Certain Aspects of Some Arithmetic Functions in Number Theory ${ }^{1}$

Nicuşor Minculete, Petrică Dicu

Abstract

The purpose of this paper is to present several inequalities about the arithmetic functions $\sigma^{(e)}, \tau^{(e)}, \sigma^{(e) *}, \tau^{(e) *}$ and other well-known arithmetic functions. Among these, we have the following: $$
\frac{\sqrt{\sigma_{k}^{*}(n) \cdot \sigma_{l}^{*}(n)}}{\sigma_{\frac{k-l}{*}}^{*}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{*}(n)+n^{\frac{k-l}{4}} \cdot \sigma_{l}^{*}(n)}{2 \cdot \sigma_{\frac{k-l}{2}}(n)} \leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}
$$ for any $n, k, l \in \mathbb{N}^{*}$, $$
\frac{\sqrt{\sigma_{k}^{(e) *}(n) \cdot \tau^{(e) * *}(n)}}{\sigma_{\frac{k-l}{2}}^{(1) *}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{(e) *}(n)+n^{\frac{k-l}{4}} \cdot \tau^{(e) *}(n)}{2 \cdot \sigma_{\frac{k-l}{2}}^{(e) *}(n)} \leq
$$ $\leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}$, for any $n, k, l \in \mathbb{N}^{*}, \quad \sigma_{k}^{(e)}(n) \cdot \sigma_{l}^{(e)}(n) \leq \tau^{(e)}(n)$. $\sigma_{k+l}^{(e)}(n)$, for any $n, k, l \in \mathbb{N}^{*}$ and $\frac{\sigma_{k+1}^{(e) *}(n)}{\sigma_{k}^{(e) *}(n)} \geq \frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \geq \tau(n)$, for any $n, k \in \mathbb{N}^{*}$, where $\tau(n)$ is the number of the natural divisors of n and $\sigma(n)$ is the sum of the divisors of n.

2000 Mathematics Subject Classification: 11A25

Key words and phrases: the sum of the natural divisors of n, the number of the natural divisors of n, the sum of the k th powers of the unitary divisors of n, the number of the unitary divisors of n, the sum of the exponential divisors of n, the number of the exponential divisors of n, the sum of the e-unitary divisors of n, and the number of the e-unitary divisors of n.

[^0]
1 Introduction

Let n be a positive integer, $n \geq 1$. We note with $\sigma_{k}(n)$ the sum of the k th powers of divisors of n, so, $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, whence we obtain the following equalities: $\sigma_{1}(n)=\sigma(n)$ and $\sigma_{0}(n)=\tau(n)$ - the number of divisors of n (see [6]). If d is a unitary divisor of n, then we have $\left(d, \frac{n}{d}\right)=1$. Let $\sigma_{k}^{*}(n)$ denote the sum of the k th powers of the unitary divisors of n. We note $d \| n$.
Next we have to mention that the notion of "exponential divisor" was introduced M. V. Subbarao in [9].
Let $n>1$ be an integer of canonical from $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$.
The integer $d=\prod_{i=1}^{r} p_{i}^{b_{i}}$ is called an exponential divisor (or e-divisor) of $n=$ $\prod_{i=1}^{r} p_{i}^{a_{i}}>1$, if $b_{i} \mid a_{i}$ for every $i=\overline{1, r}$. We note $\left.d\right|_{(e)} n$. Let $\sigma^{(e)}(n)$ denote the sum of the exponential divisors of n and $\tau^{(e)}(n)$ denote the number of the exponential divisors of n. In [11] L. Tóth and N. Minculete introduced the notion of " exponential unitary divisors" or "e-unitary divisors". The integer $d=\prod_{i=1}^{r} p_{i}^{b_{i}}$ is called a e-unitary divisor of $n=\prod_{i=1}^{r} p_{i}^{a_{i}}>1$ if b_{i} is a unitary divisor of a_{i}, so $\left(b_{i}, \frac{a_{i}}{b_{i}}\right)=1$, for every $i=\overline{1, r}$. Let $\sigma^{(e) *}(n)$ denote the sum of e-unitary divisor of n, and $\tau^{(e) *}(n)$ denote the number of the e-unitary divisors of n. We note $\left.d\right|_{(e) *}$. By convention, 1 is an e-unitary divisor of $n>1$, the smallest e-unitary divisor of $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$ is $p_{1} p_{2} \ldots p_{r}$, where $p_{1} p_{2} \ldots p_{r}=\gamma(n)$ is called the "core" of n.
Other aspects of these arithmetic function can be found in the papers [7] and [10].
In [6], J. Sándor shows that

$$
\begin{equation*}
\frac{\sqrt{\sigma_{k}(n) \cdot \sigma_{l}(n)}}{\sigma_{\frac{k-l}{2}}(n)} \leq n^{\frac{-(k-l)}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}, \text { for all } n, k, l \in \mathbb{N}^{*} \tag{1}
\end{equation*}
$$

In [8], J. Sándor and L. Tóth proved the inequalities

$$
\begin{equation*}
\frac{n^{k}+1}{2} \geq \frac{\sigma_{k}^{*}(n)}{\tau^{*}(n)} \geq \sqrt{n^{k}} \tag{2}
\end{equation*}
$$

and
(3)

$$
\frac{\sigma_{k+m}^{*}}{\sigma_{m}^{*}(n)} \geq \sqrt{n^{k}}
$$

for all $n \geq 1$ and $k, m \geq 0$, real numbers.
In $[3,4]$, we found the inequalities
(4) $\frac{\sqrt{\sigma_{k}(n) \cdot \sigma_{l}(n)}}{\sigma_{\frac{k-l}{2}}(n)} \leq \frac{n^{\frac{l-k}{4}} \sigma_{k}(n)+n^{\frac{k-l}{4}} \sigma_{l}(n)}{2 \sigma_{\frac{k-l}{2}}(n)} \leq n^{\frac{-(k-l)}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}$,
for every $n, k, l \in \mathbb{N}$ with $n \geq 1$ and $\frac{k-l}{2} \in \mathbb{N}$,
(5) $\quad \frac{\sqrt{\sigma_{k+2}(n) \cdot \sigma_{k}(n)}}{\sigma(n)} \leq \frac{\frac{1}{\sqrt{n}} \sigma_{k+2}(n)+\sqrt{n} \sigma_{k}(n)}{2 \sigma(n)} \leq \frac{1}{\sqrt{n}} \cdot \frac{n^{k+1}+1}{2}$,
for every $n, k \in \mathbb{N}$ and $n \geq 1$,
(6) $\frac{\sqrt{\sigma_{k}^{(e)}(n) \tau^{(e)}(n)}}{\sigma_{\frac{k-l}{2}}(n)} \leq \frac{n^{\frac{l-k}{4}} \sigma_{k}^{(e)}(n)+n^{\frac{k-l}{4}} \tau^{(e)}(n)}{2 \sigma_{\frac{k-l}{2}}^{(e)}(n)} \leq n^{\frac{-(k-l)}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}$,
for every $n, k, l \in \mathbb{N}$ with $n \geq 1$ and $\frac{k-l}{2} \in \mathbb{N}$,
(7) $\quad \frac{\sqrt{\sigma_{k+2}^{(e)}(n) \cdot \tau^{(e)}(n)}}{\sigma^{(e)}(n)} \leq \frac{\frac{1}{\sqrt{n}} \sigma_{k+2}^{(e)}(n)+\sqrt{n} \tau^{(e)}(n)}{2 \sigma^{(e)}(n)} \leq \frac{1}{\sqrt{n}} \cdot \frac{n^{k+1}+1}{2}$,
for every $n, k \in \mathbb{N} n \geq 1$,

$$
\begin{equation*}
\frac{\sqrt{\sigma_{k}^{(e)}(n) \cdot \tau^{(e)}(n)}}{\tau^{(e)}(n)} \leq \frac{\sigma_{k}^{(e)}(n)+\tau^{(e)}(n)}{2 \tau^{(e)}(n)} \leq \frac{n^{k}+1}{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{k}^{(e)}(n)}{\tau^{(e)}} \leq\left(\frac{n^{k}+1}{2}\right)^{2} \tag{9}
\end{equation*}
$$

for every $n, k \in \mathbb{N}$ and $n \geq 1$.

2 Main results

An inequality which is due to J.B. Diaz and F.T. Matcalf is proved in [2], namely:

Lemma 1 Let n be a positive integer, $n \geq 2$. For every $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ and for every $b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{R}^{*}$ with $m \leq \frac{a_{i}}{b_{i}} \leq M$ and $m, M \in \mathbb{R}$, we have the following inequality:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2}+m M \sum_{i=1}^{n} b_{i}^{2} \leq(m+M) \sum_{i=1}^{n} a_{i} b_{i} \tag{10}
\end{equation*}
$$

Theorem 1 For every $n, k, l \in \mathbb{N}$ with $n \geq 1$ and $\frac{k-l}{2} \in \mathbb{N}$, the following relation

$$
\begin{equation*}
\frac{\sqrt{\sigma_{k}^{*}(n) \cdot \sigma_{l}^{*}(n)}}{\sigma_{\frac{k-l}{*}}^{*}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{*}(n)+n^{\frac{k-l}{4}} \cdot \sigma_{l}^{*}(n)}{2 \cdot \sigma_{\frac{k-l}{*}}(n)} \leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2} \tag{11}
\end{equation*}
$$

is true.

Proof. For $n=1$, we have equality in relation (11). For $n \geq 2$, in the Lemma above, making the substitutions $a_{i}=\sqrt{d_{i}^{k}}$ and $b_{i}=\frac{1}{\sqrt{d_{i}^{l}}}$, where d_{i} is the unitary divisors of n, for all $i=\overline{1, \tau^{*}(n)}$. Since $1 \leq \frac{a_{i}}{b_{i}}=\sqrt{d_{i}^{k+l}} \leq n^{\frac{k+l}{2}}$ and $a_{i} b_{i}=d_{i}^{\frac{k-l}{2}}$, we take $m=1$ and $M=n^{\frac{k+l}{2}}$. Therefore, inequality (10) becomes

$$
\sum_{i=1}^{\tau^{*}(n)} d_{i}^{k}+n^{\frac{k+l}{2}} \cdot \sum_{i=1}^{\tau^{*}(n)} \frac{1}{d_{i}^{l}} \leq\left(1+n^{\frac{k+l}{2}}\right) \sum_{i=1}^{\tau^{*}(n)} d_{i}^{\frac{k-l}{2}}
$$

which is equivalent to

$$
\sigma_{k}^{*}(n)+n^{\frac{k+l}{2}} \cdot \frac{\sigma_{l}^{*}(n)}{n^{l}} \leq\left(1+n^{\frac{k+l}{2}}\right) \cdot \sigma_{\frac{k-l}{2}}^{*}(n)
$$

so that

$$
\begin{equation*}
\sigma_{k}^{*}(n)+n^{\frac{k-l}{2}} \cdot \sigma_{l}^{*}(n) \leq\left(1+n^{\frac{k+l}{2}}\right) \cdot \sigma_{\frac{k-l}{2}}^{*}(n) \tag{12}
\end{equation*}
$$

for every $n, k, l \in \mathbb{N}$ with $n \geq 2$.

The arithmetical mean is greater than the geometrical mean or they are equal, so for every $n, k, l \in \mathbb{N}$ with $n \geq 2$, we have

$$
\begin{equation*}
\sqrt{n^{\frac{k-l}{2}} \cdot \sigma_{k}^{*}(n) \cdot \sigma_{l}^{*}(n)} \leq \frac{\sigma_{k}^{*}(n)+n^{\frac{k-l}{2}} \cdot \sigma_{l}^{*}(n)}{2} \tag{13}
\end{equation*}
$$

Consequently, from the relations (12) and (13) and taking into account that the relation " \leq " is transitive, we deduce the inequality

$$
\frac{\sqrt{\sigma_{k}^{*}(n) \cdot \sigma_{l}^{*}(n)}}{\sigma_{\frac{k-l}{*}}^{*}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{*}(n)+n^{\frac{k-l}{4}} \cdot \sigma_{l}^{*}(n)}{2 \cdot \sigma_{\frac{k-l}{*}}^{*}(n)} \leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}
$$

Remark 1 For $k=l$ in inequality (11), we obtain the relation of J. Sándor and L. Tóth, namely

$$
\begin{equation*}
\frac{n^{k}+1}{2} \geq \frac{\sigma_{k}^{*}(n)}{\tau^{*}(n)} \tag{14}
\end{equation*}
$$

for every $n, k \in \mathbb{N}$ with $n \geq 1$.
Theorem 2 For every $n, k, l \in \mathbb{N}$ with $n \geq 1$ and $\frac{k-l}{2} \in \mathbb{N}$, the following relation
(15)

$$
\frac{\sqrt{\sigma_{k}^{(e) *}}(n) \cdot \tau^{(e) *}(n)}{\sigma_{\frac{k-l}{2}}^{(e) *}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{(e) *}(n)+n^{\frac{k-l}{4}} \cdot \tau^{(e) *}(n)}{2 \cdot \sigma_{\frac{k-l}{2}}^{(e) *}(n)} \leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}
$$

is true.
Proof. For $n=1$, we have equality in relation (15). For $n \geq 2$, in the Lemma above, making the substitutions $a_{i}=\sqrt{d_{i}^{k}}$ and $b_{i}=\frac{1}{\sqrt{d_{i}^{l}}}$, where d_{i} is the e-unitary divisor of n, for all $i=\overline{1, \tau^{(e) *}(n)}$. Since $\frac{k-l}{2} \in \mathbb{N}$, we have $k \geq l$, so, we deduce $1 \leq \frac{a_{i}}{b_{i}}=\sqrt{d_{i}^{k+l}} \leq n^{\frac{k+l}{2}}$ and $a_{i} b_{i}=d_{i}^{\frac{k-l}{2}}$. Hence, we take $m=1$ and $M=n^{\frac{k+l}{2}}$.
Therefore, inequality (10) becomes

$$
\sum_{i=1}^{\tau^{(e) *}(n)} d_{i}^{k}+n^{\frac{k+l}{2}} \cdot \sum_{i=1}^{\tau^{(e) *}(n)} \frac{1}{d_{i}^{l}} \leq\left(1+n^{\frac{k+l}{2}}\right)^{\tau^{(e) *}(n)} \sum_{i=1}^{\frac{k-l}{2}} d_{i}
$$

which is equivalent to

$$
\sigma^{(e) *}(n)+n^{\frac{k+l}{2}} \cdot \sum_{i=1}^{\tau^{(e) *}(n)} \frac{1}{d_{i}^{l}} \leq\left(1+n^{\frac{k+l}{2}}\right) \sigma_{\frac{k-l}{2}}^{(e) *}
$$

But

$$
\sum_{i=1}^{\tau^{(e) *}(n)} \frac{1}{d_{i}^{l}} \geq \sum_{i=1}^{\tau^{(e) *}(n)} \frac{1}{n^{l}}=\frac{\tau^{(e) *}(n)}{n^{l}}
$$

Therefore, we obtain the inequality

$$
\sigma_{k}^{(e) *}(n)+n^{\frac{k+l}{2}} \cdot \frac{\tau^{(e) *}(n)}{n^{l}} \leq\left(1+n^{\frac{k+l}{2}}\right) \cdot \sigma_{\frac{k-l}{2}}^{(e) *}(n)
$$

which means that

$$
\begin{equation*}
\sigma_{k}^{(e) *}(n)+n^{\frac{k-l}{2}} \cdot \tau^{(e) *}(n) \leq\left(1+n^{\frac{k+l}{2}}\right) \cdot \sigma_{\frac{k-l}{2}}^{(e) *}(n) \tag{16}
\end{equation*}
$$

for every $n, k, l \in \mathbb{N}$ with $n \geq 2$.
The arithmetical mean is greater than the geometrical mean or they are equal, so for every $n, k, l \in \mathbb{N}$ with $n \geq 2$, we have

$$
\begin{equation*}
\sqrt{n^{\frac{k-l}{2}} \cdot \sigma_{k}^{(e) *}(n) \cdot \tau^{(e) *}(n)} \leq \frac{\sigma_{k}^{(e) *}(n)+n^{\frac{k-l}{2}} \cdot \tau^{(e) *}(n)}{2} \tag{17}
\end{equation*}
$$

Consequently, from the relations (16) and (17), we deduce the inequality

$$
\frac{\sqrt{\sigma_{k}^{(e) *}(n) \cdot \tau^{(e) *}(n)}}{\sigma_{\frac{k-l}{2}}^{(e) *}(n)} \leq \frac{n^{\frac{l-k}{4}} \cdot \sigma_{k}^{(e) *}(n)+n^{\frac{k-l}{4}} \cdot \tau^{(e) *}(n)}{2 \cdot \sigma_{\frac{k-l}{2}}^{(e) *}(n)} \leq n^{\frac{l-k}{4}} \cdot \frac{n^{\frac{k+l}{2}}+1}{2}
$$

Remark 2 For $k=l$, we obtain the relation

$$
\begin{equation*}
\frac{\sigma_{k}^{(e) *}(n)}{\tau^{(e) *}(n)} \leq\left(\frac{n^{k}+1}{2}\right)^{2} \tag{18}
\end{equation*}
$$

for every $n, k \in \mathbb{N}$ with $n \geq 1$.
Remark 3 For $k=l=1$, we obtain the relation

$$
\begin{equation*}
\sqrt{\frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)}} \leq \frac{\sigma^{(e) *}(n)+\tau^{(e) *}(n)}{2 \cdot \tau^{(e) *}(n)} \leq \frac{n+1}{2} \tag{19}
\end{equation*}
$$

for every $n, k \in \mathbb{N}$ with $n \geq 1$.

Remark 4 From inequality (19), we deduce another simple inequality, namely

$$
\begin{equation*}
\frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \leq n \tag{20}
\end{equation*}
$$

for every $n \geq 1$.
Theorem 3 For every $n, k, l \in \mathbb{N}$ with $n \geq 1$, there are the following relations:

$$
\begin{gather*}
\sigma_{k}^{(e)}(n) \cdot \sigma_{l}^{(e)}(n) \leq \tau^{(e)}(n) \cdot \sigma_{k+l}^{(e)}(n) \tag{21}\\
\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq\left(\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)}\right)^{k-l} \geq \tau^{k-l}(n) \tag{22}\\
\frac{\sigma_{k+1}^{(e)}(n)}{\sigma_{k}^{(e)}(n)} \geq \tau(n) \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{k+1}^{(e)}(n)}{\sigma_{k}^{(e)}(n)} \geq \frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \tau(n) \tag{24}
\end{equation*}
$$

Proof. For $n=1$, we obtain equality in the relation above.
Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$. We apply Chebyshev's Inequality for oriented system and, we deduce the inequality

$$
\sigma_{k}^{(e)}(n) \cdot \sigma_{l}^{(e)}(n)=\sum_{\left.d\right|_{(e)} n} d^{k} \cdot \sum_{\left.d\right|_{(e)} n} d^{l} \leq \tau^{(e)}(n) \sum_{\left.d\right|_{(e)^{n}}} d^{k+l}=\tau^{(e)}(n) \sigma_{k+l}^{(e)}
$$

so

$$
\sigma_{k}^{(e)}(n) \cdot \sigma_{l}^{(e)}(n) \leq \tau^{(e)}(n) \cdot \sigma_{k+l}^{(e)}(n)
$$

From [1], we shall use the inequality

$$
\frac{a_{1}^{k}+a_{2}^{k}+\ldots+a_{n}^{k}}{a_{1}^{l}+a_{2}^{l}+\ldots+a_{n}^{l}} \geq\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{k-l}
$$

for every $a_{1}, a_{2}, \ldots, a_{n}>0$ and for all $k, l \in \mathbb{N}$ with $k \geq l$, and by replacing a_{1}, a_{2}, \ldots, with the exponential divisors of n, we obtain the following inequality:

$$
\frac{\sum_{\left.d\right|_{(e)} n} d^{k}}{\sum_{\left.d\right|_{(e)} n} d^{l}} \geq\left(\frac{\sum_{\left.d\right|_{(e)} n} d}{\tau^{(e)}(n)}\right)^{k-l}
$$

which is equivalent to

$$
\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq\left(\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)}\right)^{k-l}
$$

We know from [5] that $\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \tau(n)$ and from the inequality $\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq\left(\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)}\right)^{k-l}$, we deduce an interesting inequality, namely

$$
\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq \tau^{k-l}(n) .
$$

We observe that making the substitution $k \rightarrow k+1$ and $l \rightarrow k$ in inequality

$$
\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq\left(\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)}\right)^{k-l},
$$

we have

$$
\frac{\sigma_{k+1}^{(e)}(n)}{\sigma_{k}^{(e)}(n)} \geq \tau(n)
$$

If we assign values of k from 1 to $k-1$, we have the following relations:

$$
\begin{aligned}
\sigma_{k}^{(e)}(n) & \geq \tau(n) \sigma_{k-1}^{(e)}(n), \\
\sigma_{k-1}^{(e)}(n) & \geq \tau(n) \sigma_{k-2}^{(e)}(n), \\
& \cdots \\
\sigma_{2}^{(e)}(n) & \geq \tau(n) \sigma_{1}^{(e)}(n),
\end{aligned}
$$

and taking the product of these relations, we deduce the inequality

$$
\sigma_{k}^{(e)}(n) \geq \tau^{k-1}(n) \sigma^{(e)}(n) \geq \tau^{k}(n) \tau^{(e)}(n)
$$

Therefore, we obtain

$$
\sigma_{k}^{(e)}(n) \geq \tau^{k}(n) \tau^{(e)}(n)
$$

In relation $\frac{\sigma_{k}^{(e)}(n)}{\sigma_{l}^{(e)}(n)} \geq\left(\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)}\right)^{k-l}$, making the substitutions $k \rightarrow k+1$ and $l \rightarrow k$, we obtain the inequality

$$
\frac{\sigma_{k+1}^{(e)}(n)}{\sigma_{k}^{(e)}(n)} \geq \frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \tau(n) .
$$

Theorem 4 For every $n, k, l \in \mathbb{N}$ with $n \geq 1$, there are the following relations:

$$
\begin{gather*}
\sigma_{k}^{(e) *}(n) \cdot \sigma_{l}^{(e) *}(n) \leq \tau^{(e)}(n) \cdot \sigma_{k+l}^{(e) *}(n) \tag{25}\\
\frac{\sigma_{k}^{(e) *}(n)}{\sigma_{l}^{(e) *}(n)} \geq\left(\frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)}\right)^{k-l} \geq \tau^{k-l}(n) \tag{26}\\
\frac{\sigma_{k+1}^{(e) *}(n)}{\sigma_{k}^{(e) *}(n)} \geq \tau(n) \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{k+1}^{(e) *}(n)}{\sigma_{k}^{(e) *}(n)} \geq \frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \geq \tau(n) \tag{28}
\end{equation*}
$$

Proof. We make the same proof as in Theorem 3, by repacing the exponential divisors with the e-unitary divisors.

References

[1] V. Băndilă, M. Lascu and L. Panaitopol, Inegalităţi, Editura GIL, Zalău, 1995.
[2] M. O. Drimbe, Inegalităţi. Idei si metode, Editura GIL, Zalău, 2003.
[3] N. Minculete, Considerations concerning some inequalities of the arithmetic functions $\sigma_{k}^{(e)}$ and $\tau^{(e)}$, A XII-a Conferinţă Anuală a Societăţii de Stiinţe Matematice din România, Bacău, 2008.
[4] N. Minculete, Improvement of one of Sándor's inequalities, Octogon Mathematical Magazine, vol. 17, no. 1 (2009).
[5] N. Minculete, Concerning some inequalities about arithmetic functions which use the exponential divisors (to appear).
[6] J. Sándor, On Jordan's Arithmetical Function, Gazeta Matematică nr. 2-3/1993.
[7] J. Sándor, A Note on Exponential Divisors and Related Arithmetic Functions, Scientia Magna, Vol. 1 (2006), No. 1.
[8] J. Sándor and L. Tóth, On certain number-theoretic inequalities, Fib. Quart. 28 (1990), 255-258.
[9] M. V. Subbarao, On some arithmetic convolutions in The Theory of Arithmetic Functions, Lecture Notes in Mathematics, New York, Springer-Verlag, 1972.
[10] L. Tóth, On Certain Arithmetic Functions Involving Exponential Divisors, Annales Univ. Sci. Budapest., Sect. Comp. 24 (2004), 285-294.
[11] L. Tóth and N. Minculete, Exponential unitary divisors (to appear in Annales Univ. Sci. Budapest., Sect. Comp.).

Nicuşor Minculete
"Dimitrie Catemir" University of Braşov
Str. Bisericii Române, no. 107
Braşov, România
e-mail: minculeten@yahoo.com
Petrică Dicu
"Lucian Blaga" University of Sibiu
Str. Dr. I. Raţiu, no. 5-7
Sibiu, România
e-mail: petrica.dicu@ulbsibiu.ro

[^0]: ${ }^{1}$ Received 3 November, 2009
 Accepted for publication (in revised form) 16 June, 2010

