Solution of a Recursive Sequence of Order Ten ${ }^{1}$

E. M. Elsayed

Abstract

We obtain in this paper the solutions of the following rational nonlinear difference equations $$
x_{n+1}=\frac{x_{n-9}}{ \pm 1 \pm x_{n-4} x_{n-9}}, \quad n=0,1, \ldots
$$ where initial values are non zero real numbers.

\section*{2000 Mathematics Subject Classification: 39A10.}

Key words and phrases: recursive sequence, periodicity, solutions of difference equations.

References

[1] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comp., 176(2), 2006, 768-774.
[2] A. M. Amleh, J. Hoag, G. Ladas, A difference equation with eventually periodic solutions, Comput. Math. Appl., 36 (10-12), 1998, 401-404.
[3] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=$ $\frac{x_{n-1}}{1+x_{n} x_{n-1}}$, Appl. Math. Comp., 150, 2004, 21-24.

[^0][4] C. Cinar, On the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+x_{n} x_{n-1}}$, Appl. Math. Comp., 158, 2004, 813-816.
[5] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=$ $\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}$, Appl. Math. Comp., 156, 2004, 587-590.
[6] C. Cinar, R. Karatas and I. Yalcinkaya, On solutions of the difference equation $x_{n+1}=\frac{x_{n-3}}{-1+x_{n} x_{n-1} x_{n-2} x_{n-3}}$, Mathematica Bohemica, 132(3), 2007, 257-261.
[7] M. Douraki, M. Dehghan and M. Razzaghi, The qualitative behavior of solutions of a nonlinear difference equation, Appl. Math. Comp., 170(1), 2005, 485-502.
[8] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $\quad x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$, Adv. Differ. Equ., Volume 2006, 2006, Article ID 82579,1-10.
[9] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math., 5(2), 2007, 101-113.
[10] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33 (4), 2007, 861-873.
[11] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Mathematical Journal, 53, 2007, 89-100.
[12] E. M. Elabbasy and E. M. Elsayed, Global Attractivity and Periodic Nature of a Difference Equation, World Applied Sciences Journal, 12 (1), 2011, 39-47.
[13] E. M. Elsayed, On the Difference Equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2} x_{n-5}}$, Int. J. Contemp. Math. Scie., 3 (33), 2008, 1657-1664.
[14] E. M. Elsayed, Dynamics of a recursive sequence of higher order, Communications on Applied Nonlinear Analysis, 16 (2), 2009, 37-50.
[15] E. M. Elsayed, Qualitative behavior of difference equation of order three, Acta Scientiarum Mathematicarum (Szeged), 75 (1-2), 2009, 113-129.
[16] E. M. Elsayed, Qualitative behavior of s rational recursive sequence, Indagationes Mathematicae, New Series, 19(2), 2008, 189-201.
[17] E. M. Elsayed, On the Global attractivity and the solution of recursive sequence, Studia Scientiarum Mathematicarum Hungarica, 47 (3), 2010, 401-418.
[18] E. M. Elsayed, Qualitative properties for a fourth order rational difference equation, Acta Applicandae Mathematicae, 110 (2), 2010, 589-604.
[19] E. M. Elsayed, Qualitative behavior of difference equation of order two, Mathematical and Computer Modelling, 50 ,2009, 1130-1141.
[20] E. M. Elsayed, A Solution Form of a Class of Rational Difference Equations, International Journal of Nonlinear Science, 8(4), 2009, 402-411.
[21] E. M. Elsayed, Expressions of Solutions for a Class of Difference Equation, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 18 (1), 2010, 99-114.
[22] E. M. Elsayad, B. Iricanin and S. Stevic, On The Max-Type Equation, Ars Combinatoria, 95, 2010, 187-192.
[23] E. M. Elsayed, On the Global Attractivity and the Periodic Character of a Recursive Sequence, Opuscula Mathematica, 30(4), 2010, 431-446.
[24] E. M. Elsayed, On the Solutions of a Rational System of Difference Equations, Fasciculi Mathematici, 45, 2010, 25-36.
[25] E. M. Elsayed, Solution and Behavior of a Rational Difference Equations, Acta Universitatis Apulensis, 23 ,2010, 233-249.
[26] E. M. Elsayed, Dynamics of Recursive Sequence of Order Two, Kyungpook Mathematical Journal, 50, 2010, 483-497.
[27] E. M. Elsayed, On the solution of recursive sequence of order two, Fasciculi Mathematici, 40, 2008, 5-13.
[28] E. M. Elsayed, Behavior of a Rational Recursive Sequences, Studia Univ. "Babes - Bolyai ", Mathematica, In Press.
[29] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, , Chapman \& Hall / CRC Press, 2005.
[30] E. A. Grove, G. Ladas, L. C. McGrath and C. T. Teixeira, Existence and behavior of solutions of a rational system, Commu. Appl. Nonlin. Anal. , 8, 2001, 1-25.
[31] R. Karatas and C. Cinar, On the solutions of the difference equation $x_{n+1}=\frac{a x_{n-(2 k+2)}}{-a+\prod_{i=0}^{2 k+2} x_{n-i}}$, Int. J. Contemp. Math. Sciences, 2 (31), 2007, 1505-1509.
[32] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[33] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman \& Hall / CRC Press, 2001.
[34] M. R. S. Kulenovic and G. Ladas, On period two solutions of $x_{n+1}=$ $\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A \alpha+B x_{n}+C x_{n-1}}$, J. Difference Equ. Appl., 6 (5), 2000, 641-646.
[35] D. Simsek, C. Cinar and I. Yalcinkaya, On the recursive sequence $x_{n+1}=$ $\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1 (10), 2006, 475-480.
[36] S. Stevic, On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$, Taiwanese J. Math., 6 (3), 2002, 405-414.
[37] X. Yang, L. Cui, Y. Tang and J. Cao, Global asymptotic stability in a class of difference equations, Advances in Difference Equations, Volume 2007, 2007, Article ID16249, 7 pages.
[38] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A \alpha+B x_{n}+C x_{n-1}}$, Communications on Applied Nonlinear Analysis, 12 (4), 2005, 15-28.
[39] L. Zhang, G. Zhang and H. Liu, Periodicity and attractivity for a rational recursive sequence, J. Appl. Math. \& Computing, 19 (1-2), 2005, 191-201.
[40] Y. Zheng, Periodic solutions with the same period of the recursion $x_{n+1}=$ $\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A \alpha+B x_{n}+C x_{n-1}}$, Differential Equations Dynam. Systems, 5, 1997, 51-58.

Elsayed M. Elsayed
King AbdulAziz University, Faculty of Science
Department of Mathematics
P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Permanent address:
Mansoura University, Faculty of Science
Department of Mathematics
Mansoura 35516, Egypt.
e-mail: emelsayed@mans.edu.eg, emmelsayed@yahoo.com.

[^0]: ${ }^{1}$ Received 14 March, 2009
 Accepted for publication (in revised form) 30 September, 2009

