A generalisation of fixed point theorems in a 2-metric space ${ }^{1}$

Mantu Saha, Debashis Dey and Anamika Ganguly

Abstract

Here we generalise, improve and unify the fixed point theorems due to Delbosco[1], Skof[8], Khan et al.[5] and several other fixed point theorems for a single map and common fixed point theorems ([6], [7]) for a pair of mappings in a setting of 2-metric space.

2000 Mathematics Subject Classification: 47H10, 54H25.
Key words and phrases: metric space, 2-metric space, fixed point, common fixed point

1 Introduction

Delbosco[1] and Skof[8] have established a fixed point theorem for self maps of complete metric spaces by introducing a class Φ of functions $\phi:[0, \infty) \rightarrow$ $[0, \infty)$ satisfying the following conditions:
(i) $\phi:[0, \infty) \rightarrow[0, \infty)$ is continuous in R^{+}and strictly increasing in R^{+}.
(ii) $\phi(t)=0$ if and only if $t=0$.
(iii) $\phi(t) \geq M t^{\mu}$ for every $t>0, \mu>0$ are constants.

In 1977, F.Skof[8] gave the following theorem.
Theorem 1 Let T be a self map of a complete metric space (X, d) and $\phi \in \Phi$ such that for every $x, y \in X$

$$
\begin{equation*}
\phi(d(T x, T y)) \leq a \phi(d(x, y))+b \phi(d(x, T x))+c \phi(d(y, T y)) \tag{1}
\end{equation*}
$$

where a, b and c are three nonnegative constants satisfying $a+b+c<1$. Then T has a unique fixed point.

[^0]In 1984, Khan et al.[5] generalised the Theorem 1 by using much extensive condition than (1) and removed the condition (iii). They proved the following theorem as follows.

Theorem 2 Let T be a self map of a complete metric space (X, d) and ϕ satisfying (i) and (ii). Furthermore, let a, b, c be three decreasing funtions from R^{+}into $[0,1)$ such that $a(t)+2 b(t)+c(t)<1$ for every $t>0$. Suppose T satisfies the folowing condition

$$
\begin{align*}
\phi(d(T x, T y)) \leq & a(d(x, y)) \phi(d(x, y))+b(d(x, y))[\phi(d(x, T x)) \\
& +\phi(d(y, T y))]+c(d(x, y)) \min \{\phi(d(x, T y)), \tag{2}\\
& \phi(d(x, T y))\}
\end{align*}
$$

where $x, y \in X$ and $x \neq y$. Then T has a unique fixed point.
We first give a 2 -metric analogue of Theorem 2. In this connection we need some preliminary ideas about 2-metric space.

2 Preliminaries

In Sixties, Gähler([2]-[3]) first defined 2-metric space as follows: Let X be a non empty set. A real valued function d on $X \times X \times X$ is said to be a 2-metric on X if
(I) given distinct elements x, y of X, there exists an element z of X such that $d(x, y, z) \neq 0$
(II) $d(x, y, z)=0$ when at least two of x, y, z are equal,
(III) $d(x, y, z)=d(x, z, y)=d(y, z, x)$ for all x, y, z in X, and
(IV) $d(x, y, z) \leq d(x, y, w)+d(x, w, z)+d(w, y, z)$ for all x, y, z, w in X.

When d is a 2-metric on X, then the ordered pair (X, d) is called a 2 -metric space.
Definition $1 A$ sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence if for each $a \in X, \lim d\left(x_{n}, x_{m}, a\right)=0$ as $n, m \rightarrow \infty$.

Definition $2 A$ sequence $\left\{x_{n}\right\}$ in X is convergent to an element $x \in X$ if for each $a \in X, \lim _{n \rightarrow \infty} d\left(x_{n}, x, a\right)=0$

Definition 3 A complete 2-metric space is one in which every Cauchy sequence in X converges to an element of X.

3 Main Results

Theorem 3 Let T be a self map of a complete 2-metric space (X, d) and ϕ satisfying (i) and (ii). Furthermore, let a, b, c be three decreasing funtions from R^{+}into $[0,1)$ such that $a(t)+2 b(t)+c(t)<1$ for every $t>0$. Suppose T satisfies the folowing condition

$$
\begin{align*}
\phi(d(T x, T y, u)) \leq & a(d(x, y, u)) \phi(d(x, y, u)) \\
& +b(d(x, y, u))[\phi(d(x, T x, u))+\phi(d(y, T y, u))] \tag{3}\\
& +c(d(x, y, u)) \min \{\phi(d(x, T y, u)), \phi(d(y, T x, u))\}
\end{align*}
$$

where $x, y, u \in X$, each two of x, y and u are distinct. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ be arbitrary.
Define $x_{n+1}=T x_{n} ; n=0,1,2, \ldots$, also let $\alpha_{n}=d\left(x_{n}, x_{n+1}, u\right)$ for $n=$ $0,1,2, \ldots$; and $\beta_{n}=\phi\left(\alpha_{n}\right)$. Then we have

$$
\begin{aligned}
\beta_{n+1}= & \phi\left(\alpha_{n+1}\right) \\
= & \phi\left(d\left(x_{n+1}, x_{n+2}, u\right)\right) \\
= & \phi\left(d\left(T x_{n}, T x_{n+1}, u\right)\right) \\
\leq & a\left(d\left(x_{n}, x_{n+1}, u\right)\right) \phi\left(d\left(x_{n}, x_{n+1}, u\right)\right) \\
& +b\left(d\left(x_{n}, x_{n+1}, u\right)\right)\left[\phi\left(d\left(x_{n}, T x_{n}, u\right)\right)+\phi\left(d\left(x_{n+1}, T x_{n+1}, u\right)\right)\right] \\
& +c\left(d\left(x_{n}, x_{n+1}, u\right)\right) \min \left\{\phi\left(d\left(x_{n}, T x_{n+1}, u\right)\right),\right. \\
& \left.\phi\left(d\left(x_{n+1}, T x_{n}, u\right)\right)\right\} \\
= & a\left(d\left(x_{n}, x_{n+1}, u\right)\right) \phi\left(d\left(x_{n}, x_{n+1}, u\right)\right) \\
& +b\left(d\left(x_{n}, x_{n+1}, u\right)\right)\left[\phi\left(d\left(x_{n}, x_{n+1}, u\right)\right)+\phi\left(d\left(x_{n+1}, x_{n+2}, u\right)\right)\right] \\
& +c\left(d\left(x_{n}, x_{n+1}, u\right)\right) \min \left\{\phi\left(d\left(x_{n}, x_{n+2}, u\right)\right), \phi\left(d\left(x_{n+1}, x_{n+1}, u\right)\right)\right\} \\
= & a\left(\alpha_{n}\right) \phi\left(\alpha_{n}\right)+b\left(\alpha_{n}\right)\left[\phi\left(\alpha_{n}\right)+\phi\left(\alpha_{n+1}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\text { implies } \quad \beta_{n+1} \leq \frac{a\left(\alpha_{n}\right)+b\left(\alpha_{n}\right)}{1-b\left(\alpha_{n}\right)} \beta_{n} \tag{4}
\end{equation*}
$$

Since $a(t)+2 b(t)+c(t)<1, \quad a\left(\alpha_{n}\right)+2 b\left(\alpha_{n}\right)<1$ which implies

$$
\frac{a\left(\alpha_{n}\right)+b\left(\alpha_{n}\right)}{1-b\left(\alpha_{n}\right)}<1
$$

If we set

$$
r=\frac{a\left(\alpha_{n}\right)+b\left(\alpha_{n}\right)}{1-b\left(\alpha_{n}\right)}
$$

then from (4) we get $\beta_{n+1} \leq r \beta_{n}$ where $r<1$. So $\beta_{n} \leq r^{n} \beta_{0}$, such that $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since $\beta_{n}<\beta_{n-1}$ and ϕ is strictly increasing, $\alpha_{n}<\alpha_{n-1}$, $n=1,2, \ldots$ Thus $\alpha_{n} \rightarrow \alpha$ (say). Then $\beta_{n}=\phi\left(\alpha_{n}\right) \rightarrow \phi(\alpha)$, since ϕ is continuous. So $\phi(\alpha)=0$ and hence by (ii), $\alpha=0$ implies $\alpha_{n} \rightarrow 0$.
We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence. We prove it by contradiction. Then for every positive integer ϵ and for every positive integer k there exist two positive integers $m(k)$ and $n(k)$ such that

$$
\begin{equation*}
k<n(k)<m(k) \text { and } d\left(x_{m(k)}, x_{n(k)}, u\right)>\epsilon \tag{5}
\end{equation*}
$$

For each integer k, let $m(k)$ be the least integer for which $m(k)>n(k)>k$,

$$
d\left(x_{n(k)}, x_{m(k)-1}, u\right) \leq \epsilon \text { and } d\left(x_{n(k)}, x_{m(k)}, u\right)>\epsilon
$$

Then we have

$$
\begin{align*}
\epsilon & <d\left(x_{n(k)}, x_{m(k)}, u\right) \\
& \leq d\left(x_{n(k)}, x_{m(k)}, x_{m(k)-1}\right) \tag{6}\\
& +d\left(x_{n(k)}, x_{m(k)-1}, u\right)+d\left(x_{m(k)-1}, x_{m(k)}, u\right)
\end{align*}
$$

Now by (3), we have

$$
\begin{aligned}
\phi\left(d\left(x_{n(k)}, x_{m(k)}, x_{m(k)-1}\right)\right)= & \phi\left(d\left(T x_{n(k)-1}, T x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
\leq & a\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& \phi\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& +b\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& {\left[\phi\left(d\left(x_{n(k)-1}, T x_{n(k)-1}, x_{m(k)-1}\right)\right)\right.} \\
& \left.+\phi\left(d\left(x_{m(k)-1}, T x_{m(k)-1}, x_{m(k)-1}\right)\right)\right] \\
& +c\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)-1}, T x_{m(k)-1}, x_{m(k)-1}\right)\right),\right. \\
& \left.\phi\left(d\left(x_{m(k)-1}, T x_{n(k)-1}, x_{m(k)-1}\right)\right)\right\} \\
= & a\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& \phi\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& +b\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& {\left[\phi\left(d\left(x_{n(k)-1}, x_{n(k)}, x_{m(k)-1}\right)\right)\right.} \\
& \left.+\phi\left(d\left(x_{m(k)-1}, x_{m(k)}, x_{m(k)-1}\right)\right)\right] \\
& +c\left(d\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)-1}, x_{m(k)}, x_{m(k)-1}\right)\right),\right. \\
& \left.\phi\left(d\left(x_{m(k)-1}, x_{n(k)}, x_{m(k)-1}\right)\right)\right\} \\
= & 0
\end{aligned}
$$

which implies by (ii)

$$
\begin{equation*}
d\left(x_{n(k)}, x_{m(k)}, x_{m(k)-1}\right)=0 \tag{7}
\end{equation*}
$$

So by (6) and (7) we get, $\epsilon<d\left(x_{n(k)}, x_{m(k)}, u\right) \leq 0+\epsilon+\alpha_{m(k)-1}$. Since $\left\{\alpha_{n}\right\}$ converges to $0, d\left(x_{n(k)}, x_{m(k)}, u\right) \rightarrow \epsilon$ as $k \rightarrow \infty$. Again

$$
\begin{aligned}
d\left(x_{n(k)+1}, x_{m(k)}, u\right) \leq & d\left(x_{n(k)+1}, x_{m(k)}, x_{n(k)}\right)+d\left(x_{n(k)+1}, x_{n(k)}, u\right) \\
& +d\left(x_{n(k)}, x_{m(k)}, u\right) \\
= & \alpha_{n(k)}+d\left(x_{n(k)}, x_{m(k)}, u\right),
\end{aligned}
$$

since $d\left(x_{n(k)+1}, x_{m(k)}, x_{n(k)}\right)$ can be made 0 as we have done in equation (7). So $d\left(x_{n(k)+1}, x_{m(k)}, u\right) \leq \alpha_{n(k)}+d\left(x_{n(k)}, x_{m(k)}, u\right) \rightarrow \epsilon$ as $k \rightarrow \infty$. In the similar way

$$
\begin{aligned}
d\left(x_{n(k)+2}, x_{m(k)}, u\right) \leq & d\left(x_{n(k)+2}, x_{m(k)}, x_{n(k)+1}\right)+d\left(x_{n(k)+2}, x_{n(k)+1}, u\right) \\
& +d\left(x_{n(k)+1}, x_{m(k)}, u\right) \\
= & \alpha_{n(k)+1}+d\left(x_{n(k)+1}, x_{m(k)}, u\right)
\end{aligned}
$$

since $d\left(x_{n(k)+2}, x_{m(k)}, x_{n(k)+1}\right)$ can be made 0 as we have done in equation (7). So $d\left(x_{n(k)+2}, x_{m(k)}, u\right) \leq \alpha_{n(k)+1}+d\left(x_{n(k)+1}, x_{m(k)}, u\right) \rightarrow \epsilon$ as $k \rightarrow \infty$ and in similar fashion we can show $d\left(x_{n(k)+2}, x_{m(k)+1}, u\right) \rightarrow \epsilon$ as $k \rightarrow \infty$. Using (3),
we deduce that

$$
\begin{aligned}
\phi\left(d\left(x_{n(k)+2}, x_{m(k)+1}, u\right)\right)= & \phi\left(d\left(T x_{n(k)+1}, T x_{m(k)}, u\right)\right) \\
\leq & a\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& \phi\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& +b\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& {\left[\phi\left(d\left(x_{n(k)+1}, T x_{n(k)+1}, u\right)\right)\right.} \\
& \left.+\phi\left(d\left(x_{m(k)}, T x_{m(k)}, u\right)\right)\right] \\
& +c\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)+1}, T x_{m(k)}, u\right)\right),\right. \\
& \left.\phi\left(d\left(x_{m(k)}, T x_{n(k)+1}, u\right)\right)\right\} \\
= & a\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& \phi\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& +b\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& {\left[\phi\left(d\left(x_{n(k)+1}, x_{n(k)+2}, u\right)\right)\right.} \\
& \left.+\phi\left(d\left(x_{m(k)}, x_{m(k)+1}, u\right)\right)\right] \\
& +c\left(d\left(x_{n(k)+1}, x_{m(k)}, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)+1}, x_{m(k)+1}, u\right)\right),\right. \\
& \left.\phi\left(d\left(x_{m(k)}, x_{n(k)+2}, u\right)\right)\right\}
\end{aligned}
$$

Letting $k \rightarrow \infty$, we get

$$
\phi(\epsilon) \leq a(\epsilon) \phi(\epsilon)+c(\epsilon) \phi(\epsilon)=\{a(\epsilon)+c(\epsilon)\} \phi(\epsilon)<\phi(\epsilon)
$$

which is a contradiction. So $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete 2 -metric space, $\lim _{n} x_{n}=z \in X$. Now we shall show that $T z=z$.
Again using (3) we have

$$
\begin{aligned}
\phi\left(d\left(x_{n(k)+1}, T z, u\right)\right)= & \phi\left(d\left(T x_{n(k)}, T z, u\right)\right) \\
\leq & a\left(d\left(x_{n(k)}, z, u\right)\right) \phi\left(d\left(x_{n(k)}, z, u\right)\right) \\
& +b\left(d\left(x_{n(k)}, z, u\right)\right)\left[\phi\left(d\left(x_{n(k)}, T x_{n(k)}, u\right)\right)\right. \\
& +\phi(d(z, T z, u))]+c\left(d\left(x_{n(k)}, z, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)}, T z, u\right)\right), \phi\left(d\left(z, T x_{n(k)}, u\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{implies} \phi\left(d\left(x_{n(k)+1}, T z, u\right)\right) \leq & a\left(d\left(x_{n(k)}, z, u\right)\right) \phi\left(d\left(x_{n(k)+1}, z, u\right)\right) \\
& +b\left(d\left(x_{n(k)}, z, u\right)\right) \\
& {\left[\phi\left(d\left(x_{n(k)}, x_{n(k)+1}, u\right)\right)\right.} \\
& +\phi(d(z, T z, u))] \\
& +c\left(d\left(x_{n(k)}, z, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{n(k)}, T z, u\right)\right),\right. \\
& \left.\phi\left(d\left(z, x_{n(k)+1}, u\right)\right)\right\}
\end{aligned}
$$

Passing limit as $n \rightarrow \infty$ on bothsides of the inequality we get, $\phi(d(z, T z, u))=0$ which gives by (ii), $d(z, T z, u)=0$ i.e. $T z=z$. Next let w be another fixed point of T. Then

$$
\begin{aligned}
\phi(d(z, w, u))= & \phi(d(T z, T w, u)) \\
\leq & a(d(z, w, u)) \phi(d(z, w, u)) \\
& +b(d(z, w, u))[\phi(d(z, T z, u))+\phi(d(w, T w, u))] \\
& +c(d(z, w, u)) \min \{\phi(d(z, T w, u)), \\
& \phi(d(w, T z, u))\} \\
= & {[a(d(z, w, u))+c(d(z, w, u))] \phi(d(z, w, u)) } \\
< & \phi(d(z, w, u)), \quad \text { since } a(t)+c(t)<1
\end{aligned}
$$

which is a contradiction leads to the fact that $z=w$ and thus completes the proof.

Next we verify the Theorem (3) by a proper example.
Example 1. Let $X=R^{+} \times R^{+}$and d be a 2-metric which expresses $d(x, y, u)$ as the area of the Euclidean triangle with vertices $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ and $u=\left(u_{1}, u_{2}\right)$. Then (X, d) is a complete 2 -metric space [6].
Now take $x=(1,0), y=(2,0)$ and $u=(1,1)$ also let $T: X \rightarrow X$ be a mapping such that

$$
\begin{aligned}
& T x=(2,0) \text { where } x=(1,0) \in X \text { and } \\
& T y=(3,0) \text { where } y=(2,0) \in X
\end{aligned}
$$

Now setting $a(t)=\frac{2}{5}, b(t)=\frac{1}{5}, c(t)=\frac{1}{6}$ and $\phi(t)=t^{2} ; t \in R^{+}$. We observe that all the conditions of Theorem (3) satisfied except the condition (3). Also it is very clear that T has no fixed point in X in this case.

Next we establish a common fixed point theorem in this line.
Theorem 4 Let S and T be self mappings of a complete 2-metric space (X, d) and ϕ satisfying (i) and (ii). Furthermore, let a, b, c be three decreasing
funtions from R^{+}into $[0,1)$ such that $a(t)+2 b(t)+c(t)<1$ for every $t>0$. Suppose S and T satisfy the folowing condition

$$
\begin{align*}
\phi(d(S x, T y, u)) \leq & a(d(x, y, u)) \phi(d(x, y, u)) \\
& +b(d(x, y, u))[\phi(d(x, S x, u))+\phi(d(y, T y, u))] \tag{8}\\
& +c(d(x, y, u)) \min \{\phi(d(x, T y, u)) \\
& \phi(d(y, S x, u))\}
\end{align*}
$$

where $x, y, u \in X$, each two of x, y and u are distinct. Then S and T have a unique common fixed point in X.

Proof. Let $x_{0} \in X$ be arbitrary. Define $x_{2 n}=S x_{2 n-1}$ and $x_{2 n+1}=T x_{2 n}$; $n=0,1,2, \ldots$, also let $\alpha_{n}=d\left(x_{n}, x_{n+1}, u\right)$ for $n=0,1,2, \ldots$; and $\beta_{n}=\phi\left(\alpha_{n}\right)$. We also assume that $\alpha_{n}>0$ for every n. Now for an even integer n, we have

$$
\begin{aligned}
\beta_{n}= & \phi\left(\alpha_{n}\right) \\
= & \phi\left(d\left(x_{n}, x_{n+1}, u\right)\right) \\
= & \phi\left(d\left(S x_{n-1}, T x_{n}, u\right)\right) \\
\leq & a\left(d\left(x_{n-1}, x_{n}, u\right)\right) \phi\left(d\left(x_{n-1}, x_{n}, u\right)\right) \\
& +b\left(d\left(x_{n-1}, x_{n}, u\right)\right)\left[\phi\left(d\left(x_{n-1}, S x_{n-1}, u\right)\right)+\phi\left(d\left(x_{n}, T x_{n}, u\right)\right)\right] \\
& +c\left(d\left(x_{n-1}, x_{n}, u\right)\right) \min \left\{\phi\left(d\left(x_{n-1}, T x_{n}, u\right)\right), \phi\left(d\left(x_{n}, S x_{n-1}, u\right)\right)\right\} \\
= & a\left(d\left(x_{n-1}, x_{n}, u\right)\right) \phi\left(d\left(x_{n-1}, x_{n}, u\right)\right) \\
& +b\left(d\left(x_{n-1}, x_{n}, u\right)\right)\left[\phi\left(d\left(x_{n-1}, x_{n}, u\right)\right)+\phi\left(d\left(x_{n}, x_{n+1}, u\right)\right)\right] \\
& +c\left(d\left(x_{n-1}, x_{n}, u\right)\right) \min \left\{\phi\left(d\left(x_{n-1}, x_{n+1}, u\right)\right), \phi\left(d\left(x_{n}, x_{n}, u\right)\right)\right\} \\
= & a\left(\alpha_{n-1}\right) \phi\left(\alpha_{n-1}\right)+b\left(\alpha_{n-1}\right)\left[\phi\left(\alpha_{n-1}\right)+\phi\left(\alpha_{n}\right)\right] \\
(9) \quad & \\
& \\
& \\
&
\end{aligned}
$$

Since $a(t)+2 b(t)+c(t)<1, \quad a\left(\alpha_{n-1}\right)+2 b\left(\alpha_{n-1}\right)<1$ which implies

$$
\frac{a\left(\alpha_{n-1}\right)+b\left(\alpha_{n-1}\right)}{1-b\left(\alpha_{n-1}\right)}<1
$$

If we set

$$
r=\frac{a\left(\alpha_{n-1}\right)+b\left(\alpha_{n-1}\right)}{1-b\left(\alpha_{n-1}\right)}
$$

then from (3.9) we get $\beta_{n} \leq r \beta_{n-1}$ where $r<1$. So $\beta_{n} \leq r^{n} \beta_{0}$, such that $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since $\beta_{n}<\beta_{n-1}$ and ϕ is strictly increasing, $\alpha_{n}<\alpha_{n-1}$,
$n=1,2, \ldots$ Thus $\alpha_{n} \rightarrow \alpha$ (say). Then $\beta_{n}=\phi\left(\alpha_{n}\right) \rightarrow \phi(\alpha)$, since ϕ is continuous. So $\phi(\alpha)=0$ and hence by (ii), $\alpha=0$ implies $\alpha_{n} \rightarrow 0$.
We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence. We prove it by contradiction. Then for every positive integer ϵ and for every positive integer k there exist two positive integers $2 p(k)$ and $2 q(k)$ such that

$$
\begin{equation*}
k<2 q(k)<2 p(k) \quad \text { and } \quad d\left(x_{2 p(k)}, x_{2 q(k)}, u\right)>\epsilon \tag{10}
\end{equation*}
$$

For each integer k, let $2 p(k)$ be the least integer for which $2 p(k)>2 q(k)>k$,

$$
d\left(x_{2 q(k)}, x_{2 p(k)-2}, u\right) \leq \epsilon \quad \text { and } \quad d\left(x_{2 q(k)}, x_{2 p(k)}, u\right)>\epsilon
$$

Then we have

$$
\begin{aligned}
\epsilon<d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \leq & d\left(x_{2 q(k)}, x_{2 p(k)}, x_{2 p(k)-2}\right)+d\left(x_{2 q(k)}, x_{2 p(k)-2}, u\right) \\
& +d\left(x_{2 p(k)-2}, x_{2 p(k)}, u\right)
\end{aligned}
$$

Since we can easily show that $d\left(x_{2 q(k)}, x_{2 p(k)}, x_{2 p(k)-2}\right)=0$ as we have shown in equation (7) of Theorem (3).

$$
\begin{aligned}
\epsilon<d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \leq & d\left(x_{2 q(k)}, x_{2 p(k)-2}, u\right)+d\left(x_{2 p(k)-2}, x_{2 p(k)}, u\right) \\
\leq & d\left(x_{2 q(k)}, x_{2 p(k)-2}, u\right) \\
& +d\left(x_{2 p(k)-2}, x_{2 p(k)}, x_{2 p(k)-1}\right) \\
& +d\left(x_{2 p(k)-2}, x_{2 p(k)-1}, u\right)+d\left(x_{2 p(k)-1}, x_{2 p(k)}, u\right)
\end{aligned}
$$

Again we can show like equation (7) of Theorem (3), $d\left(x_{2 p(k)-2}, x_{2 p(k)}, x_{2 p(k)-1}\right)=0$. Thus

$$
\begin{equation*}
\epsilon<d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \leq \epsilon+0+\alpha_{2 p(k)-2}+\alpha_{2 p(k)-1} \tag{11}
\end{equation*}
$$

Since $\left\{\alpha_{n}\right\}$ converges to $0, \quad d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \rightarrow \epsilon$.

$$
\text { Now } \begin{aligned}
d\left(x_{2 q(k)}, x_{2 p(k)+1}, u\right) \leq & d\left(x_{2 q(k)}, x_{2 p(k)+1}, x_{2 p(k)}\right) \\
& +d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \\
& +d\left(x_{2 p(k)}, x_{2 p(k)+1}, u\right) \\
\leq & d\left(x_{2 q(k)}, x_{2 p(k)}, u\right)+\alpha_{2 p(k)}
\end{aligned}
$$

since we can show that $d\left(x_{2 q(k)}, x_{2 p(k)+1}, x_{2 p(k)}\right)=0$ as we have done in equation (7) of Theorem (3).

$$
\begin{equation*}
\text { So } \quad d\left(x_{2 q(k)}, x_{2 p(k)+1}, u\right) \rightarrow \epsilon \quad \text { as } k \rightarrow \infty \tag{12}
\end{equation*}
$$

Again

$$
\begin{aligned}
d\left(x_{2 q(k)}, x_{2 p(k)+2}, u\right) \leq & d\left(x_{2 q(k)}, x_{2 p(k)+2}, x_{2 p(k)+1}\right)+d\left(x_{2 q(k)}, x_{2 p(k)+1}, u\right) \\
& +d\left(x_{2 p(k)+1}, x_{2 p(k)+2}, u\right) \\
\leq & d\left(x_{2 q(k)}, x_{2 p(k)+1}, u\right)+d\left(x_{2 p(k)+1}, x_{2 p(k)+2}, u\right), \\
& \text { since } d\left(x_{2 q(k)}, x_{2 p(k)+2}, x_{2 p(k)+1}\right)=0 \text { for similar } \\
& \quad \text { reason as of equation }(7) \text { of Theorem }(3) \\
\leq & d\left(x_{2 q(k)}, x_{2 p(k)+1}, x_{2 p(k)}\right)+d\left(x_{2 q(k)}, x_{2 p(k)}, u\right) \\
& +d\left(x_{2 p(k)}, x_{2 p(k)+1}, u\right)+d\left(x_{2 p(k)+1}, x_{2 p(k)+2}, u\right) \\
\leq & 0+d\left(x_{2 q(k)}, x_{2 p(k)}, u\right)+\alpha_{2 p(k)}+\alpha_{2 p(k)+1}
\end{aligned}
$$

which gives

$$
\begin{equation*}
d\left(x_{2 q(k)}, x_{2 p(k)+2}, u\right) \rightarrow \epsilon \quad \text { as } \quad k \rightarrow \infty \tag{13}
\end{equation*}
$$

Now from (8) we get

$$
\begin{aligned}
\phi\left(d\left(x_{2 p(k)+2}, x_{2 q(k)+1}, u\right)\right)= & \phi\left(d\left(S x_{2 p(k+) 1}, T x_{2 q(k)}, u\right)\right) \\
\leq & a\left(d\left(x_{2 p(k)+1}, x_{2 q(k)}, u\right)\right) \\
& \phi\left(d\left(x_{2 p(k)+1}, x_{2 q(k)}, u\right)\right) \\
& +b\left(d\left(x_{2 p(k)+1}, x_{2 q(k)}, u\right)\right) \\
& {\left[\phi\left(d\left(x_{2 p(k)+1}, S x_{2 p(k)+1}, u\right)\right)\right.} \\
& \left.+\phi\left(d\left(x_{2 q(k)}, T x_{2 q(k)}, u\right)\right)\right] \\
& +c\left(d\left(x_{2 p(k)+1}, x_{2 q(k)}, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{2 p(k)+1}, T x_{2 q(k)}, u\right)\right),\right. \\
& \left.\phi\left(d\left(x_{2 q(k)}, S x_{2 p(k)+1}, u\right)\right)\right\}
\end{aligned}
$$

Passing limit as $k \rightarrow \infty$ we get by (12), (13) and (14),

$$
\phi(\epsilon) \leq a(\epsilon) \phi(\epsilon)+c(\epsilon) \phi(\epsilon)=\{a(\epsilon)+c(\epsilon)\} \phi(\epsilon)<\phi(\epsilon)
$$

which is a contradiction. So $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete 2 -metric space, $\lim _{n} x_{n}=z \in X$. Again using (8) we have

$$
\begin{aligned}
\phi\left(d\left(x_{2 p(k)+2}, T z, u\right)\right)= & \phi\left(d\left(S x_{2 p(k)+1}, T z, u\right)\right) \\
\leq & a\left(d\left(x_{2 p(k)+1}, z, u\right)\right) \phi\left(d\left(x_{2 p(k)+1}, z, u\right)\right) \\
& +b\left(d\left(x_{2 p(k)+1}, z, u\right)\right) \\
& {\left[\phi\left(d\left(x_{2 p(k)+1}, S x_{2 p(k)+1}, u\right)\right)\right.} \\
& +\phi(d(z, T z, u))]+c\left(d\left(x_{2 p(k)+1}, z, u\right)\right) \\
& \min \left\{\phi\left(d\left(x_{2 p(k)+1}, T z, u\right)\right)\right. \\
& \left.\phi\left(d\left(z, S x_{2 p(k)+1}, u\right)\right)\right\}
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$ we get $\phi(d(z, T z, u))=0$ implies $d(z, T z, u)=0$ by property (ii). Hence $T z=z$. Similarly it can be shown that $S z=z$. So S and T have a common fixed point $z \in X$. We now show that z is the unique common fixed point of S and T. If not, then let w be another fixed point of S and T. Then

$$
\begin{aligned}
\phi(d(z, w, u))= & \phi(d(S z, T w, u)) \\
\leq & a(d(z, w, u)) \phi(d(z, w, u)) \\
& +b(d(z, w, u))[\phi(d(z, S z, u))+\phi(d(w, T w, u))] \\
& +c(d(z, w, u)) \min \{\phi(d(z, T w, u)), \\
& \phi(d(w, S z, u))\} \\
= & {[a(d(z, w, u))+c(d(z, w, u))] \phi(d(z, w, u)) } \\
< & \phi(d(z, w, u)), \quad \text { since } a(t)+c(t)<1
\end{aligned}
$$

which is a contradiction. Hence $z=w$ and thus completes the proof.
Remark 1. In the same way we can verify the Theorem (4) by setting $S(1,0)=(2,0)$ and $T(2,0)=(3,0)$ taking all the values same on the complete 2 -metric space (X, d) as described in Example 1.

References

[1] D. Delbosco, Un estensione di un teorema sul punto fisso di S.Reich, Rend. Sem. Mat. Univers. Politecn. Torino, 35(1976-77), 233-239.
[2] S.Gähler, 2-metric Raume and ihre topologische strucktur, Math.Nachr., 26(1963), 115-148.
[3] S.Gähler, Uber die unifromisieberkeit 2-metrischer Raume, Math.Nachr. 28(1965), 235-244.
[4] K.Iseki, Fixed point theorems in 2-metric space, Math.Seminar.Notes, Kobe Univ.,3(19765), 133-136.
[5] M.S.Khan, Fixed point theorems by altering distance between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9.
[6] Z. Liu, F. Zhang and J. Mao, Common Fixed Points for Compatible Mappings of Type (A), Bull. Malaysian Math. Soc.(Second Series) 22 (1999), 67-86.
[7] R.A. Rashwan andA.M.Sadeek, A common fixed point theorem in complete metric spaces, Southwest journal of pure and applied mathematics, 01(1996), 6-10.
[8] F.Skof, Teorema di punti fisso per applicazioni negli spazi meirici, Atti. Accad. Aci. Torino, 111 (1977), 323-329.

Mantu Saha
The University of Burdwan
Department of Mathematics
Burdwan-713104, West Bengal, India
e-mail: mantusaha@yahoo.com
Debahis Dey
Koshigram Union Institution,
Koshigram-713150, Burdwan,
West Bengal, India,
e-mail: debashisdey@yahoo.com
Anamika Ganguly
Balgona Saradamoni Balika Vidyalaya,
Balgona Station and Chati,
P.O. Bhatar, Dist. Burdwan, West Bengal India,
e-mail: anamika.simi@gmail.com

[^0]: ${ }^{1}$ Received 4 April, 2009
 Accepted for publication (in revised form) 2 December, 2009

