x, y \in X$ if and only if f(x) = f(y) [R is a relation associated with the partition X^* of X]. Then the induced map $f^{\perp}: (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is a pr-homeomorphism.

Proof: Consider $f^{\perp}: (X^*, \tau^*) \longrightarrow (Y, \sigma)$. Suppose $f^{\perp}([x]) = f^{\perp}([y])$, then f(x) = f(y). By $(\Theta), [x] = [y]$. Hence f^{\perp} is one to one. Let $y \in Y$, since f is onto there exists an $x \in X$ such that f(x) = y. Thus $f^{\perp}([x]) = y$ and so f^{\perp} is onto. Since f is pr-continuous, f^{\perp} is pr-continuous by Theorem 1. Let U be closed in (X^*, τ^*) . As p is regular semi pr-closed, $p^{-1}(U)$ is regular semiclosed and thus closed in (X, τ) . As f is pr-closed $f(p^{-1}(U))$ is pr-closed in (Y, σ) . That is, $f^{\perp}(U) = f(p^{-1}(U))$ is pr-closed in (Y, σ) . Thus f^{\perp} is pr-closed. Hence the induced map $f^{\perp}: (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is a pr-homeomorphism.

Remark 3 Consider the partition Y^* of Y. Let B be an equivalence relation on (Y, σ) associated with the partition Y^* . Let $p_1 : (Y, \sigma) \longrightarrow (Y^*, \sigma^*)$ be the quotient map. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be the map satisfying the condition $(\Theta\Theta)$ if $x \ R \ y$ for $x, \ y \in X$ then f(x)Bf(y). Then the induced map $f_* :$ $(X^*, \tau^*) \longrightarrow (Y^*, \sigma^*)$ is well defined by $f_*([x]) = p_1(f(x))$ for every $[x] \in X^*$.

Proposition 4 Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a bijective pr-continuous map, then the following are equivalent

(i) f is a pr-open map.

(*ii*) f is a pr-homeomorphism.

(*iii*) f is a pr-closed map.

Proof: The proof is immediate.

Definition 8 A bijection $f : (X, \tau) \longrightarrow (Y, \sigma)$ is pr^* -homeomorphism if f is pr-irresolute and its inverse f^{-1} is also pr-irresolute.

Theorem 4 Suppose that $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is pr-regular semiclosed and regular semi pr-closed and $p_1 : (Y, \sigma) \longrightarrow (Y^*, \sigma^*)$ is regular semi continuous and pr-closed. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be a pr-continuous map (resp. prirresolute map) satisfying the condition xRy if and only if f(x)Bf(y) for all $x, y \in X$.

(*i*) The induced map $f_*: (X^*, \tau^*) \longrightarrow (Y^*, \sigma^*)$ is pr-continuous (resp. pr-irresolute).

(*ii*) If there exists a pr-continuous (resp. pr-irresolute) map $k : (Y, \sigma) \longrightarrow (X, \tau)$ such that $f_* \circ p \circ k = p_1$ and the converse of $(\Theta\Theta)$ holds, then f_* is a pr-homeomorphism (resp. pr*-homeomorphism).

Proof: (i) Let $g = p_1 \circ f : (X, \tau) \longrightarrow (Y^*, \sigma^*)$ then xRy for $x, y \in X$ implies f(x)Bf(y) and so [f(x)] = [f(y)]. But $g(x) = p_1(f(x)) = [f(x)]$ and $g(y) = p_1(f(y)) = [f(y)]$. Thus g(x) = g(y). Also the induced map $g^{\perp}: (X^*, \tau^*) \longrightarrow (Y^*, \sigma^*)$ defined by $g^{\perp}([x]) = g(x)$ is well defined. $g^{\perp} =$ f_* . Since $g^{\perp}([x]) = g(x) = p_1(f(x)) = f_*([x])$ for every $[x] \in X^*$. Now gis pr-continuous (resp. pr-irresolute). Since p_1 is continuous and f is prcontinuous. By Theorem 1, g^{\perp} is pr-continuous (resp. pr-irresolute). That is, f_* is pr-continuous (resp. pr-irresolute).

(ii) From (i) and hypothesis, follows that f_* is pr-continuous (resp. prirresolute) bijection. Let F be closed (resp. pr-closed) set of (X^*, τ^*) . Then $f_*(F) = p_1(p \circ k)^{-1}(F)$ holds and $p \circ k$ is pr-continuous, $(p \circ k)^{-1}(F)$ is pr-closed in Y. Since p_1 is regular semi continuous and pr-closed, $f_*(F)$ is pr-closed and hence $f_*(resp.(f_*)^{-1})$ is pr-closed (resp. pr-irresolute). Therefore by Proposition 4 (resp. Definition 8) f_* is a pr-homeomorphism (resp. pr*- homeomorphism).

Some properties of pr-compactness is investigated here.

Definition 9 A collection $\{A_i : i \in \Lambda\}$ of pr-open sets in a topological space X is called a pr-open cover of a subset S if $S \subset \bigcup \{A_i : i \in \Lambda\}$ holds.

Definition 10 A topological space (X, τ) is pr-compact if every pr-open cover of X has a finite subcover.

Definition 11 A subset S of a topological X is said to be pr-compact relative to X, if for every collection $\{A_i : i \in \Lambda\}$ of pr-open subsets of X such that $S \subset \cup \{A_i : i \in \Lambda\}$ there exists a finite subset Λ_o of Λ such that $S \subset \cup \{A_i : i \in \Lambda\}$.

Proposition 5 Suppose that the canonical projection $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is pr-regular semiclosed and regular semi pr-closed. If (X, τ) is pr-compact, then (X^*, τ^*) is pr-compact.

Proof: Let $\{A_i : i \in \Lambda\}$ be any pr-open covering of (X^*, τ^*) . That is, $X^* = \cup \{A_i : i \in \Lambda\}$ where each A_i is a pr-open set of (X^*, τ^*) . Now by Remark 1, the family $\{p^{-1}(A_i) : i \in \Lambda\}$ is a open covering of (X, τ) . Since X is pr-compact there exists a finite subcovering say $\{p^{-1}(A_i) : i = 1, 2, ..., n\}$ such that $X = \cup \{p^{-1}(A_i) : i = 1, 2, ..., n\}$.

Now $X^* = p(X) = p(\cup \{p^{-1}(A_i) : i = 1, 2, ..., n\})$

 $= \cup \left\{ p(p^{-1}(A_i) : i = 1, 2, ..., n) \right\}$

 $= \cup \{A_i : i = 1, 2, ..., n\}$. Hence $\{A_i : i = 1, 2, ..., n\}$ forms a finite subcovering of X^* and thus X^* is pr-compact.

Proposition 6 Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a pr-continuous map and let H be a pr-compact set relative to (X, τ) , then f(H) is compact in (Y, σ) .

Proof : Let $\{A_i : i \in \Lambda\}$ be a collection of open subsets of (Y, σ) such that $f(H) \subset \cup \{A_i : i \in \Lambda\}$. Then $H \subset f^{-1}(\cup \{A_i : i \in \Lambda\}) = \cup \{f^{-1}(A_i) : i \in \Lambda\}$. Since f is pr-continuous, $\{f^{-1}(A_i) : i \in \Lambda\}$ is a covering of H by pr-open sets in X. Since H is pr-compact, there exists a finite subcovering say $\{f^{-1}(A_1), f^{-1}(A_2), ..., f^{-1}(A_n)\}$. Then $H \subset \cup \{f^{-1}(A_i) : i = 1, 2, ..., n\}$ and so

 $\begin{array}{l} f(H) \subset f(\cup\{f^{-1}(A_i): i=1,2,...,n\}) = \cup\{f(f^{-1}(A_i)): i=1,2,...,n\} \subset \\ \cup\{A_i: i=1,2,...,n\}. \quad Therefore \{A_1,A_2,...,A_n\} \text{ is a finite subcovering of } \\ f(H) \text{ and thus } f(H) \text{ is compact in } Y. \end{array}$

Proposition 7 A pr-closed subset of pr-compact space X is pr-compact relative to X.

24

Proof : Let A be pr-closed subset of a pr-compact space X, then X - A is propen. Let Ω be a pr-open cover for A. Then $\{\Omega, X - A\}$ is a pr-open cover for X. Since X is pr-compact, it has a finite subcover, say $\{P_1, P_2, ..., P_n\} = \Omega_1$. If $X - A \notin \Omega$ then Omega₁ is a finite subcover of A. If $X - A \in \Omega_1$, then $\Omega_1 - (X - A)$ is a subcover of A. Hence A is pr-compact relative to X.

Theorem 5 Suppose that (X, τ) is pr-compact, (Y, σ) is Hausdroff and map $p: (X, \tau) \longrightarrow (X^*, \tau^*)$ is pr-regular semiclosed and regular semi pr-closed. If $f: (X, \tau) \longrightarrow (Y, \sigma)$ is a pr-continuous (resp. pr-irresolute) and onto map satisfying (Θ) and the converse of $(\Theta\Theta)$, then the induced map $f^{\perp}:$ $(X^*, \tau^*) \longrightarrow (Y, \sigma)$ is a pr-homeomorphism (resp. pr*-homeomorphism). Proof: By hypothesis and Theorem 1, the induced map $f^{\perp}: (X^*, \tau^*) \longrightarrow (Y, \sigma)$ is pr-continuous (resp. pr-irresolute) and bijective. Let F be closed (resp. pr-closed) in (X^*, τ^*) . By Proposition 5, (X^*, τ^*) is pr-compact. Since F is pr-closed in (X^*, τ^*) , it is pr-compact relative to (X^*, τ^*) by Proposition 7. By Proposition 6, we have $f^{\perp}(F)$ is compact in (Y, σ) . As (Y, σ) is Hausdroff, $f^{\perp}(F)$ is closed and thus pr-closed and so $(f^{\perp})^{-1}$ is pr-continuous (resp. pr-irresolute).

References

- N. Biswas, On some mappings in topological spaces, Bull.Cal. Math. Soc., 61(1969), 127-135.
- [2] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [3] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeoomorphisms in topological spaces, Indian J. Pure Appl. Math., 26(1995), 271-284.
- [4] J. E. Joseph and M. K. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341-348.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat Palermo, 19(1970), 89-96.
- [6] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ Ed. Part III, 40 (1991) 13-21.

- [7] A. S. Mashour, M. E. Abd EI-Monsef and S. N. EI-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, 53(1982), 47-53.
- [8] S. Nandini and I. Arockiarani, pr-closed sets in topological spaces, Acta Ciencia Indica, Vol. XXXIII M, No. 4 (2007), 1499-1506.
- [9] T. Neubrunn, On semi-homeomorphisms and related mappings, Acta Fac. Rerum Natur. Univ. Comenian Math., 33(1977), 133-137.
- [10] T. Noiri, A note on semi-homeomorphisms, Bull. Cal. Math. Soc., 76 (1984),1-3.
- [11] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math, J., 33(1993), 211-219.
- [12] Z. Piotrowski, On semi-homeomorphisms, Bull. Un. Mat. Ital., 16(1979), 501-509.
- [13] D. Sivaraj, Semi-homeomorphisms, Acta Math. Hungar., 48 (1986), 139-145.
- [14] J. Umehara and H. Maki, A note on the homeomorphic image of a T^Vspace, Mem.Fac.Sci.KochiUniv.Ser.A.Math., 10(1989), 39 – 45.

S. NANDINI

Department of Mathematics Sri Sai Ram Engineering College Sai Leo Nagar, West Tambaram Chennai, 600044, Tamilnadu, India. e-mail: nandu_suk@yahoo.co.in