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Uniqueness theorems of entire and meromorphic
functions sharing small function 1

Hong-Yan Xu

Abstract

In this paper, we deal with some uniqueness theorems of two tran-
scendental meromorphic functions with their non-linear differential poly-
nomials sharing a small function. These results in this paper improve
those given by of Fang and Hong [M.L.Fang and W.Hong,A unicity theo-
rem for entire functions concerning differential polynomials,Indian J.Pure
Appl.Math.32.(2001),No.9,1343-1348.], I.Lahiri and N.Mandal [I.Lahiri
and N. Mandal, Uniqueness of nonlinear differential polynomials sharing
simple and double 1-points, International Journal of Mathematics and
Mathematical Sciences, vol.2005 (2005), no.12, pp.1933-1942.].
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1 Introduction and Main Results

In this paper, we use the standard notations and terms in the value distribution
theory[11]. For any nonconstant meromorphic function f(z) on the complex
plane C, we denote by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)) as
r → ∞ except possibly for a set of r of finite linear measure. A meromorphic
function a(z) is called a small function with respect to f if T (r, a) = S(r, f).
Let S(f) be the set of meromorphic functions in the complex plane C which are
small functions with respect to f . Set E(a(z), f) = {z|f(z)−a(z) = 0}, a(z) ∈
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S(f), where a zero point with multiplicity m is counted m times in the set. If
these zero points are only counted once, then we denote the set by E(a(z), f).
Let k be a positive integer. Set Ek(a(z), f) = {z : f(z) − a(z) = 0}, where a
zero point with multiplicity m ≤ k is counted m times and multiplicity m > k
is counted k + 1 times in the set.

Let f and g be two transcendental meromorphic functions, a(z) ∈ S(f) ∩
S(g). If E(a(z), f) = E(a(z), g), then we say that f and g share the function
a(z)CM , especially, we say that f and g have the same fixed-points when
a(z) = z; if E(a(z), f) = E(a(z), g), then we say that f and g share the
function a(z) IM ; If Ek(a(z), f) = Ek(a(z), g), we say that f(z) − a(z) and
g(z) − a(z) have the same zeros with the multiplicities≤ k.

In addition, we also use the following notations.

We denote by Nk)(r, f) the counting function for poles of f with multiplic-

ity ≤ k, and by Nk)(r, f) the corresponding one for which multiplicity is not
counted. Let N(k(r, f) be the counting function for poles of f with multiplicity

≥ k, and by N (k(r, f) be the corresponding one for which multiplicity is not

counted. Set Nk(r, f) = N(r, f) + N (2(r, f) + · · · + N (k(r, f).

Similarly, we have the notations;

Nk)(r, 1/f), Nk)(r, 1/f), N(k(r, 1/f), N (k(r, 1/f), Nk(r, 1/f).

Let f and g be two nonconstant meromorphic functions and E(1, f)
= E(1, g). We denote by NL(r, 1/(f − 1)) the counting function for 1-points
of both f and g about which f has larger multiplicity than g, with multiplicity
not being counted, and denote by N11(r, 1/(f − 1)) the counting function for
common simple 1-points of both f and g where multiplicity is not counted.
Similarly, we have the notation NL(r, 1/(g − 1)).

In 1929, Nevanlinna proved the following well-known result, which is the
so-called Nevanlinna four-value theorem.

Theorem A [9] Let f and g be two non-constant meromorphic functions. If
f and g share four distinct values CM , then f is a Möbius transformation of
g.

In 1979, G.Gundersen proved the following result, which is an improvement
of Theorem A.

Theorem B [4] Let f and g be two non-constant meromorphic functions. If
f and g share three distinct values CM and a fourth value IM , then f is a
Möbius transformation of g.

In 1997, Li and Yang proved the following two results, which generalize
Theorem A and B to small functions.
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Theorem C [8] Let f and g be two non-constant meromorphic functions, and
let aj(j = 1, . . . , 4) be distinct small functions of f and g. If f and g share
aj(j = 1, . . . , 4)CM∗, then f is a quasi-Möbius transformation of g.

Theorem D [8] Let f and g be two non-constant meromorphic functions, and
let aj(j = 1, . . . , 4) be distinct small functions of f and g. If f and g share
aj(j = 1, . . . , 3)CM∗ and a4(z)IM , then f is a quasi-Möbius transformation
of g.

Recently, some papers studied the uniqueness of meromorphic functions
and differential polynomials, and obtained some results as followed.

In 2001, Fang and Hong [2] proved the following theorem.

Theorem E [2] Let f and g be two nonconstant meromorphic functions sat-
isfying Θ(∞, f) > 1

n+1 and n ≥ 11 an integer. If fn(f − 1)f ′ and gn(g − 1)g′

share the value 1 CM , then f ≡ g.

In 2005, I.Lahiri and N.Mandal [5] proved the following results, which
improved the Theorem E.

Theorem F [5] Let f and g be two transcendental meromorphic functions such
that Θ(∞; f) + Θ(∞; g) > 1

n+1 and let n(≥ 17) be an integer. E2)(1, f
n(f −

1)f ′) = E2)(1, g
n(g − 1)g′), then f ≡ g.

Question 1.1 Is it possible that the value 1 can be replaced by a small function

a(z) in Theorem E and Theorem F?

Question 1.2 Is it possible to relax the nature of sharing a small function

a(z) and if possible how far?

In this paper we answer the above questions and obtain the following
results:

Theorem 1.1 Let f and g be two transcendental meromorphic functions and

n ≥ 12, k ≥ 3 be two positive integers. If Ek(z, fn(f−1)f ′) = Ek(z, gn(g−1)g′)
and Θ(∞, f) + Θ(∞, g) > 4

n+1 , then f ≡ g.

Theorem 1.2 Let f and g be two transcendental meromorphic functions and

n(≥ 14) be a positive integer. If E2(z, fn(f − 1)f ′) = E2(z, gn(g − 1)g′) and

Θ(∞, f) + Θ(∞, g) > 4
n+1 , then f ≡ g.

Theorem 1.3 Let f and g be two transcendental meromorphic functions and

n(≥ 22) be a positive integer. If E1(z, fn(f − 1)f ′) = E1(z, gn(g − 1)g′) and

Θ(∞, f) + Θ(∞, g) > 4
n+1 , then f ≡ g.
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Theorem 1.4 Let f and g be two transcendental meromorphic functions and

n(≥ 27) be a positive integer.If fn(f − 1)f ′ and gn(g − 1)g′ share z IM and

Θ(∞, f) + Θ(∞, g) > 4
n+1 , then f ≡ g.

When f and g are two transcendental entire functions, similarly we can
get the following results.

Theorem 1.5 Let f and g be two transcendental entire functions and n ≥
8, k ≥ 3 be two positive integers. If Ek(z, fn(f − 1)f ′) = Ek(z, gn(g − 1)g′),
then f ≡ g.

Theorem 1.6 Let f and g be two transcendental entire functions and n ≥ 11
be a positive integer. If E2(z, fn(f − 1)f ′) = E2(z, gn(g − 1)g′), then f ≡ g.

Theorem 1.7 Let f and g be two transcendental entire functions and n ≥ 18
be a positive integer. If E1(z, fn(f − 1)f ′) = E1(z, gn(g − 1)g′), then f ≡ g.

Theorem 1.8 Let f and g be two transcendental entire functions and n ≥ 22
be a positive integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z IM , then f ≡ g.

2 Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 [10] Let f be a nonconstant meromorphic function and P (f) =
a0 +a1f +a2f

2 + · · ·+anfn, where a0, a1, a2, · · · , an are constants and an 6= 0.
Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2 [12] Let f and g be two meromorphic functions, and let k be a

positive integer, then

N(r, 1/f (k)) ≤ N(r, 1/f) + kN(r, f) + S(r, f).

Lemma 2.3 [7] Let f be a nonconstant meromorphic function and k be a

positive integer. Then

N2(r, 1/f
(k)) ≤ kN(r, f) + N2+k(r, 1/f) + S(r, f).

Lemma 2.4 Let f and g be two transcendental meromorphic functions. Then

fn(f − 1)f ′gn(g − 1)g′ 6≡ z2, where n ≥ 5 is a positive integer.
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Proof : If possible let fn(f − 1)f ′gn(g − 1)g′ ≡ z2. Let z0(6= 0,∞) be an
1-point of f with multiplicity p(≥ 1). Then z0 is a pole of g with multiplicity
q(≥ 1) such that p + p − 1 = nq + q + q + 1 and so p ≥ n+4

2 .
Let z1(6= 0,∞) be a zero of f with multiplicity p(≥ 1) and it be a pole of

g with multiplicity q(≥ 1). Then np + p − 1 = nq + q + q + 1 i.e.,q ≥ n − 1.
So (n + 1)p = (n + 2)q + 2,i.e., p ≥ n.

Since a pole of f is either a zero of g(g − 1) or a zero of g ′, we get

N(r, f) ≤ N(r, 1/g) + N(r, 1/(g − 1)) + N 0(r, 1/g
′)

≤ 1
nN(r, 1/g) + 2

n+4N(r, 1/(g − 1)) + N 0(r, 1/g
′)

≤ ( 1
n + 2

n+4)T (r, g) + N0(r, 1/g
′),

where N0(r, 1/g
′) is the reduced counting function of those zeros of g′ which

are not the zeros of g(g − 1).
By the second fundamental theorem we obtain

T (r, f) ≤ N(r, 1/f) + N(r, f) + N(r, 1/(f − 1)) − N 0(r, 1/f
′) + S(r, f)

≤ 1
nN(r, 1/f) + 2

n+4N(r, 1/(f − 1)) + ( 1
n + 2

n+4)T (r, g)

+N0(r, 1/g
′) − N0(r, 1/f

′) + 2 log r + S(r, f).

So

(1)
(1 − 1

n − 2
n+4)T (r, f) ≤ ( 1

n + 2
n+4)T (r, g) + N0(r, 1/g

′)

−N0(r, 1/f
′) + 2 log r + S(r, f).

Similarly we get

(2)
(1 − 1

n − 2
n+4)T (r, g) ≤ ( 1

n + 2
n+4)T (r, f) + N0(r, 1/f

′)

−N0(r, 1/g
′) + 2 log r + S(r, g).

Adding (1) and (2) we get

(1 −
2

n
−

4

n + 4
){T (r, f) + T (r, g)} ≤ 4 log r + S(r, f) + S(r, g),

which is a contradiction. This proves this lemma.

Lemma 2.5 Let f and g be two transcendental meromorphic functions, F =
fn(f−1)f ′

z and G = gn(g−1)g′

z , where n(≥ 4) is a positive integer. If F ≡ G and

Θ(∞, f) + Θ(∞, g) >
4

n + 1
,

then f ≡ g.
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Proof : If F ≡ G, that is

(3) F ∗ ≡ G∗ + c

where c is a constant,

F ∗ =
1

n + 2
fn+2 −

1

n + 1
fn+1 and G∗ =

1

n + 2
gn+2 −

1

n + 1
gn+1.

If follows that

(4) T (r, f) = T (r, g) + S(r, f).

Suppose that c 6= 0. By the second fundamental theorem,from (3) and (4)
we have

(n + 2)T (r, g) = T (r, G∗) < N(r, 1
G∗ ) + N(r, 1

G∗+c) + N(r, G∗) + S(r, g)

≤ N(r, 1
g ) + N(r, 1

g−(n+2)/(n+1)) + N(r, g) + N(r, 1
f )

+N(r, 1
f−(n+2)/(n+1)) + S(r, f) ≤ 5T (r, f) + S(r, f),

which contradicts the condition. Therefore F ∗ ≡ G∗, that is

fn+1(
1

n + 2
f −

1

n + 1
) = gn+1(

1

n + 2
g −

1

n + 1
).

We consider the following two case.
Case 1. Let h = f/g be a constant. If h ≡ 1, that is f ≡ g. If h 6≡ 1, we

deduce that

g =
(n + 2)(1 − hn+1)

(n + 1)(1 − hn+2)
and f =

(n + 2)h(1 − hn+1)

(n + 1)(1 − hn+2)
.

This is a contradiction because f, g are nonconstant.
Case 2. Let h = f/g be not a constant. Thus we get

g =
n + 2

n + 1
(

hn+1

1 + h + h2 + · · · + hn+1
− 1).

then we obtain by Nevanlinnas first fundamental theorem and Lemma 2.1,

T (r, g) = T (r,
∑n+1

j=0
1
hj ) + S(r, h) = (n + 1)T (r, 1/h) + S(r, h)

= (n + 1)T (r, h) + S(r, h).

Now we note that a pole of h is not a pole of [(n + 2)/(n + 1)][hn+1/(1 + h +
h2 + · · · + hn+1) − 1]. So we can get

n+1∑

j=0

N(r,
1

h − uk
) ≤ N(r, g),
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where uk = exp(2kπi/n) for k = 1, 2, . . . , n + 1. By the second fundamental
theorem we get

(n − 1)T (r, h) ≤
∑n+1

k=1 N(r, 1
h−uk

) + S(r, h)

≤ N(r,∞; g) + S(r, h)
< (1 − Θ(∞, g) + ε)T (r, g) + S(r, h)
= (n + 1)(1 − Θ(∞, g) + ε)T (r, h) + S(r, h),

where ε > 0.
Again putting h1 = 1/h, noting that T (r, h) = T (r, h1) + O(1) and pro-

ceeding as above we get

(n − 1)T (r, h) ≤ (n + 1)(1 − Θ(∞, f) + ε)T (r, h) + S(r, h),

where ε > 0. Since Θ(∞, f) + Θ(∞, g) > 4
n+1 , there exists a δ(> 0) such that

Θ(∞, f) + Θ(∞, g) > δ + 4
n+1 .Then we can get in view of the given condition

2(n − 1)T (r, h) ≤ (n + 1)(2 − Θ(∞, f) − Θ(∞, g) + 2ε)T (r, h) + S(r, h)
< (n + 1)(2 − 4

n+1 − δ + 2ε)T (r, h) + S(r, h),

and so (δ−2ε)T (r, h) ≤ S(r, h), which is a contradiction for any ε(0 < 2ε < δ).
Therefore,f ≡ g and so the lemma is proved.

Lemma 2.6 [1] Let f and g be two meromorphic functions, and let k be a

positive integer. If Ek(1, f) = Ek(1, g), then one of the following cases must

occur:

(i)

T (r, f) + T (r, g) ≤ N2(r, f) + N2(r, 1/f) + N2(r, g) + N2(r, 1/g)

+N(r, 1/(f − 1)) + N(r, 1/(g − 1))

−N11(r, 1/(f − 1)) + N (k+1(r, 1/(f − 1))

+N (k+1(r, 1/(g − 1)) + S(r, f) + S(r, g);

(ii) f = (b+1)g+(a−b−1)
bg+(a−b) , where a(6= 0), b are two constants.

Lemma 2.7 [3] Let f and g be two meromorphic functions. If f and g share

1 IM , then one of the following cases must occur:

(i)

T (r, f) + T (r, g) ≤ 2[N 2(r, f) + N2(r, 1/f) + N2(r, g) + N2(r, 1/g)]

+3NL(r, 1/(f − 1)) + 3NL(r, 1/(g − 1))
+S(r, f) + S(r, g);
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(ii) f = (b+1)g+(a−b−1)
bg+(a−b) , where a(6= 0), b are two constants.

Lemma 2.8 Let f and g be two transcendental meromorphic functions, n ≥ 7

be a positive integer, and let F = fn(f−1)f ′

z and G = gn(g−1)g′

z , If

(5) F =
(b + 1)G + (a − b − 1)

bG + (a − b)
,

where a(6= 0), b are two constants and Θ(∞, f) + Θ(∞, g) > 4
n+1 ,then f ≡ g.

Proof : By lemma 2.1 we know

(6)

T (r, F ) = T (r, fn(f−1)f ′

z )
≤ T (r, fn(f − 1)) + T (r.f ′) + log r
≤ (n + 1)T (r, f) + 2T (r, f) + log r + S(r, f)
= (n + 3)T (r, f) + log r + S(r, f).

(7)
(n + 1)T (r, f) = T (r, fn(f − 1)) + S(r, f)

= N(r, fn(f − 1)) + m(r, fn(f − 1)) + S(r, f)

≤ N(r, fn(f−1)f ′

z ) − N(r, f ′) + m(r, fn(f−1)f ′

z ) + m(r, 1/f ′)
+ log r + S(r, f)

≤ T (r, fn(f−1)f ′

z ) + T (r, f ′) − N(r, f ′) − N(r, 1/f ′)
+ log r + S(r, f)

≤ T (r, F ) + T (r, f) − N(r, f) − N(r, 1/f ′) + log r + S(r, f).

So

(8) T (r, F ) ≥ nT (r, f) + N(r, f) + N(r, 1/f ′) + log r + S(r, f).

Thus, by (6),(8) and n ≥ 7, we get S(r, F ) = S(r, f). Similarly, we get

(9) T (r, G) ≥ nT (r, g) + N(r, g) + N(r, 1/g′) + log r + S(r, g).

Without loss of generality, we suppose that T (r, f) ≤ T (r, g), r ∈ I, where I
is a set with infinite measure. Next, we consider three cases.

Case 1. b 6= 0,−1, If a − b − 1 6= 0, then by (5) we know

N(r,
1

G + a−b−1
b+1

) = N(r,
1

F
).
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By the Nevanlinna second fundamental theorem and lemma 2.2 we have

T (r, G) ≤ N(r, G) + N(r, 1
G) + N(r, 1

G+ a−b−1

b+1

) + S(r, G)

= N(r, G) + N(r, 1
G) + N(r, 1

F ) + S(r, g)

≤ N(r, g) + N(r, 1
g ) + T (r, g) + N(r, 1

g′ ) + log r

+N(r, 1
f ) + T (r, f) + N(r, 1

f ) + N(r, f) + log r + S(r, g)

≤ 2T (r, g) + N(r, g) + N(r, 1
g′ ) + log r + 2N(r, 1

f )

+T (r, f) + N(r, f) + log r + S(r, g)

≤ 6T (r, g) + N(r, g) + N(r, 1
g′ ) + 2 log r + S(r, g).

Hence, by n ≥ 7 and (9), we know T (r, g) ≤ S(r, g), r ∈ I, This is impossible.
If a− b− 1 = 0, then by (5) we know F = ((b + 1)G)/(bG + 1). Obviously,

N(r,
1

G + 1
b

) = N(r, F ).

By the Nevanlinna second fundamental theorem and lemma 2.2 we have

T (r, G) ≤ N(r, G) + N(r, 1
G) + N(r, 1

G+ 1

b

) + S(r, G)

= N(r, G) + N(r, 1
G) + N(r, F ) + S(r, g)

≤ N(r, g) + N(r, 1
g ) + T (r, g) + N(r, 1

g′ ) + log r + N(r, f)

+ log r + S(r, g)

≤ 2T (r, g) + N(r, g) + N(r, 1
g′ ) + T (r, f) + 2 log r + S(r, g)

≤ 3T (r, g) + N(r, g) + N(r, 1
g′ ) + 2 log r + S(r, g).

Then by n ≥ 7 and (9), we know T (r, g) ≤ S(r, g), r ∈ I, a contradiction.
Case 2. b = −1. Then (5) becomes F = a/(a + 1 − G).
If a + 1 6= 0, then N(r, 1/(G− a− 1)) = N(r, F ). Similarly, we can deduce

a contradiction as in Case 1.
If a + 1 = 0, then FG ≡ 1, that is,

fn(f − 1)f ′gn(g − 1)g′ ≡ z2.

Since n ≥ 7, by lemma 2.4, a contradiction.
Case 3. b = 0. Then (5) becomes F = (G + a − 1)/a.
If a−1 6= 0, then N(r, 1/(G+a−1)) = N(r, 1/F ). Similarly, we can again

deduce a contradiction as in Case 1.
If a − 1 = 0, then F ≡ G, that is

fn(f − 1)f ′ ≡ gn(g − 1)g′.

By the lemma 2.4 and lemma 2.5, we obtain f ≡ g.
This completes the proof of this lemma.
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3 The Proofs of Theorems

Let F and G be defined as in Lemma 2.8.
The Proof of Theorem 1.1: Since k ≥ 3, we have

N(r, 1
F−1) + N(r, 1

G−1) − N11(r,
1

F−1) + N (k+1(r,
1

F−1) + N (k+1(r,
1

G−1)

≤ 1
2N(r, 1

F−1) + 1
2N(r, 1

G−1)

≤ 1
2T (r, F ) + 1

2T (r, G) + S(r, f) + S(r, g).

Then (i) in Lemma 2.6 becomes

T (r, F )+T (r, G) ≤ 2{N2(r,
1

F
)+N2(r, F )+N2(r,

1

G
)+N2(r, G)}+S(r, f)+S(r, g).

Since

(10)

N2(r,
1
F ) + N2(r, F ) = N2(r,

z
fn(f−1)f ′ ) + N2(r,

fn(f−1)f ′

z )

≤ 2N(r, 1
f ) + N2(r,

1
f−1) + N(r, 1

f ′ )

+2N(r, f) + 2 log r.

Similarly, we obtain

(11)
N2(r,

1
G) + N2(r, G)

≤ 2N(r, 1
g ) + N2(r,

1
g−1) + N(r, 1

g′ ) + 2N(r, g) + 2 log r.

Suppose that

(12)
T (r, F ) + T (r, G) ≤ 2{N2(r,

1
F ) + N2(r, F ) + N2(r,

1
G)

+N2(r, G)} + S(r, f) + S(r, g).

By Lemma 2.2-2.3 and (10)-(12), we get

(13)

T (r, F ) + T (r, G)

≤ 4N(r, 1
f ) + 2N2(r,

1
f−1) + 2N(r, 1

f ′ ) + 4N(r, f)

+4N(r, 1
g ) + 2N2(r,

1
g−1) + 2N(r, 1

g′ ) + 4N(r, g)

+8 log r + S(r, f) + S(r, g)

≤ 5N(r, 1
f ) + 2N2(r,

1
f−1) + N(r, 1

f ′ ) + 5N(r, f)

+5N(r, 1
g ) + 2N2(r,

1
g−1) + N(r, 1

g′ ) + 5N(r, g)

+8 log r + S(r, f) + S(r, g)

≤ 11T (r, f) + N(r, f) + N(r, 1
f ′ ) + S(r, f) + 11T (r, g)

+N(r, g) + N(r, 1
g′ ) + 8 log r + S(r, g).

By n ≥ 12 and (8),(9), we can obtain a contradiction.
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Thus, by lemma 2.6, F = ((b + 1)G + (a − b − 1))/(bG + (a − b)), where
a(6= 0), b are two constants. By lemma 2.8, we get f ≡ g.

This completes the proof of Theorem 1.1.
The Proof of Theorem 1.2: Obviously, we have

N(r, 1
F−1) + N(r, 1

G−1) − N11(r,
1

F−1) + 1
2N (3(r,

1
F−1) + 1

2N (3(r,
1

G−1)

≤ 1
2N(r, 1

F−1) + 1
2N(r, 1

G−1)

≤ 1
2T (r, F ) + 1

2T (r, G) + S(r, f) + S(r, g).

Considering

(14)

N (3(r,
1

F−1) ≤ 1
2N(r, F

F ′ ) = 1
2N(r, F ′

F ) + S(r, f)

≤ 1
2N(r, F ) + 1

2N(r, 1
F ) + S(r, f)

≤ 1
2 [N(r, 1

f ) + N(r, 1
f−1) + N(r, 1

f ′ ) + N(r, f)]

+ log r + S(r, f)
≤ 5

2T (r, f) + log r + S(r, f).

Then (i) in Lemma 2.6 becomes

T (r, F ) + T (r, G) ≤ 2{N2(r,
1
F ) + N2(r, F ) + N2(r,

1
G) + N2(r, G)}

+N (3(r,
1

F−1) + N (3(r,
1

G−1) + S(r, f) + S(r, g).

Similarly, we get

(15) N (3(r,
1

G − 1
) ≤

5

2
T (r, g) + log r + S(r, g).

Suppose that

(16)

T (r, F ) + T (r, G)

≤ 2{N2(r,
1
F ) + N2(r, F ) + N2(r,

1
G) + N2(r, G)} + N (3(r,

1
F−1)

+N (3(r,
1

G−1) + S(r, f) + S(r, g).

Combining (10),(11) and (14)-(16), we can get

T (r, F ) + T (r, G) ≤ 27
2 T (r, f) + N(r, f) + N(r, 1

f ′ ) + S(r, f) + 27
2 T (r, g)

+N(r, g) + N(r, 1
g′ ) + 10 log r + S(r, g).

From n ≥ 14 and (8),(9), we can get a contradiction.
By Lemma 2.6, we obtain F = ((b+1)G+(a−b−1))/(bG+(a−b)), where

a(6= 0), b are two constants. Then by Lemma 2.8, we can prove Theorem 1.2.
The Proof of Theorem 1.3: Similarly, we get

N(r, 1
F−1) + N(r, 1

G−1) − N11(r,
1

F−1)

≤ 1
2N(r, 1

F−1) + 1
2N(r, 1

G−1)

≤ 1
2T (r, F ) + 1

2T (r, G) + S(r, f) + S(r, g).
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Then (i) in Lemma 2.6 becomes

T (r, F ) + T (r, G) ≤ 2{N2(r,
1
F ) + N2(r, F ) + N2(r,

1
G) + N2(r, G)+

N (2(r,
1

F−1) + N (2(r,
1

G−1)} + S(r, f) + S(r, g).

Considering

(17)
N (2(r,

1
F−1) ≤ N(r, F

F ′ ) = N(r, F ′

F ) + S(r, f)

≤ N(r, F ) + N(r, 1
F ) + S(r, f)

≤ 5T (r, f) + 2 log r + S(r, f).

Similarly, we have

(18) N (2(r,
1

G − 1
) ≤ 5T (r, g) + 2 log r + S(r, g).

Suppose that

(19)

T (r, F ) + T (r, G)

≤ 2{N2(r,
1
F ) + N2(r, F ) + N2(r,

1
G) + N2(r, G) + N (2(r,

1
F−1)

+N (2(r,
1

G−1)} + S(r, f) + S(r, g)

Considering (10),(11),(13) and (17)-(19), we know

T (r, F ) + T (r, G) ≤ 21T (r, f) + N(r, f) + N(r, 1
f ′ ) + S(r, f) + 21T (r, g)

+N(r, g) + N(r, 1
g′ ) + 12 log r + S(r, g).

By n ≥ 22 and (8),(9), we get a contradiction.
Applying Lemma 2.6, we know F = ((b+1)G+(a− b−1))/(bG+(a− b)),

where a(6= 0), b are two constants. Then by Lemma 2.8, we can prove Theorem
1.3.
The Proof of Theorem 1.4: Since

(20)
NL(r, 1

F−1) ≤ N(r, F
F ′ ) = N(r, F ′

F ) + S(r, f)

≤ N(r, F ) + N(r, 1
F ) + S(r, f)

≤ 5T (r, f) + 2 log r + S(r, f).

Similarly, we have

(21) NL(r,
1

G − 1
) ≤ 5T (r, g) + 2 log r + S(r, g).

Suppose that F and G satisfied (i) in Lemma 2.7, then we get

(22)

T (r, F ) + T (r, G)

≤ 2{N2(r,
1
F ) + N2(r, F ) + N2(r,

1
G) + N2(r, G)} + 3NL(r, 1

F−1)

+3NL(r, 1
G−1) + S(r, f) + S(r, g).
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Considering (10),(11),(13) and (20)-(22), we have

T (r, F ) + T (r, G) ≤ 26T (r, f) + N(r, f) + N(r, 1
f ′ ) + S(r, f) + 26T (r, g)

+N(r, g) + N(r, 1
g′ ) + 20 log r + S(r, g).

From n ≥ 27 and (8),(9), we get a contradiction.
Applying Lemma 2.7, we know F = ((b+1)G+(a− b−1))/(bG+(a− b)),

where a(6= 0), b are two constants. Then by Lemma 2.8, we can prove Theorem
1.4.
The Proof of Theorem 1.5: Since k ≥ 3, we have

N(r, 1
F−1) + N(r, 1

G−1) − N11(r,
1

F−1) + N (k+1(r,
1

F−1) + N (k+1(r,
1

G−1)

≤ 1
2N(r, 1

F−1) + 1
2N(r, 1

G−1)

≤ 1
2T (r, F ) + 1

2T (r, G) + S(r, f) + S(r, g).

Since

(23)
N2(r,

1
F ) + N2(r, F ) = N2(r,

z
fn(f−1)f ′ ) + N2(r,

fn(f−1)f ′

z )

≤ 2N(r, 1
f ) + N2(r,

1
f−1) + N(r, 1

f ′ ) + 2 log r.

Similarly, we obtain

(24) N2(r,
1

G
) + N2(r, G) ≤ 2N(r,

1

g
) + N2(r,

1

g − 1
) + N(r,

1

g′
) + 2 log r.

Suppose that F and G satisfied (i) in Lemma 2.6, then we get

(25)
T (r, F ) + T (r, G) ≤ 2{N2(r,

1
F ) + N2(r, F ) + N2(r,

1
G)

+N2(r, G)} + S(r, f) + S(r, g).

By Lemma 2.2-2.3 and (23)-(25), we get

(26)

T (r, F ) + T (r, G)

≤ 4N(r, 1
f ) + 2N2(r,

1
f−1) + 2N(r, 1

f ′ ) + 4N(r, 1
g ) + 2N2(r,

1
g−1)

+2N(r, 1
g′ ) + 8 log r + S(r, f) + S(r, g)

≤ 5N(r, 1
f ) + 2N2(r,

1
f−1) + N(r, 1

f ′ ) + 5N(r, 1
g ) + 2N2(r,

1
g−1)

+N(r, 1
g′ ) + 8 log r + S(r, f) + S(r, g)

≤ 7T (r, f) + N(r, 1
f ′ ) + S(r, f) + 7T (r, g) + N(r, 1

g′ )

+8 log r + S(r, g).

Noting that

(27) T (r, F ) ≥ nT (r, f) + N(r, 1/f ′) + log r + S(r, f).
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(28) T (r, G) ≥ nT (r, g) + N(r, 1/g′) + log r + S(r, g).

By n ≥ 8 and (27),(28), we can obtain a contradiction.

Thus, by Lemma 2.7, F = ((b + 1)G + (a − b − 1))/(bG + (a − b)), where
a(6= 0), b are two constants. By using the same argument as in Lemma 2.8
combining f and g are two transcendental entire functions, we get f ≡ g.This
completes the proof of Theorem 1.5.

Similarly,we can use the analogue method of Theorem 1.5 to prove the
Theorem 1.6-1.8 easily. Here we omit the details.

4 Remarks

It follows from the proof of Theorem 1.1-1.8 that if “z” is replaced by “a(z)” in
the Theorem 1.1-1.8, where a(z) is a meromorphic function such that a 6≡ 0,∞
and T (r, a) = o{T (r, f), T (r, g)}, then the conclusions of Theorem 1.1-1.8 still
hold. So we obtain the following results.

Theorem 4.1 Let f and g be two transcendental meromorphic functions and

n ≥ 12, k ≥ 3 be two positive integers. If Ek(a(z), fn(f−1)f ′) = Ek(a(z), gn(g−
1)g′) and Θ(∞, f) + Θ(∞, g) > 4

n+1 ,then f ≡ g.

Theorem 4.2 Let f and g be two transcendental meromorphic functions and

n(≥ 14) be a positive integer. If E2(a(z), fn(f − 1)f ′) = E2(a(z), gn(g − 1)g′)
and Θ(∞, f) + Θ(∞, g) > 4

n+1 , then f ≡ g.

Theorem 4.3 Let f and g be two transcendental meromorphic functions and

n(≥ 22) be a positive integer. If E1(a(z), fn(f − 1)f ′) = E1(a(z), gn(g − 1)g′)
and Θ(∞, f) + Θ(∞, g) > 4

n+1 , then f ≡ g.

Theorem 4.4 Let f and g be two transcendental meromorphic functions and

n(≥ 27) be a positive integer.If fn(f −1)f ′ and gn(g−1)g′ share a(z) IM and

Θ(∞, f) + Θ(∞, g) > 4
n+1 , then f ≡ g.

Theorem 4.5 Let f and g be two transcendental entire functions and n ≥
8, k ≥ 3 be two positive integers. If Ek(a(z), fn(f − 1)f ′) = Ek(a(z), gn(g −
1)g′), then f ≡ g.

Theorem 4.6 Let f and g be two transcendental entire functions and n ≥ 11
be a positive integer. If E2(a(z), fn(f − 1)f ′) = E2(a(z), gn(g − 1)g′), then

f ≡ g.
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Theorem 4.7 Let f and g be two transcendental entire functions and n ≥ 18
be a positive integer. If E1(a(z), fn(f − 1)f ′) = E1(a(z), gn(g − 1)g′), then

f ≡ g.

Theorem 4.8 Let f and g be two transcendental entire functions and n ≥ 22
be a positive integer. If fn(f−1)f ′ and gn(g−1)g′ share a(z) IM , then f ≡ g.

Obviously, we can use the analogue method of Theorem 1.1-1.8 to prove
the Theorem 4.1-4.8 easily. Here, we omit them.
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