An Investigation on Minimal Surfaces of Multivalent Harmonic Functions ${ }^{1}$

Hakan Mete Taştan, Yaşar Polatog̃lu

Abstract

The projection on the base plane of a regular minimal surface S in \mathbb{R}^{3} with isothermal parameters defines a complex-valued univalent harmonic function $f=h(z)+\overline{g(z)}$. The aim of this paper is to obtain the distortion inequalities for the Weierstrass-Enneper parameters of the minimal surface for the harmonic multivalent functions for which analytic part is an m-valent convex function.

2000 Mathematics Subject Classification: Primary 30C99; Secondary $31 \mathrm{~A} 05,53 \mathrm{~A} 10,30 \mathrm{C} 55$
Key words and phrases: Minimal surface; multivalent harmonic function; convex function; distortion theorem; isothermal parametrization;

Weierstrass-Enneper representation.

1 Preliminaries

Minimal surfaces are most commonly known as those which have the minimum area amongst all other surfaces spanning a given closed curve in \mathbb{R}^{3}. Geometrically, the definition of a minimal surface is that the mean curvature H is zero at every point of the surface. If locally one can write the minimal surface in \mathbb{R}^{3} as $(x, y, \Phi(x, y))$, then the minimal surface equation $H=0$ is equivalent to

$$
\begin{equation*}
\left(1+\Phi_{y}^{2}\right) \Phi_{x x}-2 \Phi_{x} \Phi_{y} \Phi_{x y}+\left(1+\Phi_{x}^{2}\right) \Phi_{y y}=0 \tag{1}
\end{equation*}
$$

[^0]There exists a choice of isothermal parameters $(u, v) \in \Omega \subset \mathbb{R}^{2}$ so that the surface $X(u, v)=(x(u, v), y(u, v), \Phi(u, v)) \in \mathbb{R}^{3}$ satisfying the minimal surface equation is given by

$$
\begin{equation*}
E=\left|X_{u}\right|^{2}=\left|X_{v}\right|^{2}=G>0, \quad F=<X_{u}, X_{v}>=0, \quad \triangle_{(u, v)} X=0 \tag{2}
\end{equation*}
$$

where Δ denotes the Laplacian operator. The general solution of such an equation is called the local Weierstrass-Enneper representation [2].

A complex-valued function f which is harmonic in a simply connected domain $\mathbb{D} \subset \mathbb{C}$ has the canonical representation $f=h+\bar{g}$, where h and g are analytic in \mathbb{D} and $g\left(z_{0}\right)=0$ for some prescribed point $z_{0} \in \mathbb{D}$. According to a theorem of H. Lewy [1], f is locally univalent if and only if its Jacobian $\left(\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}\right)$ does not vanish. The function f is said to be sense-preserving if its Jacobian is positive. In this case then $h^{\prime}(z) \neq 0$ and the analytic function $w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$, called the second dilatation of f, has the property $|w(z)|<1$ for all $z \in \mathbb{D}$. Throughout this paper we will assume that f is locally univalent and sense -preserving, and we will call f a harmonic mapping.

A harmonic mapping $f=h+\bar{g}$ can be lifted locally to a regular minimal surface given by conformal (or isothermal) parameters if and only if its dilatation is the square of an analytic function $w(z)=q^{2}(z)$ for some analytic function q with $|q(z)|<1$. Equivalently, the requirement is that any zero of w be of even order, unless $w \equiv 0$ on its domain, so that there is no loss of generality in supposing that z ranges over the unit disc \mathbb{D}, because any other isothermal representation can be precomposed with a conformal map from the unit disc \mathbb{D} whose existence is guaranteed by the Riemann mapping theorem. For such a harmonic mapping $f=u+i v$, the minimal surface has the Weierstrass-Enneper representation with parameters (u, v, t) given by

$$
\begin{gather*}
u=\operatorname{Re}\{f(z)\}=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{1}(\zeta) d \zeta\right\} \\
u=\operatorname{Re}\{f(z)\}=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{1}(\zeta) d \zeta\right\} \\
v=\operatorname{Im}\{f(z)\}=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{2}(\zeta) d \zeta\right\} \tag{3}\\
t=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{3}(\zeta) d \zeta\right\}
\end{gather*}
$$

for $z \in \mathbb{D}$ with

$$
\begin{gather*}
\varphi_{1}=h^{\prime}+g^{\prime}=p\left(1+q^{2}\right)=\frac{\partial u}{\partial z} \\
\varphi_{2}=-i\left(h^{\prime}-g^{\prime}\right)=-i p\left(1-q^{2}\right)=\frac{\partial v}{\partial z} \tag{4}\\
\varphi_{3}=-2 i p q=\frac{\partial t}{\partial z}, \quad \varphi_{3}^{2}=-4 w\left(h^{\prime}\right)^{2} \quad \text { and } \quad h^{\prime}=p
\end{gather*}
$$

(see [1] and [4, p. 176]).
The metric of the surface has the form $d s=\lambda|d z|$, where $\lambda=\lambda(z)>0$. Here, the function λ takes the form

$$
\begin{equation*}
\lambda=\left|h^{\prime}\right|+\left|g^{\prime}\right|=\left|h^{\prime}\right|(1+|w|)=|p|\left(1+|q|^{2}\right) \tag{5}
\end{equation*}
$$

A classical theorem of differential geometry says that if a regular surface is represented by conformal parameters (or isothermal parameters) so that its metric has the form $d s=\lambda|d z|$ for some positive function λ, then the Gauss curvature of the surface is $K=-\lambda^{-2} \Delta(\log \lambda)$. The quantity K is also known as the curvature of the metric. In our special case of a minimal surface associated with a harmonic mapping $f=h+\bar{g}$, the formula for curvature reduces to

$$
\begin{equation*}
K=-\frac{4\left|q^{\prime}\right|^{2}}{|p|^{2}\left(1+|q|^{2}\right)^{4}} \tag{6}
\end{equation*}
$$

since the underlying harmonic mapping f has dilatation $w=\frac{g^{\prime}}{h^{\prime}}=q^{2}$ and $h^{\prime}=p$. An equivalent expression is the following one:

$$
\begin{equation*}
K=-\frac{\left|w^{\prime}\right|^{2}}{\left|h^{\prime} g^{\prime}\right|(1+|w|)^{4}} \tag{7}
\end{equation*}
$$

Now we define the following class of harmonic functions [2], which is used throughout this paper.

Let \mathcal{H} be the family of functions $f=h(z)+\overline{g(z)}$ which are harmonic and sense-preserving in the open disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. For a fixed $m \in \mathbb{Z}^{+}$, let $\mathcal{H}(m)$ be the set of all harmonic multivalent and sense-preserving functions in \mathbb{D} of the form $f=h(z)+\overline{g(z)}$, where

$$
\begin{equation*}
h(z)=z^{m}+\sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, g(z)=\sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1},\left|b_{m}\right|<1 \tag{8}
\end{equation*}
$$

are analytic in \mathbb{D}, and called analytic and co-analytic parts of f respectively (see [7], [8], [10], [11] and [12]).

Let Ω be the family of functions $\phi(z)$ which are regular and satisfying the conditions $\phi(0)=0$, and $|\phi(z)|<1$ for every $z \in \mathbb{D}$; and let $\Omega(a)$, where $0<a<1$, be the class of functions $w(z)$ which are regular in \mathbb{D} and satisfy $w(0)=a$ and $|w(z)|<1$ for all $z \in \mathbb{D}$. We let Ω_{\cup} be the union of all classes $\Omega(a)$ where a ranges over $(0,1)$. Denote by $\mathcal{P}(m)$ (with m a positive integer) the class of functions $p(z)=m+p_{1} z+\cdots$ which are analytic in \mathbb{D}, and
satisfying conditions $p(0)=m, \quad \operatorname{Re}(p(z))>0$ for all $z \in \mathbb{D}$ and such that $p(z) \in \mathcal{P}(m)$ if and only if

$$
\begin{equation*}
p(z)=m \cdot \frac{1+\phi(z)}{1-\phi(z)} \tag{9}
\end{equation*}
$$

for some $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.
Let $F(z)=z+d_{2} z^{2}+\cdots$ and $G(z)=z+e_{2} z^{2}+\cdots$ be analytic functions in \mathbb{D}. If there exists a function $\phi(z) \in \Omega$ such that $F(z)=G(\phi(z))$, then we say that $F(z)$ is subortinate to $G(z)$ and we write $F(z) \prec G(z)$.

Finally, let $\mathcal{A}_{m}(m \geq 1)$ denote the class of functions $s(z)=z^{m}+\alpha_{m+1} z^{m+1}$ $+\alpha_{m+2} z^{m+2}+\cdots$ which are analytic in \mathbb{D}, for $s(z) \in \mathcal{A}_{m}(m \geq 1)$ we say that $s(z)$ belongs to the class $C(m)$ (the class of m-valent convex functions) if

$$
\begin{equation*}
\operatorname{Re}\left\{1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{10}
\end{equation*}
$$

We denote by $\mathcal{H C}(m)$ the subclass of $\mathcal{H}(m)$ consisting of all harmonic multivalent and sense-preserving functions for which analytic part is an m valent convex function.

2 Main Results

Lemma 1 Let $w(z)$ be an element of Ω_{\cup}. Then

$$
\begin{equation*}
\frac{|a-r|}{1-a r} \leq|w(z)| \leq \frac{a+r}{1+a r} \tag{11}
\end{equation*}
$$

for all $z \in \mathbb{D}$.
Proof. The inequality (11) is clear for $z=0$, whence $r=|z|=0$. Now, let $z \in \mathbb{D} \backslash\{0\}$, and define

$$
\phi(z)=\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}, \quad z \in \mathbb{D}
$$

where $w(0)=a \in(0,1)$. This function satisfies the conditions of Schwarz's lemma. The estimation of Schwarz's lemma, $|\phi(z)| \leq|z|=r$, gives

$$
\begin{equation*}
|\phi(z)|=\left|\frac{w(z)-a}{1-a w(z)}\right| \leq r \Rightarrow|w(z)-a| \leq r|1-a w(z)| . \tag{12}
\end{equation*}
$$

The inequality (12) is equivalent to

$$
\begin{equation*}
\left|w(z)-\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \tag{13}
\end{equation*}
$$

The equality holds in the inequality (13) only for the function

$$
w(z)=\frac{z+a}{1+a z}, \quad z \in \mathbb{D}
$$

If we use the triangle inequality in the inequality (13), we get

$$
\begin{gather*}
\left||w(z)|-\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right|\right| \leq\left|w(z)-\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \\
\Rightarrow|w(z)|-\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \\
\Rightarrow-\frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \leq|w(z)|-\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \\
\Rightarrow-\frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}}+\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq|w(z)| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}}+\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \\
\Rightarrow \frac{a-r}{1-a r} \leq|w(z)| \leq \frac{a+r}{1+a r} . \tag{14}
\end{gather*}
$$

Similarly, if we replace a with r in the inequality (12), we get

$$
\begin{equation*}
\Rightarrow \frac{r-a}{1-a r} \leq|w(z)| \leq \frac{a+r}{1+a r} . \tag{15}
\end{equation*}
$$

From the inequalities (14) and (15), we obtain (12).
Corollary 1 If $w(z) \in \Omega_{\cup}$, then

$$
\begin{equation*}
\frac{(1-a)(1-r)}{1+a r} \leq(1-|w(z)|) \leq \frac{1-a r-|a-r|}{1-a r} \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1-a r+|a-r|}{1-a r} \leq 1+|w(z)| \leq \frac{(1+a)(1+r)}{1+a r} \tag{17}\\
& \frac{(1+a)(1-r)}{1-a r} \leq|1+w(z)| \leq \frac{(1+a)(1+r)}{1+a r} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{(1-a)(1-r)}{1+a r} \leq|1-w(z)| \leq \frac{(1-a)(1+r)}{1-a r} \tag{19}
\end{equation*}
$$

Proof. These inequalities are simple consequences of Lemma 1 and the inequality (13).

Lemma 2 Let $s(z)$ be an element of $C(m)$. Then

$$
\begin{equation*}
\frac{r^{-(1-m)}}{(1+r)^{2 m}} \leq\left|s^{\prime}(z)\right| \leq \frac{r^{-(m-1)}}{(1-r)^{2 m}} \tag{20}
\end{equation*}
$$

This inequality is sharp because the extremal function function is

$$
\begin{equation*}
s^{\prime}(z)=\frac{z^{m-1}}{(1-z)^{2 m}} . \tag{21}
\end{equation*}
$$

Proof. Using the definition of the class $C(m)$ and the definition of subordination, we can write

$$
\begin{equation*}
1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}=p(z) \prec m\left(\frac{1+z}{1-z}\right) . \tag{22}
\end{equation*}
$$

The relation (22) shows that

$$
\begin{equation*}
\left|1+z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}-m \cdot \frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 m r}{1-r^{2}} \tag{23}
\end{equation*}
$$

After simple calculations from the inequality (23) we get

$$
\begin{equation*}
-\frac{(1+m) r+(1-m)}{1+r} \leq \operatorname{Re}\left(z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right) \leq \frac{(1+m) r-(1-m)}{1-r} \tag{24}
\end{equation*}
$$

On the other hand, we have

$$
\operatorname{Re}\left(z \frac{s^{\prime \prime}(z)}{s^{\prime}(z)}\right)=r \frac{\partial}{\partial r} \log \left|s^{\prime}(z)\right| .
$$

Therefore the inequality (24) can be written in the following form:

$$
\begin{equation*}
-\frac{(1+m) r+(1-m)}{1+r} \leq r \frac{\partial}{\partial r} \log \left|s^{\prime}(z)\right| \leq \frac{(1+m) r-(1-m)}{1-r} \tag{25}
\end{equation*}
$$

Then, integrating both sides of the inequality (25) from zero to r, we obtain (20).

Example 1 An example of a minimal surface that satisfies the about properties is
$f(z)=z^{m}+\left|b_{m}\right|(\bar{z})^{m}+\frac{m\left(1-\left|b_{m}\right|\right)}{m+1}(\bar{z})^{m+1}, \quad m \in \mathbb{Z}^{+}, z \in \mathbb{D} \quad$ and $\quad\left|b_{m}\right|<1$.
Indeed, f is harmonic, since $\Delta f=4 \frac{\partial^{2} f}{\partial z \partial \bar{z}}=0$ and it is clear that f is multivalent.

The functions $h(z)=z^{m}$ and $g(z)=\left|b_{m}\right| z^{m}+\frac{m\left(1-\left|b_{m}\right|\right)}{m+1} z^{m+1}$, the analytic and co-analytic parts of f, are analytic in \mathbb{D}. Hence the second dilatation $w(z)=\left|b_{m}\right|+\left(1-\left|b_{m}\right|\right) z$ of f satisfies $|w(z)|<1$ and is the square of the analytic function $q(z)=\sqrt{\left|b_{m}\right|+\left(1-\left|b_{m}\right|\right) z}$ in \mathbb{D}. Thus the harmonic multivalent mapping f can be lifted locally to a regular minimal surface. Furthermore, the analytic part h of f is an m-valent convex function, since $\operatorname{Re}\left\{1+z \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}=m>0$ for every $z \in \mathbb{D}$.

Corollary 2 Let $f=h(z)+\overline{g(z)}$ be element of $\mathcal{H C}(m)$. Then

$$
\begin{equation*}
\frac{|a-r| r^{-(1-m)}}{(1-a r)(1+r)^{2 m)}} \leq\left|g^{\prime}(z)\right| \leq \frac{(a+r) r^{-(m-1)}}{(1+a r)(1-r)^{2 m}} \tag{26}
\end{equation*}
$$

Proof. This corollary is a simple consequence of the definition of second dilatation of f and the lemmas 1 and 2 .

Theorem 1 Let the functions $\varphi_{k},(k=1,2,3)$ be the Weierstrass-Enneper parameters of a regular minimal surface of $f=(h+\bar{g}) \in \mathcal{H C}(m)$. Then

$$
\begin{equation*}
\frac{(1+a)(1-r) r^{-(1-m)}}{(1-a r)(1+r)^{2 m}} \leq\left|\varphi_{1}\right| \leq \frac{(1+a)(1+r) r^{-(m-1)}}{(1+a r)(1-r)^{2 m}} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(1-a)(1-r) r^{-(1-m)}}{(1+a r)(1+r)^{2 m}} \leq\left|\varphi_{2}\right| \leq \frac{(1-a)(1+r) r^{-(m-1)}}{(1-a r)(1-r)^{2 m}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4|a-r| r^{-2(1-m)}}{(1-a r)(1+r)^{4 m}} \leq\left|\varphi_{3}\right|^{2} \leq \frac{4(a+r) r^{-2(m-1)}}{(1+a r)(1-r)^{4 m}} \tag{29}
\end{equation*}
$$

Proof. Using (4), Lemma 1, the inequalities (18) and (19), and Lemma 2, we get (27), (28) and (29).

Theorem 2 Let K be the Gaussian curvature of the regular minimal surface of $f=(h+\bar{g}) \in \mathcal{H C}(m)$. Then

$$
\begin{equation*}
|K| \leq \frac{(1-a r-|a-r|)^{2}(1-a r)^{3}(1+a)^{2}(1+r)^{4 m}}{(1-a r+|a-r|)^{4}(1+a r)^{2}|a-r|(1-r)^{2} r^{-2(1-m)}} \tag{30}
\end{equation*}
$$

Proof. Using the Lemma 2, Corollary 2 and after simple calculations, we get

$$
\begin{equation*}
|K|=\frac{\left|w^{\prime}(z)\right|^{2}}{\left|g^{\prime}(z) h^{\prime}(z)\right|(1+|w(z)|)^{4}} \leq \frac{\left|w^{\prime}(z)\right|^{2}(1-a r)(1+r)^{4 m}}{(1+|w(z)|)^{4}|a-r| r^{-2(1-m)}} \tag{31}
\end{equation*}
$$

and using the Schwarz-Pick's Lemma for the function

$$
\psi(z)=\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}
$$

we obtain

$$
\begin{equation*}
\left|w^{\prime}(z)\right|^{2} \leq \frac{\left(1-|w(z)|^{2}\right)^{2}}{\left(1-r^{2}\right)^{2}} \tag{32}
\end{equation*}
$$

The inequalities (16), (17) and (32) now yield (30).

References

[1] M.Chuaqui, P. Duren and B. Osgood, The Schwarzian derivative for harmonic mappings, J. Analyse Math 91 (2003), 329-351.
[2] R. Dey, The Weierstrass-Enneper representation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci.(Math.Sci) 113 (2003), No. 2, 189-193.
[3] P. Duren, Univalent functions, Grundlehren der Mathematiscen Wissenchaften 259, Springer-Verlag, Berlin, New York, 1983.
[4] P. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge U.K, 2004
[5] Z. Lewandoski, Starlike madorants and subordination, Annales Universitatis, Mariae-Curie Sklodowska, Lublin-Polonia 15 (1961), 79-84.
[6] M.K. Aouf, $p-$ valent classes related to convex functions of complex order, Rocky Mauntain Journal of Mathematics 4 (1961).
[7] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ Marie-Cruie Sklodowska, Sect A 55 (2001), 1-13.
[8] O.P. Ahuja and J.M. Jahangiri, On a linear combination of the classes of multivalently harmonic functions, Kyungpook. Math. J. 42(1) (2002), 61-70.
[9] J. Clunie and T. Sheil-Small, Harmonic Univalently functions, Ann Acad Sci Fenn Ser A.I. Math 9(3) (1984), 3-25.
[10] Waggas Galip Atshan and S.R. Kulkarni, New classes of multivalently harmonic functions, Int. Journal of Math.Analysis 2 (2008), No 3, 111121.
[11] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions with missing coefficients, Math. Sci. Res. J 7(9) (2003), 347-352.
[12] O. Murugusundaramorthy, K. Vijaya and T. Rosy, Multivalent meromorphic harmonic functions with missing coefficients, Far East. J. Math. Sci. 7 (1) (2002), 33-44.
[13] P. Duren, W. Hengartner and R.S. Laugerer, The argument principle for harmonic functions, Amer. Math. Montly 103(5) (1996), 411-415.

Hakan Mete Taştan
İstanbul University
Department of Mathematics
Vezneciler 34134, İstanbul, Turkey
e-mail: hakmete@istanbul.edu.tr
Yaşar Polatog̃lu
İstanbul Kültür University
Department of Mathematics and Computer Science
Ataköy, 34156, İstanbul, Turkey
e-mail: y.polatoglu@iku.edu.tr

[^0]: ${ }^{1}$ Received 20 April, 2009
 Accepted for publication (in revised form) 14 December, 2009

