# Width-Integrals of Mixed Projection Bodies and Mixed Affine Surface Area ${ }^{1}$ 

Zhao Chang-jian, Mihály Bencze


#### Abstract

The main purposes of this paper are to establish some new BrunnMinkowski inequalities for width-integrals of mixed projection bodies and affine surface area of mixed bodies, and get their inverse forms.


2000 Mathematics Subject Classification: 52A40 53A15 46B20
Key words and phrases: Width-integrals, Affine surface area, Mixed projection body, Mixed body.

## 1 Introduction

In recent years some authors including Ball[1], Bourgain[2], Gardner[3], Schnei$\operatorname{der}[4]$ and Lutwak[5-10] et al have given considerable attention to the BrunnMinkowski theory and Brunn-Minkowski-Firey theory and their various generalizations. In particular, Lutwak ${ }^{[7]}$ had generalized the Brunn-Minkowski inequality (1) to mixed projection body and get inequality (2):

The Brunn-Minkowski inequality If $K, L \in \mathcal{K}^{n}$, then

$$
\begin{equation*}
V(K+L)^{1 / n} \geq V(K)^{1 / n}+V(L)^{1 / n} \tag{1}
\end{equation*}
$$

with equality if and only if $K$ and $L$ are homothetic.
The Brunn-Minkowski inequality for mixed projection bodies If $K, L \in \mathcal{K}^{n}$, then

$$
\begin{equation*}
V(\Pi(K+L))^{1 / n(n-1)} \geq V(\Pi K)^{1 / n(n-1)}+V(\Pi L)^{1 / n(n-1)}, \tag{2}
\end{equation*}
$$

${ }^{1}$ Received 9 September, 2009
Accepted for publication (in revised form) 15 June, 2010
with equality if and only if $K$ and $L$ are homothetic.
On the other hand, width-integral of convex bodies and affine surface areas play an important role in the Brunn-Minkowski theory. Width-integrals were first considered by Blaschke ${ }^{[11]}$ and later by Hadwiger ${ }^{[12]}$. In addition, Lutwak had established the following results for the width-integrals of convex bodies and affine surface areas.

The Brunn-Minkowski inequality for width-integrals of convex bodies ${ }^{[10]}$

$$
\text { If } K, L \in \mathcal{K}^{n}, i<n-1
$$

$$
\begin{equation*}
B_{i}(K+L)^{1 /(n-i)} \leq B_{i}(K)^{1 /(n-i)}+B_{i}(L)^{1 /(n-i)} \tag{3}
\end{equation*}
$$

with equality if and only if $K$ and $L$ have similar width.
The Brunn-Minkowski inequality for affine surface area ${ }^{[9]}$ If $K, L \in \kappa^{n}$, and $i \in \mathbb{R}$, then for $i<-1$

$$
\begin{equation*}
\Omega_{i}(K \tilde{+} L)^{(n+1) /(n-i)} \leq \Omega_{i}(K)^{(n+1) /(n-i)}+\Omega_{i}(L)^{(n+1) /(n-i)} \tag{4}
\end{equation*}
$$

with equality if and only if $K$ and $L$ are homothetic, while for $i>-1$

$$
\begin{equation*}
\Omega_{i}(K \tilde{+} L)^{(n+1) /(n-i)} \geq \Omega_{i}(K)^{(n+1) /(n-i)}+\Omega_{i}(L)^{(n+1) /(n-i)} \tag{5}
\end{equation*}
$$

with equality if and only if $K$ and $L$ are homothetic.
In this paper, there are two purposes:
Firstly, we generalize inequality (3) to mixed projection bodies and get its inverse version.

Result $\mathbf{A}$ If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, let $C=\left(K_{3}, \ldots, K_{n}\right)$, then for $i<n-1$

$$
\begin{equation*}
B_{i}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 /(n-i)} \leq B_{i}\left(\Pi\left(C, K_{1}\right)\right)^{1 /(n-i)}+B_{i}\left(\Pi\left(C, K_{2}\right)^{1 /(n-i)}\right. \tag{6}
\end{equation*}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.
While for $i>n$ or $n>i>n-1$,

$$
\begin{equation*}
B_{i}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 /(n-i)} \geq B_{i}\left(\Pi\left(C, K_{1}\right)\right)^{1 /(n-i)}+B_{i}\left(\Pi\left(C, K_{2}\right)^{1 /(n-i)}\right. \tag{7}
\end{equation*}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.
Secondly, we prove that analogs of inequalities (4)-(5) for affine surface area of mixed bodies.

Result B If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and all of mixed bodies of $K_{1}, K_{2}, \ldots, K_{n}$ have positive continuous curvature functions, respectively, then for $i<-1$

$$
\Omega_{i}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}
$$

(8) $\leq \Omega_{i}\left(\left[K_{1}, K_{3}, K_{4} \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}+\Omega_{i}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}$.
with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

While for $i>-1$

$$
\Omega_{i}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}
$$

$$
\begin{equation*}
\geq \Omega_{i}\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}+\Omega_{i}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)} \tag{9}
\end{equation*}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

Please see the next section for above interrelated notations, definitions and their background materials.

## 2 Notations and Preliminary works

The setting for this paper is $n$-dimensional Euclidean space $\mathbb{R}^{n}(n>2)$. Let $\mathbb{C}^{n}$ denote the set of non-empty convex figures(compact, convex subsets) and $\mathcal{K}^{n}$ denote the subset of $\mathbb{C}^{n}$ consisting of all convex bodies (compact, convex subsets with non-empty interiors) in $\mathbb{R}^{n}$, and if $p \in \mathcal{K}^{n}$, let $\mathcal{K}_{p}^{n}$ denote the subset of $\mathcal{K}^{n}$ that contains the centered (centrally symmetric with respect to $p$ ) bodies. We reserve the letter $u$ for unit vectors, and the letter $B$ is reserved for the unit ball centered at the origin. The surface of $B$ is $S^{n-1}$. For $u \in S^{n-1}$, let $E_{u}$ denote the hyperplane, through the origin, that is orthogonal to $u$. We will use $K^{u}$ to denote the image of $K$ under an orthogonal projection onto the hyperplane $E_{u}$.

### 2.1 Mixed volumes

We use $V(K)$ for the $n$-dimensional volume of convex body $K$. Let $h(K, \cdot)$ : $S^{n-1} \rightarrow \mathbb{R}$, denote the support function of $K \in \mathcal{K}^{n}$; i.e.

$$
\begin{equation*}
h(K, u)=\operatorname{Max}\{u \cdot x: x \in K\}, u \in S^{n-1}, \tag{10}
\end{equation*}
$$

where $u \cdot x$ denotes the usual inner product $u$ and $x$ in $\mathbb{R}^{n}$.
Let $\delta$ denote the Hausdorff metric on $\mathcal{K}^{n}$; i.e., for $K, L \in \mathcal{K}^{n}$,

$$
\delta(K, L)=\left|h_{K}-h_{L}\right|_{\infty},
$$

where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C\left(S^{n-1}\right)$.

For a convex body $K$ and a nonnegative scalar $\lambda, \lambda K$, is used to denote $\{\lambda x: x \in K\}$. For $K_{i} \in \mathcal{K}^{n}, \lambda_{i} \geq 0,(i=1,2, \ldots, r)$, the Minkowski linear combination $\sum_{i=1}^{r} \lambda_{i} K_{i} \in \mathcal{K}^{n}$ is defined by

$$
\begin{equation*}
\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{r} x_{r} \in K^{n}: x_{i} \in K_{i}\right\} \tag{11}
\end{equation*}
$$

It is trivial to verify that

$$
\begin{equation*}
h\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}, \cdot\right)=\lambda_{1} h\left(K_{1}, \cdot\right)+\cdots+\lambda_{r} h\left(K_{r}, \cdot\right) \tag{12}
\end{equation*}
$$

If $K_{i} \in \mathcal{K}^{n}(i=1,2, \ldots, r)$ and $\lambda_{i}(i=1,2, \ldots, r)$ are nonnegative real numbers, then of fundamental impotence is the fact that the volume of $\sum_{i=1}^{r} \lambda_{i} K_{i}$ is a homogeneous polynomial in $\lambda_{i}$ given by [4]

$$
\begin{equation*}
V\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \cdots \lambda_{i_{n}} V_{i_{1} \ldots i_{n}} \tag{13}
\end{equation*}
$$

where the sum is taken over all $n$-tuples $\left(i_{1}, \ldots, i_{n}\right)$ of positive integers not exceeding $r$. The coefficient $V_{i_{1} \ldots i_{n}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$, and is uniquely determined by (13), it is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$, and is written as $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$. Let $K_{i_{1}}=\cdots=K_{n-i}=K$ and $K_{n-i+1}=$ $\cdots=K_{n}=L$, then the mixed volume $V\left(K_{1} \ldots K_{n}\right)$ is usually written $V_{i}(K, L)$. If $L=B$, then $V_{i}(K, B)$ is the $i$ th projection measure(Quermassintegral) of $K$ and is written as $W_{i}(K)$. With this notation, $W_{0}=V(K)$, while $n W_{1}(K)$ is the surface area of $K, S(K)$.

### 2.2 Width-integrals of convex bodies

For $u \in S^{n-1}, b(K, u)$ is defined to be half the width of $K$ in the direction $u$. Two convex bodies $K$ and $L$ are said to have similar width if there exists a constant $\lambda>0$ such that $b(K, u)=\lambda b(L, u)$ for all $u \in S^{n-1}$. For $K \in \mathcal{K}^{n}$ and $p \in \operatorname{int} K$, we use $K^{p}$ to denote the polar reciprocal of $K$ with respect to the unit sphere centered at $p$. The width-integral of index $i$ is defined by Lutwak ${ }^{[10]}$ : For $K \in \mathcal{K}^{n}, i \in \mathbb{R}$

$$
\begin{equation*}
B_{i}(K)=\frac{1}{n} \int_{S^{n-1}} b(K, u)^{n-i} d S(u) \tag{14}
\end{equation*}
$$

where $d S$ is the $(n-1)$-dimensional volume element on $S^{n-1}$.
The width-integral of index $i$ is a map

$$
B_{i}: \mathcal{K}^{n} \rightarrow \mathbb{R}
$$

It is positive, continuous, homogeneous of degree $n-i$ and invariant under motion. In addition, for $i \leq n$ it is also bounded and monotone under set inclusion.

The following results ${ }^{[10]}$ will be used later

$$
\begin{gather*}
b(K+L, u)=b(K, u)+b(L, u),  \tag{15}\\
B_{2 n}(K) \leq V\left(K^{p}\right), \tag{16}
\end{gather*}
$$

with equality if and only if $K$ is symmetric with respect to $p$.

### 2.3 The radial function and the Blaschke linear combination

The radial function of convex body $K, \rho(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, defined for $u \in S^{n-1}$, by

$$
\rho(K, \cdot)=\operatorname{Max}\{\lambda \geq 0: \lambda \mu \in K\}
$$

If $\rho(K, \cdot)$ is positive and continuous, $K$ will be call a star body. Let $\varphi^{n}$ denote the set of star bodies in $\mathbb{R}^{n}$.

A convex body $K$ is said to have a positive continuous curvature function ${ }^{[5]}$,

$$
f(K, \cdot): S^{n-1} \rightarrow[0, \infty)
$$

if for each $L \in \varphi^{n}$, the mixed volume $V_{1}(K, L)$ has the integral representation

$$
V_{1}(K, L)=\frac{1}{n} \int_{S^{n-1}} f(K, u) h(L, u) d S(u)
$$

The subset of $\mathcal{K}^{n}$ consisting of bodies which have a positive continuous curvature function will be denoted by $\kappa^{n}$. Let $\kappa_{c}^{n}$ denote the set of centrally symmetric member of $\kappa^{n}$.

The following result is true ${ }^{[6]}$, for $K \in \kappa^{n}$

$$
\int_{S^{n-1}} u f(K, u) d S(u)=0
$$

Suppose $K, L \in \kappa^{n}$ and $\lambda, \mu \geq 0$ (not both zero). From above it follows that the function $\lambda f(K, \cdot)+\mu f(L, \cdot)$ satisfies the hypothesis of Minkowski's existence theorem(see [13]). The solution of the Minkowski problem for this function is denoted by $\lambda \cdot K \tilde{+} \mu \cdot L$ that is

$$
\begin{equation*}
f(\lambda \cdot K \tilde{+} \mu \cdot L, \cdot)=\lambda f(K, \cdot)+\mu f(L, \cdot), \tag{17}
\end{equation*}
$$

where the linear combination $\lambda \cdot K \tilde{+} \mu \cdot L$ is called a Blaschke linea combination.

The relationship between Blaschke and Minkowski scalar multiplication is given by

$$
\begin{equation*}
\lambda \cdot K=\lambda^{1 /(n-1)} K \tag{18}
\end{equation*}
$$

### 2.4 Mixed affine area and mixed bodies

The affine surface area of $K \in \kappa^{n}, \Omega(K)$, is defined by

$$
\begin{equation*}
\Omega(K)=\int_{S^{n-1}} f(K, u)^{n /(n+1)} d S(u) \tag{19}
\end{equation*}
$$

It is well known that this functional is invariant under unimodular affine transformations. For $K, L \in \kappa^{n}$, and $i \in \mathbb{R}$, the $i$ th mixed affine surface area of $K$ and $L, \Omega_{i}(K, L)$, was defined in ${ }^{[5]}$ by

$$
\begin{equation*}
\Omega_{i}(K, L)=\int_{S^{n-1}} f(K, u)^{(n-i) /(n+1)} f(L, u)^{i /(n+1)} d S(u) \tag{20}
\end{equation*}
$$

Now, we define the $i$ th affine area of $K \in \kappa^{n}, \Omega_{i}(K)$, to be $\Omega_{i}(K, B)$, since $f(B, \cdot)=1$ one has

$$
\begin{equation*}
\Omega_{i}(K)=\int_{S^{n-1}} f(K, u)^{(n-i) /(n+1)} d S(u), \quad i \in \mathbb{R} \tag{21}
\end{equation*}
$$

Lutwak ${ }^{[8]}$ defined mixed bodies of convex bodies $K_{1}, \ldots, K_{n-1}$ as $\left[K_{1}, \ldots, K_{n-1}\right]$. The following property will be used later:

$$
\begin{equation*}
\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]=\left[K_{1}, K_{3}, \ldots, K_{n}\right] \tilde{+}\left[K_{2}, K_{3}, \ldots, K_{n}\right] \tag{22}
\end{equation*}
$$

### 2.5 Mixed projection bodies and their polars

If $K$ is a convex that contains the origin in its interior, we define the polar body of $K, K^{*}$,by

$$
\begin{equation*}
K^{*}:=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \leq 1, y \in K\right\} \tag{23}
\end{equation*}
$$

If $K_{i}(i=1,2, \ldots, n-1) \in K^{n}$, then the mixed projection body of $K_{i}(i=$ $1,2, \ldots, n-1)$ is denoted by $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$, and whose support function is given, for $u \in S^{n-1}$, by ${ }^{[7]}$

$$
\begin{equation*}
h\left(\Pi\left(K_{1}, \ldots, K_{n-1}\right), u\right)=v\left(K_{1}^{u}, \ldots, K_{n-1}^{u}\right) \tag{24}
\end{equation*}
$$

It is easy to see, $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$ is centered.

We use $\Pi^{*}\left(K_{1}, \ldots, K_{n-1}\right)$ to denote the polar body of $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$, and is called polar of mixed projection body of $K_{i}(i=1,2, \ldots, n-1)$. If $K_{1}=$ $\cdots=K_{n-1-i}=K$ and $K_{n-i}=\cdots=K_{n-1}=L$, then $\Pi\left(K_{1}, \ldots, K_{n-1}\right)$ will be written as $\Pi_{i}(K, L)$. If $L=B$, then $\Pi_{i}(K, B)$ is called the $i$ th projection body of $K$ and is denoted $\Pi_{i} K$. We write $\Pi_{0} K$ as $\Pi K$. We will simply write $\Pi_{i}^{*} K$ and $\Pi^{*} K$ rather than $\left(\Pi_{i} K\right)^{*}$ and $(\Pi K)^{*}$,respectively.

The following property will be used:
(25) $\quad \Pi\left(K_{3}, \ldots, K_{n}, K_{1}+K_{2}\right)=\Pi\left(K_{3}, \ldots, K_{n}, K_{1}\right)+\Pi\left(K_{3}, \ldots, K_{n}, K_{2}\right)$

## 3 Main results and their proofs

Our main results are The following Theorems which were stated in the introduction.

Theorem 1 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, let $C=\left(K_{3}, \ldots, K_{n}\right)$, then for $i<n-1$

$$
\begin{equation*}
B_{i}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 /(n-i)} \leq B_{i}\left(\Pi\left(C, K_{1}\right)\right)^{1 /(n-i)}+B_{i}\left(\Pi\left(C, K_{2}\right)^{1 /(n-i)}\right. \tag{26}
\end{equation*}
$$ with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.

While for $i>n$,
(27) $B_{i}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 /(n-i)} \geq B_{i}\left(\Pi\left(C, K_{1}\right)\right)^{1 /(n-i)}+B_{i}\left(\Pi\left(C, K_{2}\right)^{1 /(n-i)}\right.$, with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.

Proof Here, we only give the proof of (27).
From (12), (14),(15),(25) and notice for $i>n$ to use inverse the Minkowski inequality for integral ${ }^{[14, P .147]}$, we obtain that

$$
\begin{gathered}
B_{i}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 /(n-i)}=\left(\frac{1}{n} \int_{S^{n-1}} b\left(\Pi\left(C, K_{1}+K_{2}\right), u\right)^{n-i} d S(u)\right)^{1 /(n-i)} \\
=\left(\frac{1}{n} \int_{S^{n-1}} b\left(\Pi\left(C, K_{1}\right)+\Pi\left(C, K_{2}\right), u\right)^{n-i} d S(u)\right)^{1 /(n-i)} \\
=\left(\frac{1}{n} \int_{S^{n-1}}\left(b\left(\Pi\left(C, K_{1}\right), u\right)+b\left(\Pi\left(C, K_{2}\right), u\right)\right)^{n-i} d S(u)\right)^{1 /(n-i)} \\
\geq\left(\frac{1}{n} \int_{S^{n-1}} b\left(\Pi\left(C, K_{1}\right), u\right)^{n-i} d S(u)\right)^{1 /(n-i)}+ \\
\quad+\left(\frac{1}{n} \int_{S^{n-1}} b\left(\Pi\left(C, K_{1}\right), u\right)^{n-i} d S(u)\right)^{1 /(n-i)}
\end{gathered}
$$

$$
=B_{i}\left(\Pi\left(C, K_{1}\right)\right)^{1 /(n-i)}+B_{i}\left(\Pi\left(C, K_{2}\right)\right)^{1 /(n-i)}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ have similar width, in view of $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are centered (centrally symmetric with respect to origin), then with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.

The proof of inequality (27) is complete.
Taking $i=0$ to (26), inequality (26) changes to the following result
Corollary 1 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, let $C=\left(K_{3}, \ldots, K_{n}\right)$, then

$$
\begin{equation*}
B\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{1 / n} \leq B\left(\Pi\left(C, K_{1}\right)\right)^{1 / n}+B\left(\Pi\left(C, K_{2}\right)^{1 / n}\right. \tag{28}
\end{equation*}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.
Taking $i=2 n$ to (27), inequality (27) changes to the following result
Corollary 2 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, let $C=\left(K_{3}, \ldots, K_{n}\right)$, then

$$
\begin{equation*}
B_{2 n}\left(\Pi\left(C, K_{1}+K_{2}\right)\right)^{-1 / n} \geq B_{2 n}\left(\Pi\left(C, K_{1}\right)\right)^{-1 / n}+B_{2 n}\left(\Pi\left(C, K_{2}\right)^{-1 / n}\right. \tag{29}
\end{equation*}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.
From (16),(29) and notice that projection body is centered(centrally symmetric with respect to origin), we get

Corollary 3 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$, let $C=\left(K_{3}, \ldots, K_{n}\right)$, then

$$
\begin{equation*}
V\left(\Pi^{*}\left(C, K_{1}+K_{2}\right)\right)^{-1 / n} \geq V\left(\Pi^{*}\left(C, K_{1}\right)^{-1 / n}+V\left(\Pi^{*}\left(C, K_{2}\right)\right)^{-1 / n}\right. \tag{30}
\end{equation*}
$$

with equality if and only if $\Pi\left(C, K_{1}\right)$ and $\Pi\left(C, K_{2}\right)$ are homothetic.
This is just Brunn-Minkowski inequality of polars of mixed projection bodies. This result first is given in here.

Theorem 2 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and all of mixed bodies of $K_{1}, K_{2}, \ldots, K_{n}$ have positive continuous curvature functions, then for $i<-1$

$$
\Omega_{i}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}
$$

$$
\begin{equation*}
\leq \Omega_{i}\left(\left[K_{1}, K_{3}, K_{4} \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}+\Omega_{i}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)} \tag{31}
\end{equation*}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

While for $i>-1$

$$
\Omega_{i}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}
$$

$(32) \geq \Omega_{i}\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}+\Omega_{i}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}$
with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

Proof Firstly, we give the proof of (31).
From (17), (21),(22) and in view of the Minkowski inequality for integral ${ }^{[14, P .147]}$, we obtain that

$$
\begin{gathered}
\Omega_{i}\left(\left[K_{1}+K_{2}, K_{3}, K_{4}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)} \\
=\left(\int_{S^{n-1}} f\left(\left[K_{1}+K_{2}, K_{3}, K_{4}, \ldots, K_{n}\right], u\right)^{(n-i) /(n+1)} d S(u)\right)^{(n+1) /(n-i)} \\
=\left(\int_{S^{n-1}} f\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right] \tilde{+}\left[K_{2}, K_{3}, \ldots, K_{n}\right], u\right)^{(n-i) /(n+1)} d S(u)\right)^{(n+1) /(n-i)} \\
=\left(\int_{S^{n-1}}\left(f\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right], u\right)+f\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right], u\right)\right)^{(n-i) /(n+1)} d S(u)\right)^{(n+1) /(n-i)} \\
\leq\left(\int_{S^{n-1}} f\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right], u\right)^{(n-i) /(n+1)} d S(u)\right)^{(n+1) /(n-i)} \\
\quad+\left(\int_{S^{n-1}} f\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right], u\right)^{(n-i) /(n+1)} d S(u)\right)^{(n+1) /(n-i)} \\
=\Omega_{i}\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)}+\Omega_{i}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) /(n-i)},
\end{gathered}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3}, \ldots, K_{n}\right]$ are homothetic.

Similarly, from (17),(21),(22) and in view of inverse Minkowski inequality ${ }^{[14, P .147]}$, we can also prove (32).

The proof of Theorem 2 is complete.
Taking $i=0$ to (32), we have
Corollary 4 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and all of mixed bodies of $K_{1}, K_{2}, \ldots, K_{n}$ have positive continuous curvature functions, then

$$
\Omega\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) / n}
$$

$$
\begin{equation*}
\geq \Omega\left(\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]\right)^{(n+1) / n}+\Omega\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) / n} \tag{33}
\end{equation*}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

Taking $i=2 n$ to (32), inequality (32) changes to the following result
Corollary 5 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and all of mixed bodies of $K_{1}, K_{2}, \ldots, K_{n}$ have positive continuous curvature functions, then

$$
\Omega_{2 n}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{-(n+1) / n}
$$

$$
\begin{equation*}
\geq \Omega_{2 n}\left(\left[K_{1}, K_{3}, K_{4} \ldots, K_{n}\right]\right)^{-(n+1) / n}+\Omega_{2 n}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{-(n+1) / n} \tag{34}
\end{equation*}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

Taking $i=-n$ to (31), we have
Corollary 6 If $K_{1}, K_{2}, \ldots, K_{n} \in \mathcal{K}^{n}$ and all of mixed bodies of $K_{1}, K_{2}, \ldots, K_{n}$ have positive continuous curvature functions, then

$$
\Omega_{-n}\left(\left[K_{1}+K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) / 2 n}
$$

$$
\begin{equation*}
\leq \Omega_{-n}\left(\left[K_{1}, K_{3}, K_{4} \ldots, K_{n}\right]\right)^{(n+1) / 2 n}+\Omega_{-n}\left(\left[K_{2}, K_{3}, \ldots, K_{n}\right]\right)^{(n+1) / 2 n} \tag{35}
\end{equation*}
$$

with equality if and only if $\left[K_{1}, K_{3}, K_{4}, \ldots, K_{n}\right]$ and $\left[K_{2}, K_{3} \ldots, K_{n}\right]$ are homothetic.

## Acknowledgments

This research is supported by National Natural Sciences Foundation of China (10971205) and Zhejiang Natural Sciences Foundation of China (Z6100369).

## References

[1] K. Ball, Volume of sections of cubes and related problems, Israel Seminar (G.A.F.A.) 1988, Lecture Notes in Math. Vol.1376, Springer-Verlag, Berlin and New York, 1989, 251-260.
[2] J.Bourgain and J.Lindenstrauss, Projection bodies, Israel Seminar(G.A.F.A) 1986-1987, Lecture Notes in Math. Vol.1317, SpringerVerlag, Berlin and New York, 1988, 250-270.
[3] R. J. Gardner, Geometric Tomography, Cambridge: Cambridge University Press, 1995.
[4] R. Schneider, Convex bodies: The Brunn-Minkowski Theory, Cambridge: Cambridge University Press, 1993.
[5] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60, 1990, 365-391.
[6] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287, 1985, 92-106.
[7] E. Lutwak, Inequalities for mixed projection, Trans. Amer. Math. Soc. 339, 1993, 901-916.
[8] E. Lutwak, Volume of mixed bodies, Trans. Amer. Math. Soc. 294, 1986, 487-500.
[9] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl. 125, 1987, 351-360.
[10] E. Lutwak, Width-integrals of convex bodies, Proc. Amer. Math. Soc. 53, 1975, 435-439.
[11] W. Blaschke, Vorlesungen über Integral geometric I, II, Teubner, Leipzig, 1936, 1937; reprint, chelsea, New York, 1949.
[12] Hadwiger H, Vorlesungen über inhalt, Oberfläche und isoperimetrie, Springer, Berlin, 1957.
[13] T. Bonnesen and W, Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
[14] G. H. Hardy , J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press. Cambridge, 1934.

Zhao Chang-jian
Department of Information and Mathematics Sciences
China Jiliang University
Hangzhou 310018, P.R.China
e-mail: chjzhao@yahoo.com.cn chjzhao@163.com
Mihály Bencze
Str. Hǎrmanului 6
505600 Sǎcele-Négyfalu
Jud. Braşov, Romania
e-mail: benczemihaly@yahoo.com aedit@metanet.ro

