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Solution of a Recursive Sequence of Order Ten 1

E. M. Elsayed

Abstract

We obtain in this paper the solutions of the following rational non-

linear difference equations

xn+1 =
xn−9

±1± xn−4xn−9

, n = 0, 1, ...,

where initial values are non zero real numbers.
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1 Introduction

The study of Difference Equations has been growing continuously for the last
decade. This is largely due to the fact that difference equations manifest them-
selves as mathematical models describing real life situations in probability the-
ory, queuing theory, statistical problems, stochastic time series, combinatorial
analysis, number theory, geometry, electrical network, quanta in radiation,
genetics in biology, economics, psychology, sociology, etc. In fact, now it oc-
cupies a central position in applicable analysis and will no doubt continue to
play an important role in mathematics as a whole.
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Recently there has been a lot of interest in studying the global attractivity,
boundedness character, periodicity and the solution form of nonlinear differ-
ence equations. For some results in this area, for example: Aloqeili [1] has
obtained the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1
.

Cinar [3–5] obtained the solutions of the following difference equations

xn+1 =
xn−1

1 + xnxn−1
, xn+1 =

xn−1

−1 + xnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Cinar et al.[6] studied the solutions and attractivity of the difference equation

xn+1 =
xn−3

−1 + xnxn−1xn−2xn−3
.

Elabbasy et al. [8] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequence

xn+1 = axn − bxn

cxn − dxn−1
.

Elabbasy et al. [9] investigated the global stability, boundedness, periodicity
character and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [10] investigated the global stability, periodicity character and
gave the solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.

Karatas et al. [31] obtained the solution of the difference equation

xn+1 =
axn−(2k+2)

−a +
∏2k+2

i=0 xn−i

.

Simsek et al. [35] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.
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In [36] Stevic solved the following problem

xn+1 =
xn−1

1 + xn

.

Other related results on rational difference equations can be found in refs. [2],
[7], [11-40].

Our aim in this paper is to investigate the solution of the following non-
linear difference equations

(1) xn+1 =
xn−9

±1 ± xn−4xn−9
, n = 0, 1, ...,

where the initial values x−j , (j = 0, 1, ..., 9) are arbitrary non zero real num-
bers.

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial condi-
tions x−k, x−k+1, ..., x0 ∈ I, the difference equation

(2) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k.

Definition 1 A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed
point of f .

Definition 2 (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

2 MAIN RESULTS

2.1 On the Difference Equation xn+1 =
xn−9

1 + xn−4xn−9

In this section we give a specific form of the first equation in the form

(3) xn+1 =
xn−9

1 + xn−4xn−9
, n = 0, 1, ...,

where the initial values are arbitrary non zero real numbers.
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Theorem 1 Let {xn}∞n=−9 be a solution of Eq.(3). Then for n = 0, 1, ...

x10n−9 = pn−1
i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

, x10n−8 = kn−1
i=0

(

1 + 2ikd

1 + (2i + 1) kd

)

,

x10n−7 = hn−1
i=0

(

1 + 2ihc

1 + (2i + 1) hc

)

, x10n−6 = gn−1
i=0

(

1 + 2igb

1 + (2i + 1) gb

)

,

x10n−5 = fn−1
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

, x10n−4 = en−1
i=0

(

1 + (2i + 1)pe

1 + (2i + 2) pe

)

,

x10n−3 = dn−1
i=0

(

1 + (2i + 1) kd

1 + (2i + 2) kd

)

, x10n−2 = cn−1
i=0

(

1 + (2i + 1)hc

1 + (2i + 2) hc

)

,

x10n−1 = bn−1
i=0

(

1 + (2i + 1)gb

1 + (2i + 2) gb

)

, x10n = an−1
i=0

(

1 + (2i + 1)fa

1 + (2i + 2) fa

)

,

where x−9 = p, x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 =
d, x−2 = c, x−1 = b, x−0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n − 1. That is;

x10n−19 = pn−2
i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

, x10n−18 = kn−2
i=0

(

1 + 2ikd

1 + (2i + 1) kd

)

,

x10n−17 = hn−2
i=0

(

1 + 2ihc

1 + (2i + 1) hc

)

, x10n−16 = gn−2
i=0

(

1 + 2igb

1 + (2i + 1) gb

)

,

x10n−15 = fn−2
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

, x10n−14 = en−2
i=0

(

1 + (2i + 1)pe

1 + (2i + 2) pe

)

,

x10n−13 = dn−2
i=0

(

1 + (2i + 1) kd

1 + (2i + 2) kd

)

, x10n−12 = cn−2
i=0

(

1 + (2i + 1)hc

1 + (2i + 2) hc

)

,

x10n−11 = bn−2
i=0

(

1 + (2i + 1)gb

1 + (2i + 2) gb

)

, x10n−10 = an−2
i=0

(

1 + (2i + 1)fa

1 + (2i + 2) fa

)

.
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Now, it follows from Eq.(3) that

x10n−9 =
x10n−19

1 + x10n−14x10n−19

=
p

n−2

i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

1+en−2

i=0





1 + (2i + 1)pe

1 + (2i + 2) pe



pn−2

i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

=

pn−2
i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

1 +

(

pe

1 + (2n − 2) pe

) =

pn−2
i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

(

1 + (2n − 1) pe

1 + (2n − 2) pe

) .

Hence, we have

x10n−9 = pn−1
i=0

(

1 + 2ipe

1 + (2i + 1) pe

)

.

Similarly

x10n−5 =
x10n−15

1 + x10n−10x10n−15

=

fn−2
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

1 + an−2
i=0

(

1 + (2i + 1)fa

1 + (2i + 2) fa

)

fn−2
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

=

fn−2
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

1 +

(

fa

1 + (2n − 2) fa

)

(

1 + (2n − 2) fa

1 + (2n − 2) fa

)

= fn−2
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

(1 + (2n − 2) fa)

(1 + (2n − 1) fa)
.

Hence, we have

x10n−5 = fn−1
i=0

(

1 + 2ifa

1 + (2i + 1) fa

)

.

Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 2 Eq.(3) has one equilibrium point which is the zero.
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Proof: For the equilibrium points of Eq.(3), we can write

x =
x

1 + x2 .

Then we have
x + x3 = x,

or,
x3 = 0.

Thus the equilibrium point of Eq.(3) is x = 0.

Theorem 3 Every positive solution of Eq.(3) is bounded.

Proof: Let {xn}∞n=−9 be a solution of Eq.(3). It follows from Eq.(3) that

xn+1 =
xn−9

1 + xn−4xn−9
≤ xn−9.

Then
xn+1 ≤ xn−9 for all n ≥ 0.

Then the sequence {xn}∞n=0 is decreasing and so are bounded from above by
M = max{x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.
Numerical examples

For confirming the results of this section, we consider numerical examples
which represent different types of solutions to Eq. (3).
Example 1. We consider x−9 = 1.2, x−8 = 11, x−7 = 6, x−6 = 8, x−5 =
0.4, x−4 = 0.2, x−3 = 13, x−2 = 9, x−1 = 7, x0 = 5 See Fig. 1.
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Figure 1.
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Example 2. See Fig. 2, since x−9 = 9, x−8 = 7, x−7 = 6, x−6 = 0.3,
x−5 = 4, x−4 = −1.7, x−3 = −3, x−2 = −1.9, x−1 = 9, x0 = −3.
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Figure 2.

2.2 On the Difference Equation xn+1 =
xn−9

−1 + xn−4xn−9

In this section we obtain the solution of the second equation in the form

(4) xn+1 =
xn−9

−1 + xn−4xn−9
, n = 0, 1, ...,

where the initial values are arbitrary non zero real numbers with x−9x−4 6=
1, x−8x−3 6= 1, x−7x−2 6= 1, x−6x−1 6= 1, x−5x0 6= 1.

Theorem 4 Let {xn}∞n=−9 be a solution of Eq.(4). Then for n = 0, 1, ...

x10n−9 =
p

(−1 + pe)n , x10n−8 =
k

(−1 + kd)n ,

x10n−7 =
h

(−1 + hc)n , x10n−6 =
g

(−1 + gb)n ,

x10n−5 =
f

(−1 + fa)n , x10n−4 = e (−1 + pe)n ,

x10n−3 = d (−1 + kd)n , x10n−2 = c (−1 + hc)n ,

x10n−1 = b (−1 + gb)n , x10n = a (−1 + fa)n ,

where x−9 = p, x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 =
d, x−2 = c, x−1 = b, x−0 = a.
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Proof: For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n − 1. That is;

x10n−19 =
p

(−1 + pe)n−1 , x10n−18 =
k

(−1 + kd)n−1 ,

x10n−17 =
h

(−1 + hc)n−1 , x10n−16 =
g

(−1 + gb)n−1 ,

x10n−15 =
f

(−1 + fa)n−1 , x10n−14 = e (−1 + pe)n−1 ,

x10n−13 = d (−1 + kd)n−1 , x10n−12 = c (−1 + hc)n−1 ,

x10n−11 = b (−1 + gb)n−1 , x10n−10 = a (−1 + fa)n−1 .

Now, it follows from Eq.(4) that

x10n−9 =
x10n−19

−1 + x10n−14x10n−19
=

p

(−1 + pe)n−1

−1 + e (−1 + pe)n−1 p

(−1 + pe)n−1

=
p

(−1 + pe)n−1 (−1 + pe)
.

Hence, we have

x10n−9 =
p

(−1 + pe)n .

Similarly

x10n−3 =
x10n−13

−1 + x10n−8x10n−13
=

d (−1 + kd)n−1

−1 +
k

(−1 + kd)n d (−1 + kd)n−1

=
d (−1 + kd)n−1

−1 +
kd

(−1 + kd)

=
d (−1 + kd)n

−1 (−1 + kd) + kd
.

Hence, we have

x10n−3 = d (−1 + kd)n .

Similarly, one can easily prove the other relations. Thus, the proof is com-
pleted.

Theorem 5 Eq.(4) has three equilibrium points which are 0,
√

2,−
√

2.
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Proof: For the equilibrium points of Eq.(4), we can write

x =
x

−1 + x2 .

Then we have

−x + x3 = x,

or,

x(x2 − 2) = 0.

Thus the equilibrium points of Eq.(4) are 0,
√

2,−
√

2.
Lemma 1 It is easy to see that every solution of Eq.(4) is unbounded except
in the following case.

Theorem 6 Eq.(4) has a periodic solutions of period ten iff pe = kd = hc =
gb = fa = 2 and will be take the form {p, k, h, g, f, e, d, c, b, a, p, k, h, g, f, e, d,
c, b, a, ...}.

Proof: First suppose that there exists a prime period ten solution

p, k, h, g, f, e, d, c, b, a, p, k, h, g, f, e, d, c, b, a, ...,

of Eq.(4), we see from the form of solution of Eq.(4) that

p =
p

(−1 + pe)n , k =
k

(−1 + kd)n ,

h =
h

(−1 + hc)n , g =
g

(−1 + gb)n ,

f =
f

(−1 + fa)n , e = e (−1 + pe)n ,

d = d (−1 + kd)n , c = c (−1 + hc)n ,

b = b (−1 + gb)n , a = a (−1 + fa)n ,

or,

(−1 + pe)n = 1, (−1 + kd)n = 1,

(−1 + hc)n = 1, (−1 + gb)n = 1,

(−1 + fa)n = 1.

Then

pe = kd = hc = gb = fa = 2.
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Second suppose pe = kd = hc = gb = fa = 2. Then we see from Eq.(4) that

x10n−9 = p, x10n−8 = k, x10n−7 = h, x10n−6 = g, x10n−5 = f,

x10n−4 = e, x10n−3 = d, x10n−2 = c, x10n−1 = b, x10n = a.

Thus we have a period ten solution and the proof is complete.

Numerical examples

Example 3. We consider x−9 = 1.2, x−8 = 0.11, x−7 = 0.6, x−6 = 0.8,
x−5 = 0.4, x−4 = 0.2, x−3 = 1.3, x−2 = 0.9, x−1 = 0.7, x0 = 0.5. See Fig. 3.
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Figure 3.

Example 4. See Fig. 4, since x−9 = 8, x−8 = −11, x−7 = 6, x−6 = −7,
x−5 = 4, x−4 = 1/4, x−3 = −2/11, x−2 = 1/3, x−1 = −2/7, x0 = 1/2.
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Figure 4.

The following cases can be proved similarly.

2.3 On the Difference Equation xn+1 =
xn−9

1 − xn−4xn−9

In this section we get the solution of the third following equation

(5) xn+1 =
xn−9

1 − xn−4xn−9
, n = 0, 1, ...,

where the initial values are arbitrary non zero real numbers.

Theorem 7 Let {xn}∞n=−9 be a solution of Eq.(5). Then for n = 0, 1, ...

x10n−9 = pn−1
i=0

(

1 − 2ipe

1 − (2i + 1) pe

)

, x10n−8 = kn−1
i=0

(

1 − 2ikd

1 − (2i + 1) kd

)

,

x10n−7 = hn−1
i=0

(

1 − 2ihc

1 − (2i + 1) hc

)

, x10n−6 = gn−1
i=0

(

1 − 2igb

1 − (2i + 1) gb

)

,

x10n−5 = fn−1
i=0

(

1 − 2ifa

1 − (2i + 1) fa

)

, x10n−4 = en−1
i=0

(

1 − (2i + 1)pe

1 − (2i + 2) pe

)

,

x10n−3 = dn−1
i=0

(

1 − (2i + 1) kd

1 − (2i + 2) kd

)

, x10n−2 = cn−1
i=0

(

1 − (2i + 1)hc

1 − (2i + 2) hc

)

,

x10n−1 = bn−1
i=0

(

1 − (2i + 1)gb

1 − (2i + 2) gb

)

, x10n = an−1
i=0

(

1 − (2i + 1)fa

1 − (2i + 2) fa

)

,

where x−9 = p, x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 =
d, x−2 = c, x−1 = b, x−0 = a.
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Theorem 8 Eq.(5) has a unique equilibrium point which is the number zero.

Example 5. Assume that x−9 = 8, x−8 = −11, x−7 = 6, x−6 = −7,
x−5 = 4, x−4 = 0.2, x−3 = 1.1, x−2 = 0.6, x−1 = −2, x0 = 4 see Fig. 5

Example 6. See Fig. 6. for x−9 = 3, x−8 = 9, x−7 = 0.8, x−6 = 0.7,
x−5 = 0.4, x−4 = 2, x−3 = 13, x−2 = 6, x−1 = 0.2, x0 = 4
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Figure 5.
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2.4 On the Difference Equation xn+1 =
xn−9

−1 − xn−4xn−9

Here we obtain a form of the solutions of the equation

(6) xn+1 =
xn−9

−1 − xn−4xn−9
, n = 0, 1, ...,

where the initial values are arbitrary non zero real numbers with x−9x−4 6=
−1, x−8x−3 6= −1, x−7x−2 6= −1, x−6x−1 6= −1, x−5x0 6= −1.

Theorem 9 Let {xn}∞n=−9 be a solution of Eq.(6). Then for n = 0, 1, ...

x10n−9 =
(−1)n p

(1 + pe)n , x10n−8 =
(−1)n k

(1 + kd)n ,

x10n−7 =
(−1)n h

(1 + hc)n , x10n−6 =
(−1)n g

(1 + gb)n ,

x10n−5 =
(−1)n f

(1 + fa)n , x10n−4 = (−1)n e (1 + pe)n ,

x10n−3 = d (−1)n (1 + kd)n , x10n−2 = c (−1)n (1 + hc)n ,

x10n−1 = b (−1)n (1 + gb)n , x10n = a (−1)n (1 + fa)n ,

where x−9 = p, x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 =
d, x−2 = c, x−1 = b, x−0 = a.

Theorem 10 Eq.(6) has a unique equilibrium point which is the number zero.

Lemma 2 It is easy to see that every solution of Eq.(6) is unbounded except
in the following case.

Theorem 11 Eq.(6) has a periodic solutions of period ten iff pe = kd =
hc = gb = fa = −2 and will be take the form {p, k, h, g, f, e, d, c, b, a, p, k, h, g,
f, e, d, c, b, a, ...}.

Example 7. Consider x−9 = 13, x−8 = 9, x−7 = 1.8, x−6 = 0.7, x−5 =
0.4, x−4 = 0.2, x−3 = 1.3, x−2 = 6, x−1 = 0.2, x0 = 4 see Fig. 7

Example 8.Fig. 8. shows the solutions when x−9 = 13, x−8 = −3, x−7 =
0.11, x−6 = 4, x−5 = 0.14, x−4 = −2/13, x−3 = 2/3, x−2 = −20/11, x−1 =
−1/2, x0 = −10/7.
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