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An Investigation on Minimal Surfaces of
Multivalent Harmonic Functions !

Hakan Mete Tastan, Yasar Polatoglu

Abstract

The projection on the base plane of a regular minimal surface S in R3
with isothermal parameters defines a complex-valued univalent harmonic
function f = h(z) + g(z). The aim of this paper is to obtain the distor-
tion inequalities for the Weierstrass-Enneper parameters of the minimal
surface for the harmonic multivalent functions for which analytic part is
an m-valent convex function.
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1 Preliminaries

Minimal surfaces are most commonly known as those which have the min-
imum area amongst all other surfaces spanning a given closed curve in R3.
Geometrically, the definition of a minimal surface is that the mean curvature
H is zero at every point of the surface. If locally one can write the minimal
surface in R? as (x,y,®(z,y)), then the minimal surface equation H = 0 is
equivalent to

(1) (1+D2)Dyy — 20, P, Dyy + (1 + D2)®y, =0 .
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There exists a choice of isothermal parameters (u,v) €  C R? so that the
surface X (u,v) = (x(u,v),y(u,v), ®(u,v)) € R3 satisfying the minimal surface
equation is given by

(2) E=|X,P=|X,P=G>0, F=<X,;,,X,>=0, DpyX=0,

where A denotes the Laplacian operator. The general solution of such an
equation is called the local Weierstrass-Enneper representation [2].

A complex-valued function f which is harmonic in a simply connected
domain D C C has the canonical representation f = h + g, where h and g are
analytic in D and g(z9) = 0 for some prescribed point zp € D. According
to a theorem of H. Lewy [1], f is locally univalent if and only if its Jacobian
(1f-12 = |f=1? = |W (2)]? = |g (2)[?) does not vanish. The function f is said to
be sense-preserving if its Jacobian is positive. In this case then h/(z) # 0 and
9'(2)
W (z)’
property |w(z)| < 1 for all z € D. Throughout this paper we will assume that
f is locally univalent and sense -preserving, and we will call f a harmonic
mapping.

A harmonic mapping f = h + g can be lifted locally to a regular mini-
mal surface given by conformal (or isothermal) parameters if and only if its
dilatation is the square of an analytic function w(z) = ¢?(z) for some analytic
function ¢ with |¢(z)| < 1. Equivalently, the requirement is that any zero
of w be of even order, unless w = 0 on its domain, so that there is no loss
of generality in supposing that z ranges over the unit disc DD, because any
other isothermal representation can be precomposed with a conformal map
from the unit disc D whose existence is guaranteed by the Riemann mapping
theorem. For such a harmonic mapping f = u + v, the minimal surface has
the Weierstrass-Enneper representation with parameters (u,v,t) given by

the analytic function w(z) = called the second dilatation of f, has the

u= Re{f(2)} = Re{fo ©1(¢)dcC},
(3) U = Re{f( )} Re{fo 901 dC}
v =Im{f(2)} = Re{ [5 ¢2(¢)d(},

= Re{fo 903 dC}

for z € D with

ou
e1=h+g =p(l+¢*) ==

. 0z 9
(4) po = —i(h —g =

= —ip(1—¢*) =
—4w(h)? and K =p.

)
ot
Y3 tpq 02’ ¥3
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(see [1] and [4, p. 176]).
The metric of the surface has the form ds = A|dz|, where A = \(z) > 0.
Here, the function A takes the form

(5) A=W+ gl = (1 + |w]) = [pl(1 + |gI?) -

A classical theorem of differential geometry says that if a regular surface
is represented by conformal parameters ( or isothermal parameters) so that
its metric has the form ds = A|dz| for some positive function A, then the
Gauss curvature of the surface is K = —A"2A(log)\). The quantity K is also
known as the curvature of the metric. In our special case of a minimal surface
associated with a harmonic mapping f = h + g, the formula for curvature
reduces to

dlq'?
(6) K=———
pI*(1 + |ql*)*
/
since the underlying harmonic mapping f has dilatation w = % = ¢* and

h' = p. An equivalent expression is the following one:
jw'?

@) K= gt

Now we define the following class of harmonic functions [2], which is used
throughout this paper.

Let H be the family of functions f = h(z) + g(z) which are harmonic and
sense-preserving in the open disc D = {z € C: |z| < 1}. For a fixed m € Z™,
let H(m) be the set of all harmonic multivalent and sense-preserving functions
in D of the form f = h(z) + g(z), where

(8) h(z)=z2"+ Z Angm—12"T""1 g(2) = Z brpm_12"T™L || < 1

n=2 n=1

are analytic in D, and called analytic and co-analytic parts of f respectively
(see [7], [8], [10], [11] and [12]).

Let Q be the family of functions ¢(z) which are regular and satisfying the
conditions ¢(0) = 0, and |¢(z)] < 1 for every z € D; and let Q(a), where
0 < a < 1, be the class of functions w(z) which are regular in D and satisfy
w(0) = a and |w(z)| < 1 for all z € D. We let Q be the union of all classes
Q(a) where a ranges over (0,1). Denote by P(m) (with m a positive integer)
the class of functions p(z) = m + p1z + --- which are analytic in D, and
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satisfying conditions p(0) = m, Re(p(z)) > 0 for all z € D and such that
p(z) € P(m) if and only if

1+ ¢(z2)

9) p(z)=m- T—6(2)

for some ¢(z) € Q and every z € D.

Let F(2) = z+dez? +--- and G(2) = 2+ €222 + - - be analytic functions
in D. If there exists a function ¢(z) € Q such that F(z) = G(¢(2)), then we
say that F'(z) is subortinate to G(z) and we write F'(z) < G(z).

Finally, let A,,(m > 1) denote the class of functions s(z) = 2" +ay,+12™
+m22™ 2 + -+ which are analytic in D, for s(z) € A,,(m > 1) we say that
s(z) belongs to the class C(m) (the class of m-valent convex functions) if

+1

S//(Z)
10 Re{l > 0, eD .
(10) e{l+z 72 } z
We denote by HC(m) the subclass of H(m) consisting of all harmonic
multivalent and sense-preserving functions for which analytic part is an m-
valent convex function.

2 Main Results

Lemma 1 Let w(z) be an element of Q. Then

a-+r
1+ ar

(11) |1“__;| < |w(z)| <

for all z € D.

Proof. The inequality (11) is clear for z = 0, whence r = |z| = 0. Now, let
z € D\ {0}, and define

w(z) —w(0)

=—=——>  z€eD,
1 —w(0)w(z)

¢(2)

where w(0) = a € (0,1). This function satisfies the conditions of Schwarz’s
lemma. The estimation of Schwarz’s lemma, |p(2)| < |z| = r, gives

we)—a)| w(z) —af <71 —aw(z)| .

12) o) = ]

1 —aw(z)
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The inequality (12) is equivalent to

a(l — 7‘2)
1— a?r?

r(l— a2)
— 1—a?r?

(13 (s

The equality holds in the inequality (13) only for the function

Z+a
w(z) = T as’ z € D.

If we use the triangle inequality in the inequality (13), we get

a(l—r?) a(l—r?) r(1 — a?)
'\w(z)| 11— a2 = ’w(z) S 1—a2?| T 1— a2
a(l—r?)| _r(1—a?
= |w(z)| - 1—a?r?2 |~ 1—a?r?
r(1 —a?) a(l—r%)] _r(1—ad?
= )< _
1—a?r?2 — [w(z)l 1—a?r2 |~ 1—a?r?
r(1—a?) |a(l—r?) r(l1—a?®) |a(l—1r?)
_ < <
I 1—a2r2 |~ [w(z)] < 1—a2r? 1—a?r?
a—r a+r
14 < < .
(14) 1—a7‘_|w(2)|_1—|—ar
Similarly, if we replace a with r in the inequality (12), we get
rT—a a+r
15 = < < .
(15) 1—a7‘_|w(2)|_1+ar
From the inequalities (14) and (15), we obtain (12). O

Corollary 1 If w(z) € Qu, then

1—ar—|a—r|

(16) U=al20) () <

1+ ar 1—ar

1—ar+|a—r| (I+a)(1+7)

(17) 1—ar S 1 lwz)l < 14+ ar
19 A < vt < D
and

(1—a)(1—7) (I—a)(1+r)
(19) e SowGls Tl
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Proof. These inequalities are simple consequences of Lemma 1 and the in-
equality (13). O

Lemma 2 Let s(z) be an element of C(m). Then

—(1-m) —(m-1)
T T
om <|s'(2)] <

(20) ar S

This inequality is sharp because the extremal function function is

Zm—l

(21) s'(z) = e

Proof. Using the definition of the class C(m) and the definition of subordi-
nation, we can write

(22) 1+ zz/(f)) — p(z) < m(+2

) .

1—2z

The relation (22) shows that

s"(2) 1+ r2 2mr
23 1 —m. < .
(23) +Zs’(z) ml—T‘2 —1—1r2

After simple calculations from the inequality (23) we get

(I1+m)r+ (1 —m) s"(2)
(24) - T r < Re(z 7 ) <

(L+m)r—(1—m) .
1—r

On the other hand, we have

_ a /
) = o log|s/(2)]

Therefore the inequality (24) can be written in the following form:

(I+m)r+(1—-m) 0 p
25 — —
(25) T Srarlog|s(z)\§

(I14+m)r—(1—m) ‘
1—7r

Then, integrating both sides of the inequality (25) from zero to r, we obtain
(20). O
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Example 1 An example of a minimal surface that satisfies the about proper-
ties 1s

1—|bm
f(z) = zm+]bm|(§)m+m(m7+‘1|)(2)m“, meZ,zeD and |byl <1
. o O*f L :
Indeed, f is harmonic, since Af = 4a % 0 and it is clear that f is
20Z

multivalent. -

The functions h(z) = 2™ and g(z) = |by|2™ + M_—Mzm"‘l, the an-

m

alytic and co-analytic parts of f, are analytic in D. Hence the second dilata-
tion w(z) = |bm| + (1 — |bm|)z of f satisfies |w(z)| < 1 and is the square
of the analytic function q(2) = /|bm|+ (1 = |bm|)z in D. Thus the har-
monic multivalent mapping f can be lifted locally to a regular minimal surface.
Furthermore, the analytic part h of f is an m-valent convex function, since

Re{l +z };L///((j))

}=m >0 for every z € D.

Corollary 2 Let f = h(z) + g(z) be element of HC(m). Then

la — rlr—(-m) (a+r)r—m=1

) (—en+em = 9O araya =

Proof. This corollary is a simple consequence of the definition of second
dilatation of f and the lemmas 1 and 2. O

Theorem 1 Let the functions @i, (k = 1,2,3) be the Weierstrass-Enneper
parameters of a reqular minimal surface of f = (h+7g) € HC(m). Then

(1+a)(1 —r)r—=m) (1+a)(1 +r)r—(m=1

(27) T+ =Pl = =g =
(1—a)(1—r)r—0-m (1 —a)(1+r)r—m=D
(28) Araisnpm =P < =gy =y
and
4la — r|r—20=m) 4(a + r)r—2m=1)
(29) G- =l < Graya =y -

Proof. Using (4), Lemma 1, the inequalities (18) and (19), and Lemma 2, we
get (27), (28) and (29). O
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Theorem 2 Let K be the Gaussian curvature of the regular minimal surface
of f=(h+79) € HC(m). Then

(1 —ar—|a—7r)%(1—ar)3(1+a)?(1 +r)*™
(1 —ar+|a—r)4(1+ar)?|a —r|(1 — r)2p—20-m)

(30) K| <

Proof. Using the Lemma 2, Corollary 2 and after simple calculations, we get

|w'(2)|? lw'(2)]2(1 — ar)(1 + r)*m
9 ()W (2)|(1+ [w())* — (14 |w(z)])*a — r|r—2(-m)

(31) K| =

and using the Schwarz-Pick’s Lemma for the function

L w(z) —w(0)
) 1—w(0)w(z)’
we obtain
, 1 —|w(2)]|?)?
32 WP < S
The inequalities (16), (17) and (32) now yield (30). O
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