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Abstract

Here we generalise, improve and unify the fixed point theorems due to
Delbosco[1], Skof[8], Khan et al.[5] and several other fixed point theorems
for a single map and common fixed point theorems ([6], [7]) for a pair of
mappings in a setting of 2-metric space.
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1 Introduction

Delbosco[1] and Skof[8] have established a fixed point theorem for self maps
of complete metric spaces by introducing a class Φ of functions φ : [0,∞) →
[0,∞) satisfying the following conditions:

(i) φ : [0,∞) → [0,∞) is continuous in R+ and strictly increasing in R+.
(ii) φ (t) = 0 if and only if t = 0.
(iii) φ (t) ≥ Mtµ for every t > 0, µ > 0 are constants.
In 1977, F.Skof[8] gave the following theorem.

Theorem 1 Let T be a self map of a complete metric space (X, d) and φ ∈ Φ
such that for every x, y ∈ X

(1) φ (d (Tx, Ty)) ≤ aφ (d (x, y)) + bφ (d (x, Tx)) + cφ (d (y, Ty))

where a, b and c are three nonnegative constants satisfying a+b+c < 1. Then
T has a unique fixed point.
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In 1984, Khan et al.[5] generalised the Theorem 1 by using much extensive
condition than (1) and removed the condition (iii). They proved the following
theorem as follows.

Theorem 2 Let T be a self map of a complete metric space (X, d) and φ

satisfying (i) and (ii). Furthermore , let a, b, c be three decreasing funtions
from R+ into [0, 1) such that a(t) + 2b(t) + c(t) < 1 for every t > 0. Suppose
T satisfies the folowing condition

φ (d (Tx, Ty)) ≤ a (d (x, y)) φ (d (x, y)) + b (d (x, y)) [φ (d (x, Tx))

+φ (d (y, Ty))] + c (d (x, y)) min {φ (d (x, Ty)) ,(2)

φ (d (x, Ty))}

where x, y ∈ X and x 6= y. Then T has a unique fixed point.

We first give a 2-metric analogue of Theorem 2. In this connection we need
some preliminary ideas about 2-metric space.

2 Preliminaries

In Sixties, Gähler([2]-[3]) first defined 2-metric space as follows: Let X be a
non empty set. A real valued function d on X×X×X is said to be a 2-metric
on X if

(I) given distinct elements x,y of X, there exists an element z of X such that
d(x, y, z) 6= 0

(II) d(x, y, z) = 0 when at least two of x, y, z are equal,

(III) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z in X, and

(IV) d(x, y, z) ≤ d(x, y, w) + d(x, w, z) + d(w, y, z) for all x, y, z, w in X.

When d is a 2-metric on X, then the ordered pair (X, d) is called a 2-metric
space.

Definition 1 A sequence {xn} in X is said to be a Cauchy sequence if for
each a ∈ X, lim d(xn, xm, a) = 0 as n, m → ∞.

Definition 2 A sequence {xn} in X is convergent to an element x ∈ X if for
each a ∈ X, lim

n→∞

d(xn, x, a) = 0

Definition 3 A complete 2-metric space is one in which every Cauchy se-
quence in X converges to an element of X.
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3 Main Results

Theorem 3 Let T be a self map of a complete 2-metric space (X, d) and φ

satisfying (i) and (ii). Furthermore , let a, b, c be three decreasing funtions
from R+ into [0, 1) such that a(t) + 2b(t) + c(t) < 1 for every t > 0. Suppose
T satisfies the folowing condition

φ (d (Tx, Ty, u)) ≤ a (d (x, y, u)) φ (d (x, y, u))

+b (d (x, y, u)) [φ (d (x, Tx, u)) + φ (d (y, Ty, u))](3)

+c (d (x, y, u)) min {φ (d (x, Ty, u)) , φ (d (y, Tx, u))}

where x, y, u ∈ X, each two of x, y and u are distinct. Then T has a unique
fixed point.

Proof. Let x0 ∈ X be arbitrary.
Define xn+1 = Txn ; n = 0, 1, 2, ..., also let αn = d (xn, xn+1, u) for n =
0, 1, 2, ...; and βn = φ (αn). Then we have

βn+1 = φ (αn+1)

= φ (d (xn+1, xn+2, u))

= φ (d (Txn, Txn+1, u))

≤ a (d (xn, xn+1, u)) φ (d (xn, xn+1, u))

+b (d (xn, xn+1, u)) [φ (d (xn, Txn, u)) + φ (d (xn+1, Txn+1, u))]

+c (d (xn, xn+1, u)) min {φ (d (xn, Txn+1, u)) ,

φ (d (xn+1, Txn, u))}

= a (d (xn, xn+1, u)) φ (d (xn, xn+1, u))

+b (d (xn, xn+1, u)) [φ (d (xn, xn+1, u)) + φ (d (xn+1, xn+2, u))]

+c (d (xn, xn+1, u)) min {φ (d (xn, xn+2, u)) , φ (d (xn+1, xn+1, u))}

= a (αn) φ (αn) + b (αn) [φ (αn) + φ (αn+1)]

(4) implies βn+1 ≤
a (αn) + b (αn)

1 − b (αn)
βn

Since a(t) + 2b(t) + c(t) < 1, a (αn) + 2b (αn) < 1 which implies

a (αn) + b (αn)

1 − b (αn)
< 1

If we set

r =
a (αn) + b (αn)

1 − b (αn)
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then from (4) we get βn+1 ≤ rβn where r < 1. So βn ≤ rnβ0, such that
βn → 0 as n → ∞. Since βn < βn−1 and φ is strictly increasing, αn < αn−1,
n = 1, 2, ... Thus αn → α (say). Then βn = φ (αn) → φ (α), since φ is
continuous. So φ (α) = 0 and hence by (ii), α = 0 implies αn → 0.
We now show that {xn} is a Cauchy sequence. We prove it by contradiction.
Then for every positive integer ε and for every positive integer k there exist
two positive integers m(k) and n(k) such that

k < n(k) < m(k) and d
(

xm(k), xn(k), u
)

> ε(5)

For each integer k, let m(k) be the least integer for which m(k) > n(k) > k,

d
(

xn(k), xm(k)−1, u
)

≤ ε and d
(

xn(k), xm(k), u
)

> ε

Then we have

ε < d
(

xn(k), xm(k), u
)

≤ d
(

xn(k), xm(k), xm(k)−1

)

(6)

+ d
(

xn(k), xm(k)−1, u
)

+ d
(

xm(k)−1, xm(k), u
)

Now by (3), we have

φ
(

d
(

xn(k), xm(k), xm(k)−1

))

= φ
(

d
(

Txn(k)−1, Txm(k)−1, xm(k)−1

))

≤ a
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

φ
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

+b
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

[

φ
(

d
(

xn(k)−1, Txn(k)−1, xm(k)−1

))

+φ
(

d
(

xm(k)−1, Txm(k)−1, xm(k)−1

))]

+c
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

min
{

φ
(

d
(

xn(k)−1, Txm(k)−1, xm(k)−1

))

,

φ
(

d
(

xm(k)−1, Txn(k)−1, xm(k)−1

))}

= a
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

φ
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

+b
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

[

φ
(

d
(

xn(k)−1, xn(k), xm(k)−1

))

+φ
(

d
(

xm(k)−1, xm(k), xm(k)−1

))]

+c
(

d
(

xn(k)−1, xm(k)−1, xm(k)−1

))

min
{

φ
(

d
(

xn(k)−1, xm(k), xm(k)−1

))

,

φ
(

d
(

xm(k)−1, xn(k), xm(k)−1

))}

= 0
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which implies by (ii)

d
(

xn(k), xm(k), xm(k)−1

)

= 0(7)

So by (6) and (7) we get, ε < d
(

xn(k), xm(k), u
)

≤ 0 + ε + αm(k)−1. Since {αn}
converges to 0, d

(

xn(k), xm(k), u
)

→ ε as k → ∞. Again

d
(

xn(k)+1, xm(k), u
)

≤ d
(

xn(k)+1, xm(k), xn(k)

)

+ d
(

xn(k)+1, xn(k), u
)

+d
(

xn(k), xm(k), u
)

= αn(k) + d
(

xn(k), xm(k), u
)

,

since d
(

xn(k)+1, xm(k), xn(k)

)

can be made 0 as we have done in equation (7).
So d

(

xn(k)+1, xm(k), u
)

≤ αn(k) + d
(

xn(k), xm(k), u
)

→ ε as k → ∞. In the
similar way

d
(

xn(k)+2, xm(k), u
)

≤ d
(

xn(k)+2, xm(k), xn(k)+1

)

+ d
(

xn(k)+2, xn(k)+1, u
)

+d
(

xn(k)+1, xm(k), u
)

= αn(k)+1 + d
(

xn(k)+1, xm(k), u
)

,

since d
(

xn(k)+2, xm(k), xn(k)+1

)

can be made 0 as we have done in equation (7).
So d

(

xn(k)+2, xm(k), u
)

≤ αn(k)+1 + d
(

xn(k)+1, xm(k), u
)

→ ε as k → ∞ and in
similar fashion we can show d

(

xn(k)+2, xm(k)+1, u
)

→ ε as k → ∞. Using (3),
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we deduce that

φ
(

d
(

xn(k)+2, xm(k)+1, u
))

= φ
(

d
(

Txn(k)+1, Txm(k), u
))

≤ a
(

d
(

xn(k)+1, xm(k), u
))

φ
(

d
(

xn(k)+1, xm(k), u
))

+b
(

d
(

xn(k)+1, xm(k), u
))

[

φ
(

d
(

xn(k)+1, Txn(k)+1, u
))

+φ
(

d
(

xm(k), Txm(k), u
))]

+c
(

d
(

xn(k)+1, xm(k), u
))

min
{

φ
(

d
(

xn(k)+1, Txm(k), u
))

,

φ
(

d
(

xm(k), Txn(k)+1, u
))}

= a
(

d
(

xn(k)+1, xm(k), u
))

φ
(

d
(

xn(k)+1, xm(k), u
))

+b
(

d
(

xn(k)+1, xm(k), u
))

[

φ
(

d
(

xn(k)+1, xn(k)+2, u
))

+φ
(

d
(

xm(k), xm(k)+1, u
))]

+c
(

d
(

xn(k)+1, xm(k), u
))

min
{

φ
(

d
(

xn(k)+1, xm(k)+1, u
))

,

φ
(

d
(

xm(k), xn(k)+2, u
))}

Letting k → ∞, we get

φ (ε) ≤ a (ε) φ (ε) + c (ε) φ (ε) = {a (ε) + c (ε)}φ (ε) < φ (ε)

which is a contradiction. So {xn} is a Cauchy sequence. Since X is complete
2-metric space, lim

n
xn = z ∈ X. Now we shall show that Tz = z.

Again using (3) we have

φ
(

d
(

xn(k)+1, T z, u
))

= φ
(

d
(

Txn(k), T z, u
))

≤ a
(

d
(

xn(k), z, u
))

φ
(

d
(

xn(k), z, u
))

+b
(

d
(

xn(k), z, u
)) [

φ
(

d
(

xn(k), Txn(k), u
))

+φ (d (z, Tz, u))] + c
(

d
(

xn(k), z, u
))

min
{

φ
(

d
(

xn(k), T z, u
))

, φ
(

d
(

z, Txn(k), u
))}
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implies φ
(

d
(

xn(k)+1, T z, u
))

≤ a
(

d
(

xn(k), z, u
))

φ
(

d
(

xn(k)+1, z, u
))

+b
(

d
(

xn(k), z, u
))

[

φ
(

d
(

xn(k), xn(k)+1, u
))

+φ (d (z, Tz, u))]

+c
(

d
(

xn(k), z, u
))

min
{

φ
(

d
(

xn(k), T z, u
))

,

φ
(

d
(

z, xn(k)+1, u
))}

Passing limit as n → ∞ on bothsides of the inequality we get,
φ (d (z, Tz, u)) = 0 which gives by (ii), d (z, Tz, u) = 0 i.e. Tz = z. Next let w

be another fixed point of T . Then

φ (d (z, w, u)) = φ (d (Tz, Tw, u))

≤ a (d (z, w, u)) φ (d (z, w, u))

+b (d (z, w, u)) [φ (d (z, Tz, u)) + φ (d (w, Tw, u))]

+c (d (z, w, u)) min {φ (d (z, Tw, u)) ,

φ (d (w, Tz, u))}

= [a (d (z, w, u)) + c (d (z, w, u))] φ (d (z, w, u))

< φ (d (z, w, u)) , since a (t) + c (t) < 1

which is a contradiction leads to the fact that z = w and thus completes the
proof.

Next we verify the Theorem (3) by a proper example.
Example 1. Let X = R+×R+ and d be a 2-metric which expresses d (x, y, u)
as the area of the Euclidean triangle with vertices x = (x1, x2), y = (y1, y2)
and u = (u1, u2). Then (X, d) is a complete 2-metric space[6].
Now take x = (1, 0), y = (2, 0) and u = (1, 1) also let T : X → X be a
mapping such that

Tx = (2, 0) where x = (1, 0) ∈ X and

Ty = (3, 0) where y = (2, 0) ∈ X

Now setting a(t) = 2
5 , b(t) = 1

5 , c(t) = 1
6 and φ (t) = t2; t ∈ R+. We observe

that all the conditions of Theorem (3) satisfied except the condition (3). Also
it is very clear that T has no fixed point in X in this case.

Next we establish a common fixed point theorem in this line.

Theorem 4 Let S and T be self mappings of a complete 2-metric space (X, d)
and φ satisfying (i) and (ii). Furthermore , let a, b, c be three decreasing
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funtions from R+ into [0, 1) such that a(t) + 2b(t) + c(t) < 1 for every t > 0.
Suppose S and T satisfy the folowing condition

φ (d (Sx, Ty, u)) ≤ a (d (x, y, u)) φ (d (x, y, u))

+b (d (x, y, u)) [φ (d (x, Sx, u)) + φ (d (y, Ty, u))](8)

+c (d (x, y, u)) min {φ (d (x, Ty, u)) ,

φ (d (y, Sx, u))}

where x, y, u ∈ X, each two of x, y and u are distinct. Then S and T have a
unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Define x2n = Sx2n−1 and x2n+1 = Tx2n;
n = 0, 1, 2, ..., also let αn = d (xn, xn+1, u) for n = 0, 1, 2, ...; and βn = φ (αn).
We also assume that αn > 0 for every n. Now for an even integer n, we have

βn = φ (αn)

= φ (d (xn, xn+1, u))

= φ (d (Sxn−1, Txn, u))

≤ a (d (xn−1, xn, u)) φ (d (xn−1, xn, u))

+b (d (xn−1, xn, u)) [φ (d (xn−1, Sxn−1, u)) + φ (d (xn, Txn, u))]

+c (d (xn−1, xn, u)) min {φ (d (xn−1, Txn, u)) , φ (d (xn, Sxn−1, u))}

= a (d (xn−1, xn, u)) φ (d (xn−1, xn, u))

+b (d (xn−1, xn, u)) [φ (d (xn−1, xn, u)) + φ (d (xn, xn+1, u))]

+c (d (xn−1, xn, u)) min {φ (d (xn−1, xn+1, u)) , φ (d (xn, xn, u))}

= a (αn−1) φ (αn−1) + b (αn−1) [φ (αn−1) + φ (αn)]

implies βn ≤
a (αn−1) + b (αn−1)

1 − b (αn−1)
βn−1(9)

Since a(t) + 2b(t) + c(t) < 1, a (αn−1) + 2b (αn−1) < 1 which implies

a (αn−1) + b (αn−1)

1 − b (αn−1)
< 1

If we set

r =
a (αn−1) + b (αn−1)

1 − b (αn−1)

then from (3.9) we get βn ≤ rβn−1 where r < 1. So βn ≤ rnβ0, such that
βn → 0 as n → ∞. Since βn < βn−1 and φ is strictly increasing, αn < αn−1,
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n = 1, 2, ... Thus αn → α (say). Then βn = φ (αn) → φ (α), since φ is
continuous. So φ (α) = 0 and hence by (ii), α = 0 implies αn → 0.
We now show that {xn} is a Cauchy sequence. We prove it by contradiction.
Then for every positive integer ε and for every positive integer k there exist
two positive integers 2p(k) and 2q(k) such that

k < 2q(k) < 2p(k) and d
(

x2p(k), x2q(k), u
)

> ε(10)

For each integer k, let 2p(k) be the least integer for which 2p(k) > 2q(k) > k,

d
(

x2q(k), x2p(k)−2, u
)

≤ ε and d
(

x2q(k), x2p(k), u
)

> ε

Then we have

ε < d
(

x2q(k), x2p(k), u
)

≤ d
(

x2q(k), x2p(k), x2p(k)−2

)

+ d
(

x2q(k), x2p(k)−2, u
)

+d
(

x2p(k)−2, x2p(k), u
)

Since we can easily show that d
(

x2q(k), x2p(k), x2p(k)−2

)

= 0 as we have shown
in equation (7) of Theorem (3).

ε < d
(

x2q(k), x2p(k), u
)

≤ d
(

x2q(k), x2p(k)−2, u
)

+ d
(

x2p(k)−2, x2p(k), u
)

≤ d
(

x2q(k), x2p(k)−2, u
)

+d
(

x2p(k)−2, x2p(k), x2p(k)−1

)

+d
(

x2p(k)−2, x2p(k)−1, u
)

+ d
(

x2p(k)−1, x2p(k), u
)

Again we can show like equation (7) of Theorem (3),
d

(

x2p(k)−2, x2p(k), x2p(k)−1

)

= 0. Thus

ε < d
(

x2q(k), x2p(k), u
)

≤ ε + 0 + α2p(k)−2 + α2p(k)−1(11)

Since {αn} converges to 0, d
(

x2q(k), x2p(k), u
)

→ ε.

Now d
(

x2q(k), x2p(k)+1, u
)

≤ d
(

x2q(k), x2p(k)+1, x2p(k)

)

+d
(

x2q(k), x2p(k), u
)

+d
(

x2p(k), x2p(k)+1, u
)

≤ d
(

x2q(k), x2p(k), u
)

+ α2p(k)

since we can show that d
(

x2q(k), x2p(k)+1, x2p(k)

)

= 0 as we have done in equa-
tion (7) of Theorem (3).

So d
(

x2q(k), x2p(k)+1, u
)

→ ε as k → ∞(12)
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Again

d
(

x2q(k), x2p(k)+2, u
)

≤ d
(

x2q(k), x2p(k)+2, x2p(k)+1

)

+ d
(

x2q(k), x2p(k)+1, u
)

+d
(

x2p(k)+1, x2p(k)+2, u
)

≤ d
(

x2q(k), x2p(k)+1, u
)

+ d
(

x2p(k)+1, x2p(k)+2, u
)

,

since d
(

x2q(k), x2p(k)+2, x2p(k)+1

)

= 0 for similar

reason as of equation (7) of Theorem (3)

≤ d
(

x2q(k), x2p(k)+1, x2p(k)

)

+ d
(

x2q(k), x2p(k), u
)

+d
(

x2p(k), x2p(k)+1, u
)

+ d
(

x2p(k)+1, x2p(k)+2, u
)

≤ 0 + d
(

x2q(k), x2p(k), u
)

+ α2p(k) + α2p(k)+1

which gives

d
(

x2q(k), x2p(k)+2, u
)

→ ε as k → ∞(13)

Similarly, d
(

x2q(k)+1, x2p(k)+2, u
)

→ ε as k → ∞(14)

Now from (8) we get

φ
(

d
(

x2p(k)+2, x2q(k)+1, u
))

= φ
(

d
(

Sx2p(k+)1, Tx2q(k), u
))

≤ a
(

d
(

x2p(k)+1, x2q(k), u
))

φ
(

d
(

x2p(k)+1, x2q(k), u
))

+b
(

d
(

x2p(k)+1, x2q(k), u
))

[

φ
(

d
(

x2p(k)+1, Sx2p(k)+1, u
))

+φ
(

d
(

x2q(k), Tx2q(k), u
))]

+c
(

d
(

x2p(k)+1, x2q(k), u
))

min
{

φ
(

d
(

x2p(k)+1, Tx2q(k), u
))

,

φ
(

d
(

x2q(k), Sx2p(k)+1, u
))}

Passing limit as k → ∞ we get by (12), (13) and (14),

φ (ε) ≤ a (ε) φ (ε) + c (ε) φ (ε) = {a (ε) + c (ε)}φ (ε) < φ (ε)
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which is a contradiction. So {xn} is a Cauchy sequence. Since X is complete
2-metric space, lim

n
xn = z ∈ X. Again using (8) we have

φ
(

d
(

x2p(k)+2, T z, u
))

= φ
(

d
(

Sx2p(k)+1, T z, u
))

≤ a
(

d
(

x2p(k)+1, z, u
))

φ
(

d
(

x2p(k)+1, z, u
))

+b
(

d
(

x2p(k)+1, z, u
))

[

φ
(

d
(

x2p(k)+1, Sx2p(k)+1, u
))

+φ (d (z, Tz, u))] + c
(

d
(

x2p(k)+1, z, u
))

min
{

φ
(

d
(

x2p(k)+1, T z, u
))

,

φ
(

d
(

z, Sx2p(k)+1, u
))}

Taking limit as k → ∞ we get φ (d (z, Tz, u)) = 0 implies d (z, Tz, u) = 0 by
property (ii). Hence Tz = z. Similarly it can be shown that Sz = z. So S

and T have a common fixed point z ∈ X. We now show that z is the unique
common fixed point of S and T . If not, then let w be another fixed point of
S and T . Then

φ (d (z, w, u)) = φ (d (Sz, Tw, u))

≤ a (d (z, w, u)) φ (d (z, w, u))

+b (d (z, w, u)) [φ (d (z, Sz, u)) + φ (d (w, Tw, u))]

+c (d (z, w, u)) min {φ (d (z, Tw, u)) ,

φ (d (w, Sz, u))}

= [a (d (z, w, u)) + c (d (z, w, u))]φ (d (z, w, u))

< φ (d (z, w, u)) , since a (t) + c (t) < 1

which is a contradiction. Hence z = w and thus completes the proof.

Remark 1. In the same way we can verify the Theorem (4) by setting
S(1, 0) = (2, 0) and T (2, 0) = (3, 0) taking all the values same on the complete
2-metric space (X, d) as described in Example 1.
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