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An Investigation on Minimal Surfaces of
Multivalent Harmonic Functions 1
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Abstract

The projection on the base plane of a regular minimal surface S in R
3

with isothermal parameters defines a complex-valued univalent harmonic
function f = h(z) + g(z). The aim of this paper is to obtain the distor-
tion inequalities for the Weierstrass-Enneper parameters of the minimal
surface for the harmonic multivalent functions for which analytic part is
an m-valent convex function.
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1 Preliminaries

Minimal surfaces are most commonly known as those which have the min-
imum area amongst all other surfaces spanning a given closed curve in R

3.
Geometrically, the definition of a minimal surface is that the mean curvature
H is zero at every point of the surface. If locally one can write the minimal
surface in R

3 as (x, y,Φ(x, y)), then the minimal surface equation H = 0 is
equivalent to

(1) (1 + Φ2
y)Φxx − 2ΦxΦyΦxy + (1 + Φ2

x)Φyy = 0 .
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There exists a choice of isothermal parameters (u, v) ∈ Ω ⊂ R
2 so that the

surface X(u, v) = (x(u, v), y(u, v),Φ(u, v)) ∈ R
3 satisfying the minimal surface

equation is given by

(2) E = |Xu|
2 = |Xv|

2 = G > 0, F =< Xu, Xv >= 0, 4(u,v)X = 0 ,

where ∆ denotes the Laplacian operator. The general solution of such an
equation is called the local Weierstrass-Enneper representation [2].

A complex-valued function f which is harmonic in a simply connected
domain D ⊂ C has the canonical representation f = h+ g, where h and g are
analytic in D and g(z0) = 0 for some prescribed point z0 ∈ D. According
to a theorem of H. Lewy [1], f is locally univalent if and only if its Jacobian
(|fz|

2 − |fz|
2 = |h

′

(z)|2 − |g
′

(z)|2) does not vanish. The function f is said to
be sense-preserving if its Jacobian is positive. In this case then h

′

(z) 6= 0 and

the analytic function w(z) =
g′(z)

h′(z)
, called the second dilatation of f , has the

property |w(z)| < 1 for all z ∈ D. Throughout this paper we will assume that
f is locally univalent and sense -preserving, and we will call f a harmonic
mapping.

A harmonic mapping f = h + g can be lifted locally to a regular mini-
mal surface given by conformal (or isothermal) parameters if and only if its
dilatation is the square of an analytic function w(z) = q2(z) for some analytic
function q with |q(z)| < 1. Equivalently, the requirement is that any zero
of w be of even order, unless w ≡ 0 on its domain, so that there is no loss
of generality in supposing that z ranges over the unit disc D, because any
other isothermal representation can be precomposed with a conformal map
from the unit disc D whose existence is guaranteed by the Riemann mapping
theorem. For such a harmonic mapping f = u + iv, the minimal surface has
the Weierstrass-Enneper representation with parameters (u, v, t) given by

(3)

u = Re{f(z)} = Re{
∫ z

0 ϕ1(ζ)dζ},
u = Re{f(z)} = Re{

∫ z

0 ϕ1(ζ)dζ},
v = Im{f(z)} = Re{

∫ z

0 ϕ2(ζ)dζ},
t = Re{

∫ z

0 ϕ3(ζ)dζ}

for z ∈ D with

(4)

ϕ1 = h′ + g′ = p(1 + q2) =
∂u

∂z
,

ϕ2 = −i(h′ − g′) = −ip(1 − q2) =
∂v

∂z
,

ϕ3 = −2ipq =
∂t

∂z
, ϕ2

3 = −4w(h′)2 and h′ = p.
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(see [1] and [4, p. 176]).
The metric of the surface has the form ds = λ|dz|, where λ = λ(z) > 0.

Here, the function λ takes the form

(5) λ = |h′| + |g′| = |h′|(1 + |w|) = |p|(1 + |q|2) .

A classical theorem of differential geometry says that if a regular surface
is represented by conformal parameters ( or isothermal parameters) so that
its metric has the form ds = λ|dz| for some positive function λ, then the
Gauss curvature of the surface is K = −λ−2∆(logλ). The quantity K is also
known as the curvature of the metric. In our special case of a minimal surface
associated with a harmonic mapping f = h + g, the formula for curvature
reduces to

(6) K = −
4|q′|2

|p|2(1 + |q|2)4
,

since the underlying harmonic mapping f has dilatation w =
g′

h′
= q2 and

h′ = p. An equivalent expression is the following one:

(7) K = −
|w′|2

|h′g′|(1 + |w|)4
.

Now we define the following class of harmonic functions [2], which is used
throughout this paper.

Let H be the family of functions f = h(z) + g(z) which are harmonic and
sense-preserving in the open disc D = {z ∈ C : |z| < 1}. For a fixed m ∈ Z

+,
let H(m) be the set of all harmonic multivalent and sense-preserving functions
in D of the form f = h(z) + g(z), where

(8) h(z) = zm +
∞

∑

n=2

an+m−1z
n+m−1, g(z) =

∞
∑

n=1

bn+m−1z
n+m−1, |bm| < 1.

are analytic in D, and called analytic and co-analytic parts of f respectively
(see [7], [8], [10], [11] and [12]).

Let Ω be the family of functions φ(z) which are regular and satisfying the
conditions φ(0) = 0, and |φ(z)| < 1 for every z ∈ D; and let Ω(a), where
0 < a < 1, be the class of functions w(z) which are regular in D and satisfy
w(0) = a and |w(z)| < 1 for all z ∈ D. We let Ω∪ be the union of all classes
Ω(a) where a ranges over (0, 1). Denote by P(m) (with m a positive integer)
the class of functions p(z) = m + p1z + · · · which are analytic in D, and
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satisfying conditions p(0) = m, Re(p(z)) > 0 for all z ∈ D and such that
p(z) ∈ P(m) if and only if

(9) p(z) = m ·
1 + φ(z)

1 − φ(z)

for some φ(z) ∈ Ω and every z ∈ D.

Let F (z) = z+ d2z
2 + · · · and G(z) = z+ e2z

2 + · · · be analytic functions
in D. If there exists a function φ(z) ∈ Ω such that F (z) = G(φ(z)), then we
say that F (z) is subortinate to G(z) and we write F (z) ≺ G(z).

Finally, let Am(m ≥ 1) denote the class of functions s(z) = zm+αm+1z
m+1

+αm+2z
m+2 + · · · which are analytic in D, for s(z) ∈ Am(m ≥ 1) we say that

s(z) belongs to the class C(m) (the class of m-valent convex functions) if

(10) Re{1 + z
s′′(z)

s′(z)
} > 0, z ∈ D .

We denote by HC(m) the subclass of H(m) consisting of all harmonic
multivalent and sense-preserving functions for which analytic part is an m-
valent convex function.

2 Main Results

Lemma 1 Let w(z) be an element of Ω∪. Then

(11)
|a− r|

1 − ar
≤ |w(z)| ≤

a+ r

1 + ar

for all z ∈ D.

Proof. The inequality (11) is clear for z = 0, whence r = |z| = 0. Now, let
z ∈ D \ {0}, and define

φ(z) =
w(z) − w(0)

1 − w(0)w(z)
, z ∈ D,

where w(0) = a ∈ (0, 1). This function satisfies the conditions of Schwarz’s
lemma. The estimation of Schwarz’s lemma, |φ(z)| ≤ |z| = r, gives

(12) |φ(z)| =

∣

∣

∣

∣

w(z) − a

1 − aw(z)

∣

∣

∣

∣

≤ r ⇒ |w(z) − a| ≤ r|1 − aw(z)| .
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The inequality (12) is equivalent to

(13)

∣

∣

∣

∣

w(z) −
a(1 − r2)

1 − a2r2

∣

∣

∣

∣

≤
r(1 − a2)

1 − a2r2
.

The equality holds in the inequality (13) only for the function

w(z) =
z + a

1 + az
, z ∈ D.

If we use the triangle inequality in the inequality (13), we get
∣

∣

∣

∣

|w(z)| −

∣

∣

∣

∣

a(1 − r2)

1 − a2r2

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

w(z) −
a(1 − r2)

1 − a2r2

∣

∣

∣

∣

≤
r(1 − a2)

1 − a2r2

⇒ |w(z)| −

∣

∣

∣

∣

a(1 − r2)

1 − a2r2

∣

∣

∣

∣

≤
r(1 − a2)

1 − a2r2

⇒ −
r(1 − a2)

1 − a2r2
≤ |w(z)| −

∣

∣

∣

∣

a(1 − r2)

1 − a2r2

∣

∣

∣

∣

≤
r(1 − a2)

1 − a2r2

⇒ −
r(1 − a2)

1 − a2r2
+

∣

∣

∣

∣

a(1 − r2)

1 − a2r2

∣

∣

∣

∣

≤ |w(z)| ≤
r(1 − a2)

1 − a2r2
+

∣

∣

∣

∣

a(1 − r2)

1 − a2r2

∣

∣

∣

∣

(14) ⇒
a− r

1 − ar
≤ |w(z)| ≤

a+ r

1 + ar
.

Similarly, if we replace a with r in the inequality (12), we get

(15) ⇒
r − a

1 − ar
≤ |w(z)| ≤

a+ r

1 + ar
.

From the inequalities (14) and (15), we obtain (12). �

Corollary 1 If w(z) ∈ Ω∪, then

(16)
(1 − a)(1 − r)

1 + ar
≤ (1 − |w(z)|) ≤

1 − ar − |a− r|

1 − ar
,

(17)
1 − ar + |a− r|

1 − ar
≤ 1 + |w(z)| ≤

(1 + a)(1 + r)

1 + ar
,

(18)
(1 + a)(1 − r)

1 − ar
≤ |1 + w(z)| ≤

(1 + a)(1 + r)

1 + ar

and

(19)
(1 − a)(1 − r)

1 + ar
≤ |1 − w(z)| ≤

(1 − a)(1 + r)

1 − ar
.
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Proof. These inequalities are simple consequences of Lemma 1 and the in-
equality (13). �

Lemma 2 Let s(z) be an element of C(m). Then

(20)
r−(1−m)

(1 + r)2m
≤ |s′(z)| ≤

r−(m−1)

(1 − r)2m
.

This inequality is sharp because the extremal function function is

(21) s′(z) =
zm−1

(1 − z)2m
.

Proof. Using the definition of the class C(m) and the definition of subordi-
nation, we can write

(22) 1 + z
s′′(z)

s′(z)
= p(z) ≺ m(

1 + z

1 − z
) .

The relation (22) shows that

(23)

∣

∣

∣

∣

1 + z
s′′(z)

s′(z)
−m.

1 + r2

1 − r2

∣

∣

∣

∣

≤
2mr

1 − r2
.

After simple calculations from the inequality (23) we get

(24) −
(1 +m)r + (1 −m)

1 + r
≤ Re(z

s′′(z)

s′(z)
) ≤

(1 +m)r − (1 −m)

1 − r
.

On the other hand, we have

Re(z
s′′(z)

s′(z)
) = r

∂

∂r
log |s′(z)|.

Therefore the inequality (24) can be written in the following form:

(25) −
(1 +m)r + (1 −m)

1 + r
≤ r

∂

∂r
log |s′(z)| ≤

(1 +m)r − (1 −m)

1 − r
.

Then, integrating both sides of the inequality (25) from zero to r, we obtain
(20). �
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Example 1 An example of a minimal surface that satisfies the about proper-

ties is

f(z) = zm+|bm|(z)m+
m(1 − |bm|)

m+ 1
(z)m+1, m ∈ Z

+, z ∈ D and |bm| < 1.

Indeed, f is harmonic, since ∆f = 4
∂2f

∂z∂z
= 0 and it is clear that f is

multivalent.

The functions h(z) = zm and g(z) = |bm|zm +
m(1 − |bm|)

m+ 1
zm+1, the an-

alytic and co-analytic parts of f , are analytic in D. Hence the second dilata-

tion w(z) = |bm| + (1 − |bm|)z of f satisfies |w(z)| < 1 and is the square

of the analytic function q(z) =
√

|bm| + (1 − |bm|)z in D. Thus the har-

monic multivalent mapping f can be lifted locally to a regular minimal surface.

Furthermore, the analytic part h of f is an m-valent convex function, since

Re{1 + z
h′′(z)

h′(z)
} = m > 0 for every z ∈ D.

Corollary 2 Let f = h(z) + g(z) be element of HC(m). Then

(26)
|a− r|r−(1−m)

(1 − ar)(1 + r)2m)
≤ |g′(z)| ≤

(a+ r)r−(m−1)

(1 + ar)(1 − r)2m
.

Proof. This corollary is a simple consequence of the definition of second
dilatation of f and the lemmas 1 and 2. �

Theorem 1 Let the functions ϕk, (k = 1, 2, 3) be the Weierstrass-Enneper

parameters of a regular minimal surface of f = (h+ g) ∈ HC(m). Then

(27)
(1 + a)(1 − r)r−(1−m)

(1 − ar)(1 + r)2m
≤ |ϕ1| ≤

(1 + a)(1 + r)r−(m−1)

(1 + ar)(1 − r)2m
,

(28)
(1 − a)(1 − r)r−(1−m)

(1 + ar)(1 + r)2m
≤ |ϕ2| ≤

(1 − a)(1 + r)r−(m−1)

(1 − ar)(1 − r)2m

and

(29)
4|a− r|r−2(1−m)

(1 − ar)(1 + r)4m
≤ |ϕ3|

2 ≤
4(a+ r)r−2(m−1)

(1 + ar)(1 − r)4m
.

Proof. Using (4), Lemma 1, the inequalities (18) and (19), and Lemma 2, we
get (27), (28) and (29). �
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Theorem 2 Let K be the Gaussian curvature of the regular minimal surface

of f = (h+ g) ∈ HC(m). Then

(30) |K| ≤
(1 − ar − |a− r|)2(1 − ar)3(1 + a)2(1 + r)4m

(1 − ar + |a− r|)4(1 + ar)2|a− r|(1 − r)2r−2(1−m)
.

Proof. Using the Lemma 2, Corollary 2 and after simple calculations, we get

(31) |K| =
|w′(z)|2

|g′(z)h′(z)|(1 + |w(z)|)4
≤

|w′(z)|2(1 − ar)(1 + r)4m

(1 + |w(z)|)4|a− r|r−2(1−m)

and using the Schwarz-Pick’s Lemma for the function

ψ(z) =
w(z) − w(0)

1 − w(0)w(z)
,

we obtain

(32) |w′(z)|2 ≤
(1 − |w(z)|2)2

(1 − r2)2
.

The inequalities (16), (17) and (32) now yield (30). �
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Yaşar Polatog̃lu
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