Uniqueness theorems of entire and meromorphic functions sharing small function ${ }^{1}$

Hong-Yan Xu

Abstract

In this paper, we deal with some uniqueness theorems of two transcendental meromorphic functions with their non-linear differential polynomials sharing a small function. These results in this paper improve those given by of Fang and Hong [M.L.Fang and W.Hong,A unicity theorem for entire functions concerning differential polynomials,Indian J.Pure Appl.Math.32.(2001),No.9,1343-1348.], I.Lahiri and N.Mandal [I.Lahiri and N. Mandal, Uniqueness of nonlinear differential polynomials sharing simple and double 1-points, International Journal of Mathematics and Mathematical Sciences, vol. 2005 (2005), no.12, pp.1933-1942.].

2000 Mathematics Subject Classification: 30D30, 30D35.
Key words and phrases: Small function; Differential polynomials; Value shared; Weight shared.

1 Introduction and Main Results

In this paper, we use the standard notations and terms in the value distribution theory[11]. For any nonconstant meromorphic function $f(z)$ on the complex plane \mathbb{C}, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly for a set of r of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to f if $T(r, a)=S(r, f)$. Let $S(f)$ be the set of meromorphic functions in the complex plane \mathbb{C} which are small functions with respect to f. Set $E(a(z), f)=\{z \mid f(z)-a(z)=0\}, a(z) \in$

[^0]$S(f)$, where a zero point with multiplicity m is counted m times in the set. If these zero points are only counted once, then we denote the set by $\bar{E}(a(z), f)$. Let k be a positive integer. Set $E_{k}(a(z), f)=\{z: f(z)-a(z)=0\}$, where a zero point with multiplicity $m \leq k$ is counted m times and multiplicity $m>k$ is counted $k+1$ times in the set.

Let f and g be two transcendental meromorphic functions, $a(z) \in S(f) \cap$ $S(g)$. If $E(a(z), f)=E(a(z), g)$, then we say that f and g share the function $a(z) C M$, especially, we say that f and g have the same fixed-points when $a(z)=z$; if $\bar{E}(a(z), f)=\bar{E}(a(z), g)$, then we say that f and g share the function $a(z) I M$; If $E_{k}(a(z), f)=E_{k}(a(z), g)$, we say that $f(z)-a(z)$ and $g(z)-a(z)$ have the same zeros with the multiplicities $\leq k$.

In addition, we also use the following notations.
We denote by $N_{k}(r, f)$ the counting function for poles of f with multiplicity $\leq k$, and by $\bar{N}_{k)}(r, f)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, f)$ be the counting function for poles of f with multiplicity $\geq k$, and by $\bar{N}_{(k}(r, f)$ be the corresponding one for which multiplicity is not counted. Set $N_{k}(r, f)=\bar{N}(r, f)+\bar{N}_{(2}(r, f)+\cdots+\bar{N}_{(k}(r, f)$.

Similarly, we have the notations;

$$
N_{k)}(r, 1 / f), \bar{N}_{k)}(r, 1 / f), N_{(k}(r, 1 / f), \bar{N}_{(k}(r, 1 / f), N_{k}(r, 1 / f) .
$$

Let f and g be two nonconstant meromorphic functions and $\bar{E}(1, f)$ $=\bar{E}(1, g)$. We denote by $\bar{N}_{L}(r, 1 /(f-1))$ the counting function for 1-points of both f and g about which f has larger multiplicity than g, with multiplicity not being counted, and denote by $N_{11}(r, 1 /(f-1))$ the counting function for common simple 1-points of both f and g where multiplicity is not counted. Similarly, we have the notation $\bar{N}_{L}(r, 1 /(g-1))$.

In 1929, Nevanlinna proved the following well-known result, which is the so-called Nevanlinna four-value theorem.
Theorem A [9] Let f and g be two non-constant meromorphic functions. If f and g share four distinct values $C M$, then f is a Möbius transformation of g.

In 1979, G.Gundersen proved the following result, which is an improvement of Theorem A.
Theorem B [4] Let f and g be two non-constant meromorphic functions. If f and g share three distinct values $C M$ and a fourth value $I M$, then f is a Möbius transformation of g.

In 1997, Li and Yang proved the following two results, which generalize Theorem A and B to small functions.

Theorem C [8] Let f and g be two non-constant meromorphic functions, and let $a_{j}(j=1, \ldots, 4)$ be distinct small functions of f and g. If f and g share $a_{j}(j=1, \ldots, 4) C M^{*}$, then f is a quasi-Möbius transformation of g.
Theorem D [8] Let f and g be two non-constant meromorphic functions, and let $a_{j}(j=1, \ldots, 4)$ be distinct small functions of f and g. If f and g share $a_{j}(j=1, \ldots, 3) C M^{*}$ and $a_{4}(z) I M$, then f is a quasi-Möbius transformation of g.

Recently, some papers studied the uniqueness of meromorphic functions and differential polynomials, and obtained some results as followed.

In 2001, Fang and Hong [2] proved the following theorem.
Theorem \mathbf{E} [2] Let f and g be two nonconstant meromorphic functions satisfying $\Theta(\infty, f)>\frac{1}{n+1}$ and $n \geq 11$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value $1 C M$, then $f \equiv g$.

In 2005, I.Lahiri and N.Mandal [5] proved the following results, which improved the Theorem E.
Theorem \mathbf{F} [5] Let f and g be two transcendental meromorphic functions such that $\Theta(\infty ; f)+\Theta(\infty ; g)>\frac{1}{n+1}$ and let $n(\geq 17)$ be an integer. $E_{2)}\left(1, f^{n}(f-\right.$ 1) $\left.f^{\prime}\right)=E_{2)}\left(1, g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Question 1.1 Is it possible that the value 1 can be replaced by a small function $a(z)$ in Theorem E and Theorem F?

Question 1.2 Is it possible to relax the nature of sharing a small function $a(z)$ and if possible how far?

In this paper we answer the above questions and obtain the following results:

Theorem 1.1 Let f and g be two transcendental meromorphic functions and $n \geq 12, k \geq 3$ be two positive integers. If $E_{k}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{k}\left(z, g^{n}(g-1) g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 1.2 Let f and g be two transcendental meromorphic functions and $n(\geq 14)$ be a positive integer. If $E_{2}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{2}\left(z, g^{n}(g-1) g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 1.3 Let f and g be two transcendental meromorphic functions and $n(\geq 22)$ be a positive integer. If $E_{1}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{1}\left(z, g^{n}(g-1) g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 1.4 Let f and g be two transcendental meromorphic functions and $n(\geq 27)$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z I M$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

When f and g are two transcendental entire functions, similarly we can get the following results.

Theorem 1.5 Let f and g be two transcendental entire functions and $n \geq$ $8, k \geq 3$ be two positive integers. If $E_{k}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{k}\left(z, g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem 1.6 Let f and g be two transcendental entire functions and $n \geq 11$ be a positive integer. If $E_{2}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{2}\left(z, g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem 1.7 Let f and g be two transcendental entire functions and $n \geq 18$ be a positive integer. If $E_{1}\left(z, f^{n}(f-1) f^{\prime}\right)=E_{1}\left(z, g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem 1.8 Let f and g be two transcendental entire functions and $n \geq 22$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z I M$, then $f \equiv g$.

2 Some Lemmas

In order to prove our results, we need the following lemmas.
Lemma 2.1 [10] Let f be a nonconstant meromorphic function and $P(f)=$ $a_{0}+a_{1} f+a_{2} f^{2}+\cdots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2}, \cdots, a_{n}$ are constants and $a_{n} \neq 0$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Lemma 2.2 [12] Let f and g be two meromorphic functions, and let k be a positive integer, then

$$
N\left(r, 1 / f^{(k)}\right) \leq N(r, 1 / f)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.3 [7] Let f be a nonconstant meromorphic function and k be a positive integer. Then

$$
N_{2}\left(r, 1 / f^{(k)}\right) \leq k \bar{N}(r, f)+N_{2+k}(r, 1 / f)+S(r, f)
$$

Lemma 2.4 Let f and g be two transcendental meromorphic functions. Then $f^{n}(f-1) f^{\prime} g^{n}(g-1) g^{\prime} \not \equiv z^{2}$, where $n \geq 5$ is a positive integer.

Proof: If possible let $f^{n}(f-1) f^{\prime} g^{n}(g-1) g^{\prime} \equiv z^{2}$. Let $z_{0}(\neq 0, \infty)$ be an 1 -point of f with multiplicity $p(\geq 1)$. Then z_{0} is a pole of g with multiplicity $q(\geq 1)$ such that $p+p-1=n q+q+q+1$ and so $p \geq \frac{n+4}{2}$.

Let $z_{1}(\neq 0, \infty)$ be a zero of f with multiplicity $p(\geq 1)$ and it be a pole of g with multiplicity $q(\geq 1)$. Then $n p+p-1=n q+q+q+1$ i.e., $q \geq n-1$. So $(n+1) p=(n+2) q+2, i . e ., p \geq n$.

Since a pole of f is either a zero of $g(g-1)$ or a zero of g^{\prime}, we get

$$
\begin{aligned}
\bar{N}(r, f) & \leq \bar{N}(r, 1 / g)+\bar{N}(r, 1 /(g-1))+\bar{N}_{0}\left(r, 1 / g^{\prime}\right) \\
& \leq \frac{1}{n} N(r, 1 / g)+\frac{2}{n+4} N(r, 1 /(g-1))+\bar{N}_{0}\left(r, 1 / g^{\prime}\right) \\
& \leq\left(\frac{1}{n}+\frac{2}{n+4}\right) T(r, g)+\bar{N}_{0}\left(r, 1 / g^{\prime}\right),
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 1 / g^{\prime}\right)$ is the reduced counting function of those zeros of g^{\prime} which are not the zeros of $g(g-1)$.

By the second fundamental theorem we obtain

$$
\begin{aligned}
T(r, f) \leq & \bar{N}(r, 1 / f)+\bar{N}(r, f)+\bar{N}(r, 1 /(f-1))-\bar{N}_{0}\left(r, 1 / f^{\prime}\right)+S(r, f) \\
\leq & \frac{1}{n} N(r, 1 / f)+\frac{2}{n} N(r, 1 /(f-1))+\left(\frac{1}{n}+\frac{2}{n+4}\right) T(r, g) \\
& +\bar{N}_{0}\left(r, 1 / g^{\prime}\right)-\bar{N}_{0}\left(r, 1 / f^{\prime}\right)+2 \log r+S(r, f) .
\end{aligned}
$$

So

$$
\begin{align*}
\left(1-\frac{1}{n}-\frac{2}{n+4}\right) T(r, f) \leq & \left(\frac{1}{n}+\frac{2}{n+4}\right) T(r, g)+\bar{N}_{0}\left(r, 1 / g^{\prime}\right) \tag{1}\\
& -\bar{N}_{0}\left(r, 1 / f^{\prime}\right)+2 \log r+S(r, f) .
\end{align*}
$$

Similarly we get

$$
\begin{align*}
\left(1-\frac{1}{n}-\frac{2}{n+4}\right) T(r, g) \leq & \left(\frac{1}{n}+\frac{2}{n+4}\right) T(r, f)+\bar{N}_{0}\left(r, 1 / f^{\prime}\right) \tag{2}\\
& -\bar{N}_{0}\left(r, 1 / g^{\prime}\right)+2 \log r+S(r, g) .
\end{align*}
$$

Adding (1) and (2) we get

$$
\left(1-\frac{2}{n}-\frac{4}{n+4}\right)\{T(r, f)+T(r, g)\} \leq 4 \log r+S(r, f)+S(r, g)
$$

which is a contradiction. This proves this lemma.
Lemma 2.5 Let f and g be two transcendental meromorphic functions, $F=$ $\frac{f^{n}(f-1) f^{\prime}}{z}$ and $G=\frac{g^{n}(g-1) g^{\prime}}{z}$, where $n(\geq 4)$ is a positive integer. If $F \equiv G$ and

$$
\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}
$$

then $f \equiv g$.

Proof: If $F \equiv G$, that is

$$
\begin{equation*}
F^{*} \equiv G^{*}+c \tag{3}
\end{equation*}
$$

where c is a constant,

$$
F^{*}=\frac{1}{n+2} f^{n+2}-\frac{1}{n+1} f^{n+1} \quad \text { and } \quad G^{*}=\frac{1}{n+2} g^{n+2}-\frac{1}{n+1} g^{n+1}
$$

If follows that

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r, f) \tag{4}
\end{equation*}
$$

Suppose that $c \neq 0$. By the second fundamental theorem,from (3) and (4) we have

$$
\begin{aligned}
(n+2) T(r, g)= & T\left(r, G^{*}\right)<\bar{N}\left(r, \frac{1}{G^{*}}\right)+\bar{N}\left(r, \frac{1}{G^{*}+c}\right)+\bar{N}\left(r, G^{*}\right)+S(r, g) \\
\leq & \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g-(n+2) /(n+1)}\right)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{f}\right) \\
& +\bar{N}\left(r, \frac{1}{f-(n+2) /(n+1)}\right)+S(r, f) \leq 5 T(r, f)+S(r, f)
\end{aligned}
$$

which contradicts the condition. Therefore $F^{*} \equiv G^{*}$, that is

$$
f^{n+1}\left(\frac{1}{n+2} f-\frac{1}{n+1}\right)=g^{n+1}\left(\frac{1}{n+2} g-\frac{1}{n+1}\right)
$$

We consider the following two case.
Case 1. Let $h=f / g$ be a constant. If $h \equiv 1$, that is $f \equiv g$. If $h \not \equiv 1$, we deduce that

$$
g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)} \quad \text { and } \quad f=\frac{(n+2) h\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}
$$

This is a contradiction because f, g are nonconstant.
Case 2. Let $h=f / g$ be not a constant. Thus we get

$$
g=\frac{n+2}{n+1}\left(\frac{h^{n+1}}{1+h+h^{2}+\cdots+h^{n+1}}-1\right)
$$

then we obtain by Nevanlinnas first fundamental theorem and Lemma 2.1,

$$
\begin{aligned}
T(r, g) & =T\left(r, \sum_{j=0}^{n+1} \frac{1}{h^{j}}\right)+S(r, h)=(n+1) T(r, 1 / h)+S(r, h) \\
& =(n+1) T(r, h)+S(r, h)
\end{aligned}
$$

Now we note that a pole of h is not a pole of $[(n+2) /(n+1)]\left[h^{n+1} /(1+h+\right.$ $\left.\left.h^{2}+\cdots+h^{n+1}\right)-1\right]$. So we can get

$$
\sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{h-u_{k}}\right) \leq \bar{N}(r, g)
$$

where $u_{k}=\exp (2 k \pi i / n)$ for $k=1,2, \ldots, n+1$. By the second fundamental theorem we get

$$
\begin{aligned}
(n-1) T(r, h) & \leq \sum_{k=1}^{n+1} \bar{N}\left(r, \frac{1}{h-u_{k}}\right)+S(r, h) \\
& \leq \bar{N}(r, \infty ; g)+S(r, h) \\
& <(1-\Theta(\infty, g)+\varepsilon) T(r, g)+S(r, h) \\
& =(n+1)(1-\Theta(\infty, g)+\varepsilon) T(r, h)+S(r, h),
\end{aligned}
$$

where $\varepsilon>0$.
Again putting $h_{1}=1 / h$, noting that $T(r, h)=T\left(r, h_{1}\right)+O(1)$ and proceeding as above we get

$$
(n-1) T(r, h) \leq(n+1)(1-\Theta(\infty, f)+\varepsilon) T(r, h)+S(r, h)
$$

where $\varepsilon>0$. Since $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, there exists a $\delta(>0)$ such that $\Theta(\infty, f)+\Theta(\infty, g)>\delta+\frac{4}{n+1}$. Then we can get in view of the given condition

$$
\begin{aligned}
2(n-1) T(r, h) & \leq(n+1)(2-\Theta(\infty, f)-\Theta(\infty, g)+2 \varepsilon) T(r, h)+S(r, h) \\
& <(n+1)\left(2-\frac{4}{n+1}-\delta+2 \varepsilon\right) T(r, h)+S(r, h),
\end{aligned}
$$

and so $(\delta-2 \varepsilon) T(r, h) \leq S(r, h)$, which is a contradiction for any $\varepsilon(0<2 \varepsilon<\delta)$. Therefore, $f \equiv g$ and so the lemma is proved.

Lemma 2.6 [1] Let f and g be two meromorphic functions, and let k be a positive integer. If $E_{k}(1, f)=E_{k}(1, g)$, then one of the following cases must occur:
(i)

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & \bar{N}_{2}(r, f)+\bar{N}_{2}(r, 1 / f)+\bar{N}_{2}(r, g)+\bar{N}_{2}(r, 1 / g) \\
& +\bar{N}(r, 1 /(f-1))+\bar{N}(r, 1 /(g-1)) \\
& -N_{11}(r, 1 /(f-1))+\bar{N}_{(k+1}(r, 1 /(f-1)) \\
& +\bar{N}_{(k+1}(r, 1 /(g-1))+S(r, f)+S(r, g) ;
\end{aligned}
$$

(ii) $f=\frac{(b+1) g+(a-b-1)}{b g+(a-b)}$, where $a(\neq 0), b$ are two constants.

Lemma 2.7 [3] Let f and g be two meromorphic functions. If f and g share 1 IM, then one of the following cases must occur:
(i)

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & 2\left[\bar{N}_{2}(r, f)+\bar{N}_{2}(r, 1 / f)+\bar{N}_{2}(r, g)+\bar{N}_{2}(r, 1 / g)\right] \\
& +3 \bar{N}_{L}(r, 1 /(f-1))+3 \bar{N}_{L}(r, 1 /(g-1)) \\
& +S(r, f)+S(r, g) ;
\end{aligned}
$$

(ii) $f=\frac{(b+1) g+(a-b-1)}{b g+(a-b)}$, where $a(\neq 0), b$ are two constants.

Lemma 2.8 Let f and g be two transcendental meromorphic functions, $n \geq 7$ be a positive integer, and let $F=\frac{f^{n}(f-1) f^{\prime}}{z}$ and $G=\frac{g^{n}(g-1) g^{\prime}}{z}$, If

$$
\begin{equation*}
F=\frac{(b+1) G+(a-b-1)}{b G+(a-b)} \tag{5}
\end{equation*}
$$

where $a(\neq 0), b$ are two constants and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.
Proof: By lemma 2.1 we know

$$
\begin{align*}
T(r, F) & =T\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right) \\
& \leq T\left(r, f^{n}(f-1)\right)+T\left(r . f^{\prime}\right)+\log r \tag{6}\\
& \leq(n+1) T(r, f)+2 T(r, f)+\log r+S(r, f) \\
& =(n+3) T(r, f)+\log r+S(r, f)
\end{align*}
$$

$$
\begin{align*}
(n+1) T(r, f)= & T\left(r, f^{n}(f-1)\right)+S(r, f) \tag{7}\\
= & N\left(r, f^{n}(f-1)\right)+m\left(r, f^{n}(f-1)\right)+S(r, f) \\
\leq & N\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right)-N\left(r, f^{\prime}\right)+m\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right)+m\left(r, 1 / f^{\prime}\right) \\
& +\log r+S(r, f) \\
\leq & T\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right)+T\left(r, f^{\prime}\right)-N\left(r, f^{\prime}\right)-N\left(r, 1 / f^{\prime}\right) \\
& +\log r+S(r, f) \\
\leq & T(r, F)+T(r, f)-N(r, f)-N\left(r, 1 / f^{\prime}\right)+\log r+S(r, f)
\end{align*}
$$

So

$$
\begin{equation*}
T(r, F) \geq n T(r, f)+N(r, f)+N\left(r, 1 / f^{\prime}\right)+\log r+S(r, f) \tag{8}
\end{equation*}
$$

Thus, by (6),(8) and $n \geq 7$, we get $S(r, F)=S(r, f)$. Similarly, we get

$$
\begin{equation*}
T(r, G) \geq n T(r, g)+N(r, g)+N\left(r, 1 / g^{\prime}\right)+\log r+S(r, g) \tag{9}
\end{equation*}
$$

Without loss of generality, we suppose that $T(r, f) \leq T(r, g), r \in I$, where I is a set with infinite measure. Next, we consider three cases.

Case 1. $b \neq 0,-1$, If $a-b-1 \neq 0$, then by (5) we know

$$
\bar{N}\left(r, \frac{1}{G+\frac{a-b-1}{b+1}}\right)=\bar{N}\left(r, \frac{1}{F}\right)
$$

By the Nevanlinna second fundamental theorem and lemma 2.2 we have

$$
\begin{aligned}
T(r, G) \leq & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G+\frac{a-b-1}{b+1}}\right)+S(r, G) \\
= & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
\leq & \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+T(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+\log r \\
& +\bar{N}\left(r, \frac{1}{f}\right)+T(r, f)+N\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+\log r+S(r, g) \\
\leq & 2 T(r, g)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+\log r+2 N\left(r, \frac{1}{f}\right) \\
& +T(r, f)+\bar{N}(r, f)+\log r+S(r, g) \\
\leq & 6 T(r, g)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+2 \log r+S(r, g)
\end{aligned}
$$

Hence, by $n \geq 7$ and (9), we know $T(r, g) \leq S(r, g), r \in I$, This is impossible.
If $a-b-1=0$, then by (5) we know $F=((b+1) G) /(b G+1)$. Obviously,

$$
\bar{N}\left(r, \frac{1}{G+\frac{1}{b}}\right)=\bar{N}(r, F)
$$

By the Nevanlinna second fundamental theorem and lemma 2.2 we have

$$
\begin{aligned}
T(r, G) \leq & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G+\frac{1}{b}}\right)+S(r, G) \\
= & \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+S(r, g) \\
\leq & \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+T(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+\log r+\bar{N}(r, f) \\
& +\log r+S(r, g) \\
\leq & 2 T(r, g)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+T(r, f)+2 \log r+S(r, g) \\
\leq & 3 T(r, g)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right)+2 \log r+S(r, g)
\end{aligned}
$$

Then by $n \geq 7$ and (9), we know $T(r, g) \leq S(r, g), r \in I$, a contradiction.
Case 2. $b=-1$. Then (5) becomes $F=a /(a+1-G)$.
If $a+1 \neq 0$, then $\bar{N}(r, 1 /(G-a-1))=\bar{N}(r, F)$. Similarly, we can deduce a contradiction as in Case 1.

If $a+1=0$, then $F G \equiv 1$, that is,

$$
f^{n}(f-1) f^{\prime} g^{n}(g-1) g^{\prime} \equiv z^{2}
$$

Since $n \geq 7$, by lemma 2.4, a contradiction.
Case 3. $b=0$. Then (5) becomes $F=(G+a-1) / a$.
If $a-1 \neq 0$, then $\bar{N}(r, 1 /(G+a-1))=\bar{N}(r, 1 / F)$. Similarly, we can again deduce a contradiction as in Case 1.

If $a-1=0$, then $F \equiv G$, that is

$$
f^{n}(f-1) f^{\prime} \equiv g^{n}(g-1) g^{\prime}
$$

By the lemma 2.4 and lemma 2.5 , we obtain $f \equiv g$.
This completes the proof of this lemma.

3 The Proofs of Theorems

Let F and G be defined as in Lemma 2.8.
The Proof of Theorem 1.1: Since $k \geq 3$, we have

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

Then (i) in Lemma 2.6 becomes
$T(r, F)+T(r, G) \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\}+S(r, f)+S(r, g)$.
Since

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)= & N_{2}\left(r, \frac{z}{f^{n}(f-1) f^{\prime}}\right)+N_{2}\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right) \\
\leq & 2 \bar{N}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{\prime}}\right) \tag{10}\\
& +2 \bar{N}(r, f)+2 \log r .
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G) \\
\leq \quad & 2 \bar{N}\left(r, \frac{1}{g}\right)+N_{2}\left(r, \frac{1}{g-1}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+2 \bar{N}(r, g)+2 \log r . \tag{11}
\end{align*}
$$

Suppose that

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)\right. \tag{12}\\
& \left.+N_{2}(r, G)\right\}+S(r, f)+S(r, g)
\end{align*}
$$

By Lemma 2.2-2.3 and (10)-(12), we get

$$
\begin{aligned}
& T(r, F)+T(r, G) \\
\leq & 4 \bar{N}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{f-1}\right)+2 N\left(r, \frac{1}{f^{\prime}}\right)+4 \bar{N}(r, f) \\
& +4 \bar{N}\left(r, \frac{1}{g}\right)+2 N_{2}\left(r, \frac{1}{g-1}\right)+2 N\left(r, \frac{1}{g^{\prime}}\right)+4 \bar{N}(r, g) \\
& +8 \log r+S(r, f)+S(r, g) \\
\leq & 5 N\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+5 \bar{N}(r, f) \\
& +5 N\left(r, \frac{1}{g}\right)+2 N_{2}\left(r, \frac{1}{g-1}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+5 \bar{N}(r, g) \\
& +8 \log r+S(r, f)+S(r, g) \\
\leq & 11 T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+11 T(r, g) \\
& +\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+8 \log r+S(r, g) .
\end{aligned}
$$

By $n \geq 12$ and (8),(9), we can obtain a contradiction.

Thus, by lemma 2.6, $F=((b+1) G+(a-b-1)) /(b G+(a-b))$, where $a(\neq 0), b$ are two constants. By lemma 2.8 , we get $f \equiv g$.

This completes the proof of Theorem 1.1.
The Proof of Theorem 1.2: Obviously, we have

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right)+\frac{1}{2} \bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+\frac{1}{2} \bar{N}_{(3}\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Considering

$$
\begin{align*}
\bar{N}_{(3}\left(r, \frac{1}{F-1}\right) & \leq \frac{1}{2} N\left(r, \frac{F}{F^{\prime}}\right)=\frac{1}{2} N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& \leq \frac{1}{2} \bar{N}(r, F)+\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq \frac{1}{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}(r, f)\right] \tag{14}\\
& +\log r+S(r, f) \\
& \leq \frac{5}{2} T(r, f)+\log r+S(r, f)
\end{align*}
$$

Then (i) in Lemma 2.6 becomes

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\} \\
& +\bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(3}\left(r, \frac{1}{G-1}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Similarly, we get

$$
\begin{equation*}
\bar{N}_{(3}\left(r, \frac{1}{G-1}\right) \leq \frac{5}{2} T(r, g)+\log r+S(r, g) \tag{15}
\end{equation*}
$$

Suppose that

$$
\begin{array}{ll}
& T(r, F)+T(r, G) \\
\leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\}+\bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \tag{16}\\
& +\bar{N}_{(3}\left(r, \frac{1}{G-1}\right)+S(r, f)+S(r, g)
\end{array}
$$

Combining (10),(11) and (14)-(16), we can get

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & \frac{27}{2} T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+\frac{27}{2} T(r, g) \\
& +\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+10 \log r+S(r, g)
\end{aligned}
$$

From $n \geq 14$ and (8),(9), we can get a contradiction.
By Lemma 2.6, we obtain $F=((b+1) G+(a-b-1)) /(b G+(a-b))$, where $a(\neq 0), b$ are two constants. Then by Lemma 2.8, we can prove Theorem 1.2.
The Proof of Theorem 1.3: Similarly, we get

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right) \\
\leq & \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

Then (i) in Lemma 2.6 becomes

$$
T(r, F)+T(r, G) \leq \frac{2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)+\right.}{\left.\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right)\right\}+S(r, f)+S(r, g)} .
$$

Considering

$$
\begin{align*}
\bar{N}_{(2}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{F}{F^{\prime}}\right)=N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \tag{17}\\
& \leq 5 T(r, f)+2 \log r+S(r, f)
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{G-1}\right) \leq 5 T(r, g)+2 \log r+S(r, g) \tag{18}
\end{equation*}
$$

Suppose that

$$
\begin{array}{ll}
T(r, F)+T(r, G) \\
\leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)\right. \tag{19}\\
& \left.+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right)\right\}+S(r, f)+S(r, g)
\end{array}
$$

Considering (10),(11),(13) and (17)-(19), we know

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 21 T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+21 T(r, g) \\
& +\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+12 \log r+S(r, g) .
\end{aligned}
$$

By $n \geq 22$ and (8),(9), we get a contradiction.
Applying Lemma 2.6, we know $F=((b+1) G+(a-b-1)) /(b G+(a-b))$, where $a(\neq 0), b$ are two constants. Then by Lemma 2.8, we can prove Theorem 1.3.

The Proof of Theorem 1.4: Since

$$
\begin{align*}
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{F}{F^{\prime}}\right)=N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \tag{20}\\
& \leq 5 T(r, f)+2 \log r+S(r, f)
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{N}_{L}\left(r, \frac{1}{G-1}\right) \leq 5 T(r, g)+2 \log r+S(r, g) \tag{21}
\end{equation*}
$$

Suppose that F and G satisfied (i) in Lemma 2.7, then we get

$$
\begin{array}{ll}
T(r, F)+T(r, G) \\
\leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\}+3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right) \tag{22}\\
& +3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f)+S(r, g)
\end{array}
$$

Considering (10),(11),(13) and (20)-(22), we have

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 26 T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+26 T(r, g) \\
& +\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+20 \log r+S(r, g)
\end{aligned}
$$

From $n \geq 27$ and (8),(9), we get a contradiction.
Applying Lemma 2.7, we know $F=((b+1) G+(a-b-1)) /(b G+(a-b))$, where $a(\neq 0), b$ are two constants. Then by Lemma 2.8, we can prove Theorem 1.4.

The Proof of Theorem 1.5: Since $k \geq 3$, we have

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \\
\leq & \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

Since

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F) & =N_{2}\left(r, \frac{z}{f^{n}(f-1) f^{\prime}}\right)+N_{2}\left(r, \frac{f^{n}(f-1) f^{\prime}}{z}\right) \tag{23}\\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+2 \log r
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G) \leq 2 \bar{N}\left(r, \frac{1}{g}\right)+N_{2}\left(r, \frac{1}{g-1}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+2 \log r \tag{24}
\end{equation*}
$$

Suppose that F and G satisfied (i) in Lemma 2.6, then we get

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)\right. \tag{25}\\
& \left.+N_{2}(r, G)\right\}+S(r, f)+S(r, g)
\end{align*}
$$

By Lemma 2.2-2.3 and (23)-(25), we get

$$
\begin{align*}
& T(r, F)+T(r, G) \\
\leq & 4 \bar{N}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{f-1}\right)+2 N\left(r, \frac{1}{f^{\prime}}\right)+4 \bar{N}\left(r, \frac{1}{g}\right)+2 N_{2}\left(r, \frac{1}{g-1}\right) \\
& +2 N\left(r, \frac{1}{g^{\prime}}\right)+8 \log r+S(r, f)+S(r, g) \\
\leq & 5 N\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+5 N\left(r, \frac{1}{g}\right)+2 N_{2}\left(r, \frac{1}{g-1}\right) \tag{26}\\
& +N\left(r, \frac{1}{g^{\prime}}\right)+8 \log r+S(r, f)+S(r, g) \\
\leq & 7 T(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+7 T(r, g)+N\left(r, \frac{1}{g^{\prime}}\right) \\
& +8 \log r+S(r, g)
\end{align*}
$$

Noting that

$$
\begin{equation*}
T(r, F) \geq n T(r, f)+N\left(r, 1 / f^{\prime}\right)+\log r+S(r, f) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
T(r, G) \geq n T(r, g)+N\left(r, 1 / g^{\prime}\right)+\log r+S(r, g) \tag{28}
\end{equation*}
$$

By $n \geq 8$ and (27),(28), we can obtain a contradiction.
Thus, by Lemma $2.7, F=((b+1) G+(a-b-1)) /(b G+(a-b))$, where $a(\neq 0), b$ are two constants. By using the same argument as in Lemma 2.8 combining f and g are two transcendental entire functions, we get $f \equiv g$.This completes the proof of Theorem 1.5.

Similarly, we can use the analogue method of Theorem 1.5 to prove the Theorem 1.6-1.8 easily. Here we omit the details.

4 Remarks

It follows from the proof of Theorem 1.1-1.8 that if " z " is replaced by " $a(z)$ " in the Theorem 1.1-1.8, where $a(z)$ is a meromorphic function such that $a \not \equiv 0, \infty$ and $T(r, a)=o\{T(r, f), T(r, g)\}$, then the conclusions of Theorem 1.1-1.8 still hold. So we obtain the following results.

Theorem 4.1 Let f and g be two transcendental meromorphic functions and $n \geq 12, k \geq 3$ be two positive integers. If $E_{k}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{k}\left(a(z), g^{n}(g-\right.$ 1) $\left.g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 4.2 Let f and g be two transcendental meromorphic functions and $n(\geq 14)$ be a positive integer. If $E_{2}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{2}\left(a(z), g^{n}(g-1) g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 4.3 Let f and g be two transcendental meromorphic functions and $n(\geq 22)$ be a positive integer. If $E_{1}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{1}\left(a(z), g^{n}(g-1) g^{\prime}\right)$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 4.4 Let f and g be two transcendental meromorphic functions and $n(\geq 27)$ be a positive integer.If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $a(z) I M$ and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n+1}$, then $f \equiv g$.

Theorem 4.5 Let f and g be two transcendental entire functions and $n \geq$ $8, k \geq 3$ be two positive integers. If $E_{k}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{k}\left(a(z), g^{n}(g-\right.$ 1) g^{\prime}, then $f \equiv g$.

Theorem 4.6 Let f and g be two transcendental entire functions and $n \geq 11$ be a positive integer. If $E_{2}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{2}\left(a(z), g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem 4.7 Let f and g be two transcendental entire functions and $n \geq 18$ be a positive integer. If $E_{1}\left(a(z), f^{n}(f-1) f^{\prime}\right)=E_{1}\left(a(z), g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem 4.8 Let f and g be two transcendental entire functions and $n \geq 22$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $a(z) I M$, then $f \equiv g$.

Obviously, we can use the analogue method of Theorem 1.1-1.8 to prove the Theorem 4.1-4.8 easily. Here, we omit them.

5 Acknowledgements

The author want to thanks the referee for his/her thorough review. The research was supported by the Technological Research Projects of Jiangxi Province ([2008]147) and Research Projects of Jingdezhen Ceramic Institute ([2009]85).

References

[1] C.-Y. Fang, M.-L. Fang, Uniqueness of meromorphic functions and differential polynomials, Comput.Math.Appl. 44(2002), No.5-6,607-617.
[2] M.-L.Fang, W.Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J.Pure Appl. Math. 32. (2001), No.9, 1343-1348.
[3] M.-L. Fang, H. Guo, On unique range sets for meromorphic or entire functions, Acta Mathematica Sinica, New Series 14(4)(1998), 569-576.
[4] G.G. Gundersen, Meromorphic functions that share three or four values, J.London.Math.Soc. 20(1979), 457-466.
[5] I. Lahiri, N. Mandal, Uniqueness of nonlinear differential polynomials sharing simple and double 1-points, International Journal of Mathematics and Mathematical Sciences, vol.2005(2005), no.12, pp.1933-1942.
[6] I. Lahiri, R. Pal, Non-linear differential polynomials sharing 1-points, Bull.Korean.Math.Soc. 43(2006), No.1,161-168.
[7] I. Lahiri, A. Sarkar, Uniqueness of a meromorphic function and its derivative, J.Inequal.Pure Appl.Math. 5(2004), No.1, Article 20 (electronic).
[8] P. Li, C.C. Yang, On two meromorphic functions that share pairs of small functions, Complex Variables 32 (1997), 177-190.
[9] R. Nevanlinna, Le théorème de Picard-Borel et la theéorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
[10] C.C. Yang, On deficiencies of differential polynomials II, Math.Z. 125 (1972), 107-112.
[11] L. Yang, Value distribution theory.Springer-Verlag. Berlin(1993).
[12] H.-X. Yi, C.C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing. (1995).

Hong-Yan Xu
Department of Informatics and Engineering
Jingdezhen Ceramic Institute(XiangHu XiaoQu)
Jingdezhen,Jiangxi 333403, China
e-mail: xhyhhh@126.com

[^0]: ${ }^{1}$ Received 17 April, 2009
 Accepted for publication (in revised form) 27 October, 2009

